VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1g/crypto/evp/e_aes.c@ 85622

Last change on this file since 85622 was 83916, checked in by vboxsync, 5 years ago

openssl-1.1.1g: Applied and adjusted our OpenSSL changes to 1.1.1g. bugref:9719

File size: 142.8 KB
Line 
1/*
2 * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <openssl/opensslconf.h>
11#include <openssl/crypto.h>
12#include <openssl/evp.h>
13#include <openssl/err.h>
14#include <string.h>
15#include <assert.h>
16#include <openssl/aes.h>
17#include "crypto/evp.h"
18#include "modes_local.h"
19#include <openssl/rand.h>
20#include "evp_local.h"
21
22typedef struct {
23 union {
24 double align;
25 AES_KEY ks;
26 } ks;
27 block128_f block;
28 union {
29 cbc128_f cbc;
30 ctr128_f ctr;
31 } stream;
32} EVP_AES_KEY;
33
34typedef struct {
35 union {
36 double align;
37 AES_KEY ks;
38 } ks; /* AES key schedule to use */
39 int key_set; /* Set if key initialised */
40 int iv_set; /* Set if an iv is set */
41 GCM128_CONTEXT gcm;
42 unsigned char *iv; /* Temporary IV store */
43 int ivlen; /* IV length */
44 int taglen;
45 int iv_gen; /* It is OK to generate IVs */
46 int tls_aad_len; /* TLS AAD length */
47 ctr128_f ctr;
48} EVP_AES_GCM_CTX;
49
50typedef struct {
51 union {
52 double align;
53 AES_KEY ks;
54 } ks1, ks2; /* AES key schedules to use */
55 XTS128_CONTEXT xts;
56 void (*stream) (const unsigned char *in,
57 unsigned char *out, size_t length,
58 const AES_KEY *key1, const AES_KEY *key2,
59 const unsigned char iv[16]);
60} EVP_AES_XTS_CTX;
61
62typedef struct {
63 union {
64 double align;
65 AES_KEY ks;
66 } ks; /* AES key schedule to use */
67 int key_set; /* Set if key initialised */
68 int iv_set; /* Set if an iv is set */
69 int tag_set; /* Set if tag is valid */
70 int len_set; /* Set if message length set */
71 int L, M; /* L and M parameters from RFC3610 */
72 int tls_aad_len; /* TLS AAD length */
73 CCM128_CONTEXT ccm;
74 ccm128_f str;
75} EVP_AES_CCM_CTX;
76
77#ifndef OPENSSL_NO_OCB
78typedef struct {
79 union {
80 double align;
81 AES_KEY ks;
82 } ksenc; /* AES key schedule to use for encryption */
83 union {
84 double align;
85 AES_KEY ks;
86 } ksdec; /* AES key schedule to use for decryption */
87 int key_set; /* Set if key initialised */
88 int iv_set; /* Set if an iv is set */
89 OCB128_CONTEXT ocb;
90 unsigned char *iv; /* Temporary IV store */
91 unsigned char tag[16];
92 unsigned char data_buf[16]; /* Store partial data blocks */
93 unsigned char aad_buf[16]; /* Store partial AAD blocks */
94 int data_buf_len;
95 int aad_buf_len;
96 int ivlen; /* IV length */
97 int taglen;
98} EVP_AES_OCB_CTX;
99#endif
100
101#define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
102
103#ifdef VPAES_ASM
104int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
105 AES_KEY *key);
106int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
107 AES_KEY *key);
108
109void vpaes_encrypt(const unsigned char *in, unsigned char *out,
110 const AES_KEY *key);
111void vpaes_decrypt(const unsigned char *in, unsigned char *out,
112 const AES_KEY *key);
113
114void vpaes_cbc_encrypt(const unsigned char *in,
115 unsigned char *out,
116 size_t length,
117 const AES_KEY *key, unsigned char *ivec, int enc);
118#endif
119#ifdef BSAES_ASM
120void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
121 size_t length, const AES_KEY *key,
122 unsigned char ivec[16], int enc);
123void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
124 size_t len, const AES_KEY *key,
125 const unsigned char ivec[16]);
126void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
127 size_t len, const AES_KEY *key1,
128 const AES_KEY *key2, const unsigned char iv[16]);
129void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
130 size_t len, const AES_KEY *key1,
131 const AES_KEY *key2, const unsigned char iv[16]);
132#endif
133#if !defined(AES_ASM) && !defined(AES_CTR_ASM) \
134 && defined(OPENSSL_AES_CONST_TIME) \
135 && !defined(OPENSSL_SMALL_FOOTPRINT)
136# define AES_CTR_ASM
137#endif
138#ifdef AES_CTR_ASM
139void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
140 size_t blocks, const AES_KEY *key,
141 const unsigned char ivec[AES_BLOCK_SIZE]);
142#endif
143#ifdef AES_XTS_ASM
144void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
145 const AES_KEY *key1, const AES_KEY *key2,
146 const unsigned char iv[16]);
147void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
148 const AES_KEY *key1, const AES_KEY *key2,
149 const unsigned char iv[16]);
150#endif
151
152/* increment counter (64-bit int) by 1 */
153static void ctr64_inc(unsigned char *counter)
154{
155 int n = 8;
156 unsigned char c;
157
158 do {
159 --n;
160 c = counter[n];
161 ++c;
162 counter[n] = c;
163 if (c)
164 return;
165 } while (n);
166}
167
168#if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
169# include "ppc_arch.h"
170# ifdef VPAES_ASM
171# define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
172# endif
173# define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
174# define HWAES_set_encrypt_key aes_p8_set_encrypt_key
175# define HWAES_set_decrypt_key aes_p8_set_decrypt_key
176# define HWAES_encrypt aes_p8_encrypt
177# define HWAES_decrypt aes_p8_decrypt
178# define HWAES_cbc_encrypt aes_p8_cbc_encrypt
179# define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
180# define HWAES_xts_encrypt aes_p8_xts_encrypt
181# define HWAES_xts_decrypt aes_p8_xts_decrypt
182#endif
183
184#if defined(OPENSSL_CPUID_OBJ) && ( \
185 ((defined(__i386) || defined(__i386__) || \
186 defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
187 defined(__x86_64) || defined(__x86_64__) || \
188 defined(_M_AMD64) || defined(_M_X64) )
189
190extern unsigned int OPENSSL_ia32cap_P[];
191
192# ifdef VPAES_ASM
193# define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
194# endif
195# ifdef BSAES_ASM
196# define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
197# endif
198/*
199 * AES-NI section
200 */
201# define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
202
203int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
204 AES_KEY *key);
205int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
206 AES_KEY *key);
207
208void aesni_encrypt(const unsigned char *in, unsigned char *out,
209 const AES_KEY *key);
210void aesni_decrypt(const unsigned char *in, unsigned char *out,
211 const AES_KEY *key);
212
213void aesni_ecb_encrypt(const unsigned char *in,
214 unsigned char *out,
215 size_t length, const AES_KEY *key, int enc);
216void aesni_cbc_encrypt(const unsigned char *in,
217 unsigned char *out,
218 size_t length,
219 const AES_KEY *key, unsigned char *ivec, int enc);
220
221void aesni_ctr32_encrypt_blocks(const unsigned char *in,
222 unsigned char *out,
223 size_t blocks,
224 const void *key, const unsigned char *ivec);
225
226void aesni_xts_encrypt(const unsigned char *in,
227 unsigned char *out,
228 size_t length,
229 const AES_KEY *key1, const AES_KEY *key2,
230 const unsigned char iv[16]);
231
232void aesni_xts_decrypt(const unsigned char *in,
233 unsigned char *out,
234 size_t length,
235 const AES_KEY *key1, const AES_KEY *key2,
236 const unsigned char iv[16]);
237
238void aesni_ccm64_encrypt_blocks(const unsigned char *in,
239 unsigned char *out,
240 size_t blocks,
241 const void *key,
242 const unsigned char ivec[16],
243 unsigned char cmac[16]);
244
245void aesni_ccm64_decrypt_blocks(const unsigned char *in,
246 unsigned char *out,
247 size_t blocks,
248 const void *key,
249 const unsigned char ivec[16],
250 unsigned char cmac[16]);
251
252# if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
253size_t aesni_gcm_encrypt(const unsigned char *in,
254 unsigned char *out,
255 size_t len,
256 const void *key, unsigned char ivec[16], u64 *Xi);
257# define AES_gcm_encrypt aesni_gcm_encrypt
258size_t aesni_gcm_decrypt(const unsigned char *in,
259 unsigned char *out,
260 size_t len,
261 const void *key, unsigned char ivec[16], u64 *Xi);
262# define AES_gcm_decrypt aesni_gcm_decrypt
263void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
264 size_t len);
265# define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
266 gctx->gcm.ghash==gcm_ghash_avx)
267# define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
268 gctx->gcm.ghash==gcm_ghash_avx)
269# undef AES_GCM_ASM2 /* minor size optimization */
270# endif
271
272static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
273 const unsigned char *iv, int enc)
274{
275 int ret, mode;
276 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
277
278 mode = EVP_CIPHER_CTX_mode(ctx);
279 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
280 && !enc) {
281 ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
282 &dat->ks.ks);
283 dat->block = (block128_f) aesni_decrypt;
284 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
285 (cbc128_f) aesni_cbc_encrypt : NULL;
286 } else {
287 ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
288 &dat->ks.ks);
289 dat->block = (block128_f) aesni_encrypt;
290 if (mode == EVP_CIPH_CBC_MODE)
291 dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
292 else if (mode == EVP_CIPH_CTR_MODE)
293 dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
294 else
295 dat->stream.cbc = NULL;
296 }
297
298 if (ret < 0) {
299 EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
300 return 0;
301 }
302
303 return 1;
304}
305
306static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
307 const unsigned char *in, size_t len)
308{
309 aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
310 EVP_CIPHER_CTX_iv_noconst(ctx),
311 EVP_CIPHER_CTX_encrypting(ctx));
312
313 return 1;
314}
315
316static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
317 const unsigned char *in, size_t len)
318{
319 size_t bl = EVP_CIPHER_CTX_block_size(ctx);
320
321 if (len < bl)
322 return 1;
323
324 aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
325 EVP_CIPHER_CTX_encrypting(ctx));
326
327 return 1;
328}
329
330# define aesni_ofb_cipher aes_ofb_cipher
331static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
332 const unsigned char *in, size_t len);
333
334# define aesni_cfb_cipher aes_cfb_cipher
335static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
336 const unsigned char *in, size_t len);
337
338# define aesni_cfb8_cipher aes_cfb8_cipher
339static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
340 const unsigned char *in, size_t len);
341
342# define aesni_cfb1_cipher aes_cfb1_cipher
343static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
344 const unsigned char *in, size_t len);
345
346# define aesni_ctr_cipher aes_ctr_cipher
347static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
348 const unsigned char *in, size_t len);
349
350static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
351 const unsigned char *iv, int enc)
352{
353 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
354 if (!iv && !key)
355 return 1;
356 if (key) {
357 aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
358 &gctx->ks.ks);
359 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
360 gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
361 /*
362 * If we have an iv can set it directly, otherwise use saved IV.
363 */
364 if (iv == NULL && gctx->iv_set)
365 iv = gctx->iv;
366 if (iv) {
367 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
368 gctx->iv_set = 1;
369 }
370 gctx->key_set = 1;
371 } else {
372 /* If key set use IV, otherwise copy */
373 if (gctx->key_set)
374 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
375 else
376 memcpy(gctx->iv, iv, gctx->ivlen);
377 gctx->iv_set = 1;
378 gctx->iv_gen = 0;
379 }
380 return 1;
381}
382
383# define aesni_gcm_cipher aes_gcm_cipher
384static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
385 const unsigned char *in, size_t len);
386
387static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
388 const unsigned char *iv, int enc)
389{
390 EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
391
392 if (!iv && !key)
393 return 1;
394
395 if (key) {
396 /* The key is two half length keys in reality */
397 const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
398
399 /*
400 * Verify that the two keys are different.
401 *
402 * This addresses Rogaway's vulnerability.
403 * See comment in aes_xts_init_key() below.
404 */
405 if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
406 EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
407 return 0;
408 }
409
410 /* key_len is two AES keys */
411 if (enc) {
412 aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
413 &xctx->ks1.ks);
414 xctx->xts.block1 = (block128_f) aesni_encrypt;
415 xctx->stream = aesni_xts_encrypt;
416 } else {
417 aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
418 &xctx->ks1.ks);
419 xctx->xts.block1 = (block128_f) aesni_decrypt;
420 xctx->stream = aesni_xts_decrypt;
421 }
422
423 aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
424 EVP_CIPHER_CTX_key_length(ctx) * 4,
425 &xctx->ks2.ks);
426 xctx->xts.block2 = (block128_f) aesni_encrypt;
427
428 xctx->xts.key1 = &xctx->ks1;
429 }
430
431 if (iv) {
432 xctx->xts.key2 = &xctx->ks2;
433 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
434 }
435
436 return 1;
437}
438
439# define aesni_xts_cipher aes_xts_cipher
440static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
441 const unsigned char *in, size_t len);
442
443static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
444 const unsigned char *iv, int enc)
445{
446 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
447 if (!iv && !key)
448 return 1;
449 if (key) {
450 aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
451 &cctx->ks.ks);
452 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
453 &cctx->ks, (block128_f) aesni_encrypt);
454 cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
455 (ccm128_f) aesni_ccm64_decrypt_blocks;
456 cctx->key_set = 1;
457 }
458 if (iv) {
459 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
460 cctx->iv_set = 1;
461 }
462 return 1;
463}
464
465# define aesni_ccm_cipher aes_ccm_cipher
466static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
467 const unsigned char *in, size_t len);
468
469# ifndef OPENSSL_NO_OCB
470void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
471 size_t blocks, const void *key,
472 size_t start_block_num,
473 unsigned char offset_i[16],
474 const unsigned char L_[][16],
475 unsigned char checksum[16]);
476void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
477 size_t blocks, const void *key,
478 size_t start_block_num,
479 unsigned char offset_i[16],
480 const unsigned char L_[][16],
481 unsigned char checksum[16]);
482
483static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
484 const unsigned char *iv, int enc)
485{
486 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
487 if (!iv && !key)
488 return 1;
489 if (key) {
490 do {
491 /*
492 * We set both the encrypt and decrypt key here because decrypt
493 * needs both. We could possibly optimise to remove setting the
494 * decrypt for an encryption operation.
495 */
496 aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
497 &octx->ksenc.ks);
498 aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
499 &octx->ksdec.ks);
500 if (!CRYPTO_ocb128_init(&octx->ocb,
501 &octx->ksenc.ks, &octx->ksdec.ks,
502 (block128_f) aesni_encrypt,
503 (block128_f) aesni_decrypt,
504 enc ? aesni_ocb_encrypt
505 : aesni_ocb_decrypt))
506 return 0;
507 }
508 while (0);
509
510 /*
511 * If we have an iv we can set it directly, otherwise use saved IV.
512 */
513 if (iv == NULL && octx->iv_set)
514 iv = octx->iv;
515 if (iv) {
516 if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
517 != 1)
518 return 0;
519 octx->iv_set = 1;
520 }
521 octx->key_set = 1;
522 } else {
523 /* If key set use IV, otherwise copy */
524 if (octx->key_set)
525 CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
526 else
527 memcpy(octx->iv, iv, octx->ivlen);
528 octx->iv_set = 1;
529 }
530 return 1;
531}
532
533# define aesni_ocb_cipher aes_ocb_cipher
534static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
535 const unsigned char *in, size_t len);
536# endif /* OPENSSL_NO_OCB */
537
538# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
539static const EVP_CIPHER aesni_##keylen##_##mode = { \
540 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
541 flags|EVP_CIPH_##MODE##_MODE, \
542 aesni_init_key, \
543 aesni_##mode##_cipher, \
544 NULL, \
545 sizeof(EVP_AES_KEY), \
546 NULL,NULL,NULL,NULL }; \
547static const EVP_CIPHER aes_##keylen##_##mode = { \
548 nid##_##keylen##_##nmode,blocksize, \
549 keylen/8,ivlen, \
550 flags|EVP_CIPH_##MODE##_MODE, \
551 aes_init_key, \
552 aes_##mode##_cipher, \
553 NULL, \
554 sizeof(EVP_AES_KEY), \
555 NULL,NULL,NULL,NULL }; \
556const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
557{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
558
559# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
560static const EVP_CIPHER aesni_##keylen##_##mode = { \
561 nid##_##keylen##_##mode,blocksize, \
562 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
563 flags|EVP_CIPH_##MODE##_MODE, \
564 aesni_##mode##_init_key, \
565 aesni_##mode##_cipher, \
566 aes_##mode##_cleanup, \
567 sizeof(EVP_AES_##MODE##_CTX), \
568 NULL,NULL,aes_##mode##_ctrl,NULL }; \
569static const EVP_CIPHER aes_##keylen##_##mode = { \
570 nid##_##keylen##_##mode,blocksize, \
571 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
572 flags|EVP_CIPH_##MODE##_MODE, \
573 aes_##mode##_init_key, \
574 aes_##mode##_cipher, \
575 aes_##mode##_cleanup, \
576 sizeof(EVP_AES_##MODE##_CTX), \
577 NULL,NULL,aes_##mode##_ctrl,NULL }; \
578const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
579{ return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
580
581#elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
582
583# include "sparc_arch.h"
584
585extern unsigned int OPENSSL_sparcv9cap_P[];
586
587/*
588 * Initial Fujitsu SPARC64 X support
589 */
590# define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
591# define HWAES_set_encrypt_key aes_fx_set_encrypt_key
592# define HWAES_set_decrypt_key aes_fx_set_decrypt_key
593# define HWAES_encrypt aes_fx_encrypt
594# define HWAES_decrypt aes_fx_decrypt
595# define HWAES_cbc_encrypt aes_fx_cbc_encrypt
596# define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
597
598# define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
599
600void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
601void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
602void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
603 const AES_KEY *key);
604void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
605 const AES_KEY *key);
606/*
607 * Key-length specific subroutines were chosen for following reason.
608 * Each SPARC T4 core can execute up to 8 threads which share core's
609 * resources. Loading as much key material to registers allows to
610 * minimize references to shared memory interface, as well as amount
611 * of instructions in inner loops [much needed on T4]. But then having
612 * non-key-length specific routines would require conditional branches
613 * either in inner loops or on subroutines' entries. Former is hardly
614 * acceptable, while latter means code size increase to size occupied
615 * by multiple key-length specific subroutines, so why fight?
616 */
617void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
618 size_t len, const AES_KEY *key,
619 unsigned char *ivec);
620void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
621 size_t len, const AES_KEY *key,
622 unsigned char *ivec);
623void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
624 size_t len, const AES_KEY *key,
625 unsigned char *ivec);
626void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
627 size_t len, const AES_KEY *key,
628 unsigned char *ivec);
629void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
630 size_t len, const AES_KEY *key,
631 unsigned char *ivec);
632void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
633 size_t len, const AES_KEY *key,
634 unsigned char *ivec);
635void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
636 size_t blocks, const AES_KEY *key,
637 unsigned char *ivec);
638void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
639 size_t blocks, const AES_KEY *key,
640 unsigned char *ivec);
641void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
642 size_t blocks, const AES_KEY *key,
643 unsigned char *ivec);
644void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
645 size_t blocks, const AES_KEY *key1,
646 const AES_KEY *key2, const unsigned char *ivec);
647void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
648 size_t blocks, const AES_KEY *key1,
649 const AES_KEY *key2, const unsigned char *ivec);
650void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
651 size_t blocks, const AES_KEY *key1,
652 const AES_KEY *key2, const unsigned char *ivec);
653void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
654 size_t blocks, const AES_KEY *key1,
655 const AES_KEY *key2, const unsigned char *ivec);
656
657static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
658 const unsigned char *iv, int enc)
659{
660 int ret, mode, bits;
661 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
662
663 mode = EVP_CIPHER_CTX_mode(ctx);
664 bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
665 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
666 && !enc) {
667 ret = 0;
668 aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
669 dat->block = (block128_f) aes_t4_decrypt;
670 switch (bits) {
671 case 128:
672 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
673 (cbc128_f) aes128_t4_cbc_decrypt : NULL;
674 break;
675 case 192:
676 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
677 (cbc128_f) aes192_t4_cbc_decrypt : NULL;
678 break;
679 case 256:
680 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
681 (cbc128_f) aes256_t4_cbc_decrypt : NULL;
682 break;
683 default:
684 ret = -1;
685 }
686 } else {
687 ret = 0;
688 aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
689 dat->block = (block128_f) aes_t4_encrypt;
690 switch (bits) {
691 case 128:
692 if (mode == EVP_CIPH_CBC_MODE)
693 dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
694 else if (mode == EVP_CIPH_CTR_MODE)
695 dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
696 else
697 dat->stream.cbc = NULL;
698 break;
699 case 192:
700 if (mode == EVP_CIPH_CBC_MODE)
701 dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
702 else if (mode == EVP_CIPH_CTR_MODE)
703 dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
704 else
705 dat->stream.cbc = NULL;
706 break;
707 case 256:
708 if (mode == EVP_CIPH_CBC_MODE)
709 dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
710 else if (mode == EVP_CIPH_CTR_MODE)
711 dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
712 else
713 dat->stream.cbc = NULL;
714 break;
715 default:
716 ret = -1;
717 }
718 }
719
720 if (ret < 0) {
721 EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
722 return 0;
723 }
724
725 return 1;
726}
727
728# define aes_t4_cbc_cipher aes_cbc_cipher
729static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
730 const unsigned char *in, size_t len);
731
732# define aes_t4_ecb_cipher aes_ecb_cipher
733static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
734 const unsigned char *in, size_t len);
735
736# define aes_t4_ofb_cipher aes_ofb_cipher
737static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
738 const unsigned char *in, size_t len);
739
740# define aes_t4_cfb_cipher aes_cfb_cipher
741static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
742 const unsigned char *in, size_t len);
743
744# define aes_t4_cfb8_cipher aes_cfb8_cipher
745static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
746 const unsigned char *in, size_t len);
747
748# define aes_t4_cfb1_cipher aes_cfb1_cipher
749static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
750 const unsigned char *in, size_t len);
751
752# define aes_t4_ctr_cipher aes_ctr_cipher
753static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
754 const unsigned char *in, size_t len);
755
756static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
757 const unsigned char *iv, int enc)
758{
759 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
760 if (!iv && !key)
761 return 1;
762 if (key) {
763 int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
764 aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
765 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
766 (block128_f) aes_t4_encrypt);
767 switch (bits) {
768 case 128:
769 gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
770 break;
771 case 192:
772 gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
773 break;
774 case 256:
775 gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
776 break;
777 default:
778 return 0;
779 }
780 /*
781 * If we have an iv can set it directly, otherwise use saved IV.
782 */
783 if (iv == NULL && gctx->iv_set)
784 iv = gctx->iv;
785 if (iv) {
786 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
787 gctx->iv_set = 1;
788 }
789 gctx->key_set = 1;
790 } else {
791 /* If key set use IV, otherwise copy */
792 if (gctx->key_set)
793 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
794 else
795 memcpy(gctx->iv, iv, gctx->ivlen);
796 gctx->iv_set = 1;
797 gctx->iv_gen = 0;
798 }
799 return 1;
800}
801
802# define aes_t4_gcm_cipher aes_gcm_cipher
803static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
804 const unsigned char *in, size_t len);
805
806static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
807 const unsigned char *iv, int enc)
808{
809 EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
810
811 if (!iv && !key)
812 return 1;
813
814 if (key) {
815 /* The key is two half length keys in reality */
816 const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
817 const int bits = bytes * 8;
818
819 /*
820 * Verify that the two keys are different.
821 *
822 * This addresses Rogaway's vulnerability.
823 * See comment in aes_xts_init_key() below.
824 */
825 if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
826 EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
827 return 0;
828 }
829
830 xctx->stream = NULL;
831 /* key_len is two AES keys */
832 if (enc) {
833 aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
834 xctx->xts.block1 = (block128_f) aes_t4_encrypt;
835 switch (bits) {
836 case 128:
837 xctx->stream = aes128_t4_xts_encrypt;
838 break;
839 case 256:
840 xctx->stream = aes256_t4_xts_encrypt;
841 break;
842 default:
843 return 0;
844 }
845 } else {
846 aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
847 &xctx->ks1.ks);
848 xctx->xts.block1 = (block128_f) aes_t4_decrypt;
849 switch (bits) {
850 case 128:
851 xctx->stream = aes128_t4_xts_decrypt;
852 break;
853 case 256:
854 xctx->stream = aes256_t4_xts_decrypt;
855 break;
856 default:
857 return 0;
858 }
859 }
860
861 aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
862 EVP_CIPHER_CTX_key_length(ctx) * 4,
863 &xctx->ks2.ks);
864 xctx->xts.block2 = (block128_f) aes_t4_encrypt;
865
866 xctx->xts.key1 = &xctx->ks1;
867 }
868
869 if (iv) {
870 xctx->xts.key2 = &xctx->ks2;
871 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
872 }
873
874 return 1;
875}
876
877# define aes_t4_xts_cipher aes_xts_cipher
878static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
879 const unsigned char *in, size_t len);
880
881static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
882 const unsigned char *iv, int enc)
883{
884 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
885 if (!iv && !key)
886 return 1;
887 if (key) {
888 int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
889 aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
890 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
891 &cctx->ks, (block128_f) aes_t4_encrypt);
892 cctx->str = NULL;
893 cctx->key_set = 1;
894 }
895 if (iv) {
896 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
897 cctx->iv_set = 1;
898 }
899 return 1;
900}
901
902# define aes_t4_ccm_cipher aes_ccm_cipher
903static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
904 const unsigned char *in, size_t len);
905
906# ifndef OPENSSL_NO_OCB
907static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
908 const unsigned char *iv, int enc)
909{
910 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
911 if (!iv && !key)
912 return 1;
913 if (key) {
914 do {
915 /*
916 * We set both the encrypt and decrypt key here because decrypt
917 * needs both. We could possibly optimise to remove setting the
918 * decrypt for an encryption operation.
919 */
920 aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
921 &octx->ksenc.ks);
922 aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
923 &octx->ksdec.ks);
924 if (!CRYPTO_ocb128_init(&octx->ocb,
925 &octx->ksenc.ks, &octx->ksdec.ks,
926 (block128_f) aes_t4_encrypt,
927 (block128_f) aes_t4_decrypt,
928 NULL))
929 return 0;
930 }
931 while (0);
932
933 /*
934 * If we have an iv we can set it directly, otherwise use saved IV.
935 */
936 if (iv == NULL && octx->iv_set)
937 iv = octx->iv;
938 if (iv) {
939 if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
940 != 1)
941 return 0;
942 octx->iv_set = 1;
943 }
944 octx->key_set = 1;
945 } else {
946 /* If key set use IV, otherwise copy */
947 if (octx->key_set)
948 CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
949 else
950 memcpy(octx->iv, iv, octx->ivlen);
951 octx->iv_set = 1;
952 }
953 return 1;
954}
955
956# define aes_t4_ocb_cipher aes_ocb_cipher
957static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
958 const unsigned char *in, size_t len);
959# endif /* OPENSSL_NO_OCB */
960
961# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
962static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
963 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
964 flags|EVP_CIPH_##MODE##_MODE, \
965 aes_t4_init_key, \
966 aes_t4_##mode##_cipher, \
967 NULL, \
968 sizeof(EVP_AES_KEY), \
969 NULL,NULL,NULL,NULL }; \
970static const EVP_CIPHER aes_##keylen##_##mode = { \
971 nid##_##keylen##_##nmode,blocksize, \
972 keylen/8,ivlen, \
973 flags|EVP_CIPH_##MODE##_MODE, \
974 aes_init_key, \
975 aes_##mode##_cipher, \
976 NULL, \
977 sizeof(EVP_AES_KEY), \
978 NULL,NULL,NULL,NULL }; \
979const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
980{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
981
982# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
983static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
984 nid##_##keylen##_##mode,blocksize, \
985 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
986 flags|EVP_CIPH_##MODE##_MODE, \
987 aes_t4_##mode##_init_key, \
988 aes_t4_##mode##_cipher, \
989 aes_##mode##_cleanup, \
990 sizeof(EVP_AES_##MODE##_CTX), \
991 NULL,NULL,aes_##mode##_ctrl,NULL }; \
992static const EVP_CIPHER aes_##keylen##_##mode = { \
993 nid##_##keylen##_##mode,blocksize, \
994 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
995 flags|EVP_CIPH_##MODE##_MODE, \
996 aes_##mode##_init_key, \
997 aes_##mode##_cipher, \
998 aes_##mode##_cleanup, \
999 sizeof(EVP_AES_##MODE##_CTX), \
1000 NULL,NULL,aes_##mode##_ctrl,NULL }; \
1001const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
1002{ return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
1003
1004#elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
1005/*
1006 * IBM S390X support
1007 */
1008# include "s390x_arch.h"
1009
1010typedef struct {
1011 union {
1012 double align;
1013 /*-
1014 * KM-AES parameter block - begin
1015 * (see z/Architecture Principles of Operation >= SA22-7832-06)
1016 */
1017 struct {
1018 unsigned char k[32];
1019 } param;
1020 /* KM-AES parameter block - end */
1021 } km;
1022 unsigned int fc;
1023} S390X_AES_ECB_CTX;
1024
1025typedef struct {
1026 union {
1027 double align;
1028 /*-
1029 * KMO-AES parameter block - begin
1030 * (see z/Architecture Principles of Operation >= SA22-7832-08)
1031 */
1032 struct {
1033 unsigned char cv[16];
1034 unsigned char k[32];
1035 } param;
1036 /* KMO-AES parameter block - end */
1037 } kmo;
1038 unsigned int fc;
1039
1040 int res;
1041} S390X_AES_OFB_CTX;
1042
1043typedef struct {
1044 union {
1045 double align;
1046 /*-
1047 * KMF-AES parameter block - begin
1048 * (see z/Architecture Principles of Operation >= SA22-7832-08)
1049 */
1050 struct {
1051 unsigned char cv[16];
1052 unsigned char k[32];
1053 } param;
1054 /* KMF-AES parameter block - end */
1055 } kmf;
1056 unsigned int fc;
1057
1058 int res;
1059} S390X_AES_CFB_CTX;
1060
1061typedef struct {
1062 union {
1063 double align;
1064 /*-
1065 * KMA-GCM-AES parameter block - begin
1066 * (see z/Architecture Principles of Operation >= SA22-7832-11)
1067 */
1068 struct {
1069 unsigned char reserved[12];
1070 union {
1071 unsigned int w;
1072 unsigned char b[4];
1073 } cv;
1074 union {
1075 unsigned long long g[2];
1076 unsigned char b[16];
1077 } t;
1078 unsigned char h[16];
1079 unsigned long long taadl;
1080 unsigned long long tpcl;
1081 union {
1082 unsigned long long g[2];
1083 unsigned int w[4];
1084 } j0;
1085 unsigned char k[32];
1086 } param;
1087 /* KMA-GCM-AES parameter block - end */
1088 } kma;
1089 unsigned int fc;
1090 int key_set;
1091
1092 unsigned char *iv;
1093 int ivlen;
1094 int iv_set;
1095 int iv_gen;
1096
1097 int taglen;
1098
1099 unsigned char ares[16];
1100 unsigned char mres[16];
1101 unsigned char kres[16];
1102 int areslen;
1103 int mreslen;
1104 int kreslen;
1105
1106 int tls_aad_len;
1107} S390X_AES_GCM_CTX;
1108
1109typedef struct {
1110 union {
1111 double align;
1112 /*-
1113 * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
1114 * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
1115 * rounds field is used to store the function code and that the key
1116 * schedule is not stored (if aes hardware support is detected).
1117 */
1118 struct {
1119 unsigned char pad[16];
1120 AES_KEY k;
1121 } key;
1122
1123 struct {
1124 /*-
1125 * KMAC-AES parameter block - begin
1126 * (see z/Architecture Principles of Operation >= SA22-7832-08)
1127 */
1128 struct {
1129 union {
1130 unsigned long long g[2];
1131 unsigned char b[16];
1132 } icv;
1133 unsigned char k[32];
1134 } kmac_param;
1135 /* KMAC-AES parameter block - end */
1136
1137 union {
1138 unsigned long long g[2];
1139 unsigned char b[16];
1140 } nonce;
1141 union {
1142 unsigned long long g[2];
1143 unsigned char b[16];
1144 } buf;
1145
1146 unsigned long long blocks;
1147 int l;
1148 int m;
1149 int tls_aad_len;
1150 int iv_set;
1151 int tag_set;
1152 int len_set;
1153 int key_set;
1154
1155 unsigned char pad[140];
1156 unsigned int fc;
1157 } ccm;
1158 } aes;
1159} S390X_AES_CCM_CTX;
1160
1161/* Convert key size to function code: [16,24,32] -> [18,19,20]. */
1162# define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
1163
1164/* Most modes of operation need km for partial block processing. */
1165# define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
1166 S390X_CAPBIT(S390X_AES_128))
1167# define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
1168 S390X_CAPBIT(S390X_AES_192))
1169# define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
1170 S390X_CAPBIT(S390X_AES_256))
1171
1172# define s390x_aes_init_key aes_init_key
1173static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1174 const unsigned char *iv, int enc);
1175
1176# define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
1177# define S390X_aes_192_cbc_CAPABLE 1
1178# define S390X_aes_256_cbc_CAPABLE 1
1179# define S390X_AES_CBC_CTX EVP_AES_KEY
1180
1181# define s390x_aes_cbc_init_key aes_init_key
1182
1183# define s390x_aes_cbc_cipher aes_cbc_cipher
1184static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1185 const unsigned char *in, size_t len);
1186
1187# define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
1188# define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
1189# define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
1190
1191static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
1192 const unsigned char *key,
1193 const unsigned char *iv, int enc)
1194{
1195 S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
1196 const int keylen = EVP_CIPHER_CTX_key_length(ctx);
1197
1198 cctx->fc = S390X_AES_FC(keylen);
1199 if (!enc)
1200 cctx->fc |= S390X_DECRYPT;
1201
1202 memcpy(cctx->km.param.k, key, keylen);
1203 return 1;
1204}
1205
1206static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1207 const unsigned char *in, size_t len)
1208{
1209 S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
1210
1211 s390x_km(in, len, out, cctx->fc, &cctx->km.param);
1212 return 1;
1213}
1214
1215# define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
1216 (OPENSSL_s390xcap_P.kmo[0] & \
1217 S390X_CAPBIT(S390X_AES_128)))
1218# define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
1219 (OPENSSL_s390xcap_P.kmo[0] & \
1220 S390X_CAPBIT(S390X_AES_192)))
1221# define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
1222 (OPENSSL_s390xcap_P.kmo[0] & \
1223 S390X_CAPBIT(S390X_AES_256)))
1224
1225static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
1226 const unsigned char *key,
1227 const unsigned char *ivec, int enc)
1228{
1229 S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
1230 const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
1231 const int keylen = EVP_CIPHER_CTX_key_length(ctx);
1232 const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
1233
1234 memcpy(cctx->kmo.param.cv, iv, ivlen);
1235 memcpy(cctx->kmo.param.k, key, keylen);
1236 cctx->fc = S390X_AES_FC(keylen);
1237 cctx->res = 0;
1238 return 1;
1239}
1240
1241static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1242 const unsigned char *in, size_t len)
1243{
1244 S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
1245 int n = cctx->res;
1246 int rem;
1247
1248 while (n && len) {
1249 *out = *in ^ cctx->kmo.param.cv[n];
1250 n = (n + 1) & 0xf;
1251 --len;
1252 ++in;
1253 ++out;
1254 }
1255
1256 rem = len & 0xf;
1257
1258 len &= ~(size_t)0xf;
1259 if (len) {
1260 s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
1261
1262 out += len;
1263 in += len;
1264 }
1265
1266 if (rem) {
1267 s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
1268 cctx->kmo.param.k);
1269
1270 while (rem--) {
1271 out[n] = in[n] ^ cctx->kmo.param.cv[n];
1272 ++n;
1273 }
1274 }
1275
1276 cctx->res = n;
1277 return 1;
1278}
1279
1280# define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
1281 (OPENSSL_s390xcap_P.kmf[0] & \
1282 S390X_CAPBIT(S390X_AES_128)))
1283# define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
1284 (OPENSSL_s390xcap_P.kmf[0] & \
1285 S390X_CAPBIT(S390X_AES_192)))
1286# define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
1287 (OPENSSL_s390xcap_P.kmf[0] & \
1288 S390X_CAPBIT(S390X_AES_256)))
1289
1290static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
1291 const unsigned char *key,
1292 const unsigned char *ivec, int enc)
1293{
1294 S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
1295 const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
1296 const int keylen = EVP_CIPHER_CTX_key_length(ctx);
1297 const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
1298
1299 cctx->fc = S390X_AES_FC(keylen);
1300 cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
1301 if (!enc)
1302 cctx->fc |= S390X_DECRYPT;
1303
1304 cctx->res = 0;
1305 memcpy(cctx->kmf.param.cv, iv, ivlen);
1306 memcpy(cctx->kmf.param.k, key, keylen);
1307 return 1;
1308}
1309
1310static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1311 const unsigned char *in, size_t len)
1312{
1313 S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
1314 const int keylen = EVP_CIPHER_CTX_key_length(ctx);
1315 const int enc = EVP_CIPHER_CTX_encrypting(ctx);
1316 int n = cctx->res;
1317 int rem;
1318 unsigned char tmp;
1319
1320 while (n && len) {
1321 tmp = *in;
1322 *out = cctx->kmf.param.cv[n] ^ tmp;
1323 cctx->kmf.param.cv[n] = enc ? *out : tmp;
1324 n = (n + 1) & 0xf;
1325 --len;
1326 ++in;
1327 ++out;
1328 }
1329
1330 rem = len & 0xf;
1331
1332 len &= ~(size_t)0xf;
1333 if (len) {
1334 s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
1335
1336 out += len;
1337 in += len;
1338 }
1339
1340 if (rem) {
1341 s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
1342 S390X_AES_FC(keylen), cctx->kmf.param.k);
1343
1344 while (rem--) {
1345 tmp = in[n];
1346 out[n] = cctx->kmf.param.cv[n] ^ tmp;
1347 cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
1348 ++n;
1349 }
1350 }
1351
1352 cctx->res = n;
1353 return 1;
1354}
1355
1356# define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
1357 S390X_CAPBIT(S390X_AES_128))
1358# define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
1359 S390X_CAPBIT(S390X_AES_192))
1360# define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
1361 S390X_CAPBIT(S390X_AES_256))
1362
1363static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
1364 const unsigned char *key,
1365 const unsigned char *ivec, int enc)
1366{
1367 S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
1368 const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
1369 const int keylen = EVP_CIPHER_CTX_key_length(ctx);
1370 const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
1371
1372 cctx->fc = S390X_AES_FC(keylen);
1373 cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
1374 if (!enc)
1375 cctx->fc |= S390X_DECRYPT;
1376
1377 memcpy(cctx->kmf.param.cv, iv, ivlen);
1378 memcpy(cctx->kmf.param.k, key, keylen);
1379 return 1;
1380}
1381
1382static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1383 const unsigned char *in, size_t len)
1384{
1385 S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
1386
1387 s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
1388 return 1;
1389}
1390
1391# define S390X_aes_128_cfb1_CAPABLE 0
1392# define S390X_aes_192_cfb1_CAPABLE 0
1393# define S390X_aes_256_cfb1_CAPABLE 0
1394
1395# define s390x_aes_cfb1_init_key aes_init_key
1396
1397# define s390x_aes_cfb1_cipher aes_cfb1_cipher
1398static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1399 const unsigned char *in, size_t len);
1400
1401# define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
1402# define S390X_aes_192_ctr_CAPABLE 1
1403# define S390X_aes_256_ctr_CAPABLE 1
1404# define S390X_AES_CTR_CTX EVP_AES_KEY
1405
1406# define s390x_aes_ctr_init_key aes_init_key
1407
1408# define s390x_aes_ctr_cipher aes_ctr_cipher
1409static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1410 const unsigned char *in, size_t len);
1411
1412# define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
1413 (OPENSSL_s390xcap_P.kma[0] & \
1414 S390X_CAPBIT(S390X_AES_128)))
1415# define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
1416 (OPENSSL_s390xcap_P.kma[0] & \
1417 S390X_CAPBIT(S390X_AES_192)))
1418# define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
1419 (OPENSSL_s390xcap_P.kma[0] & \
1420 S390X_CAPBIT(S390X_AES_256)))
1421
1422/* iv + padding length for iv lengths != 12 */
1423# define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
1424
1425/*-
1426 * Process additional authenticated data. Returns 0 on success. Code is
1427 * big-endian.
1428 */
1429static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
1430 size_t len)
1431{
1432 unsigned long long alen;
1433 int n, rem;
1434
1435 if (ctx->kma.param.tpcl)
1436 return -2;
1437
1438 alen = ctx->kma.param.taadl + len;
1439 if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
1440 return -1;
1441 ctx->kma.param.taadl = alen;
1442
1443 n = ctx->areslen;
1444 if (n) {
1445 while (n && len) {
1446 ctx->ares[n] = *aad;
1447 n = (n + 1) & 0xf;
1448 ++aad;
1449 --len;
1450 }
1451 /* ctx->ares contains a complete block if offset has wrapped around */
1452 if (!n) {
1453 s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
1454 ctx->fc |= S390X_KMA_HS;
1455 }
1456 ctx->areslen = n;
1457 }
1458
1459 rem = len & 0xf;
1460
1461 len &= ~(size_t)0xf;
1462 if (len) {
1463 s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
1464 aad += len;
1465 ctx->fc |= S390X_KMA_HS;
1466 }
1467
1468 if (rem) {
1469 ctx->areslen = rem;
1470
1471 do {
1472 --rem;
1473 ctx->ares[rem] = aad[rem];
1474 } while (rem);
1475 }
1476 return 0;
1477}
1478
1479/*-
1480 * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
1481 * success. Code is big-endian.
1482 */
1483static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
1484 unsigned char *out, size_t len)
1485{
1486 const unsigned char *inptr;
1487 unsigned long long mlen;
1488 union {
1489 unsigned int w[4];
1490 unsigned char b[16];
1491 } buf;
1492 size_t inlen;
1493 int n, rem, i;
1494
1495 mlen = ctx->kma.param.tpcl + len;
1496 if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
1497 return -1;
1498 ctx->kma.param.tpcl = mlen;
1499
1500 n = ctx->mreslen;
1501 if (n) {
1502 inptr = in;
1503 inlen = len;
1504 while (n && inlen) {
1505 ctx->mres[n] = *inptr;
1506 n = (n + 1) & 0xf;
1507 ++inptr;
1508 --inlen;
1509 }
1510 /* ctx->mres contains a complete block if offset has wrapped around */
1511 if (!n) {
1512 s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
1513 ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
1514 ctx->fc |= S390X_KMA_HS;
1515 ctx->areslen = 0;
1516
1517 /* previous call already encrypted/decrypted its remainder,
1518 * see comment below */
1519 n = ctx->mreslen;
1520 while (n) {
1521 *out = buf.b[n];
1522 n = (n + 1) & 0xf;
1523 ++out;
1524 ++in;
1525 --len;
1526 }
1527 ctx->mreslen = 0;
1528 }
1529 }
1530
1531 rem = len & 0xf;
1532
1533 len &= ~(size_t)0xf;
1534 if (len) {
1535 s390x_kma(ctx->ares, ctx->areslen, in, len, out,
1536 ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
1537 in += len;
1538 out += len;
1539 ctx->fc |= S390X_KMA_HS;
1540 ctx->areslen = 0;
1541 }
1542
1543 /*-
1544 * If there is a remainder, it has to be saved such that it can be
1545 * processed by kma later. However, we also have to do the for-now
1546 * unauthenticated encryption/decryption part here and now...
1547 */
1548 if (rem) {
1549 if (!ctx->mreslen) {
1550 buf.w[0] = ctx->kma.param.j0.w[0];
1551 buf.w[1] = ctx->kma.param.j0.w[1];
1552 buf.w[2] = ctx->kma.param.j0.w[2];
1553 buf.w[3] = ctx->kma.param.cv.w + 1;
1554 s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
1555 }
1556
1557 n = ctx->mreslen;
1558 for (i = 0; i < rem; i++) {
1559 ctx->mres[n + i] = in[i];
1560 out[i] = in[i] ^ ctx->kres[n + i];
1561 }
1562
1563 ctx->mreslen += rem;
1564 }
1565 return 0;
1566}
1567
1568/*-
1569 * Initialize context structure. Code is big-endian.
1570 */
1571static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
1572 const unsigned char *iv)
1573{
1574 ctx->kma.param.t.g[0] = 0;
1575 ctx->kma.param.t.g[1] = 0;
1576 ctx->kma.param.tpcl = 0;
1577 ctx->kma.param.taadl = 0;
1578 ctx->mreslen = 0;
1579 ctx->areslen = 0;
1580 ctx->kreslen = 0;
1581
1582 if (ctx->ivlen == 12) {
1583 memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
1584 ctx->kma.param.j0.w[3] = 1;
1585 ctx->kma.param.cv.w = 1;
1586 } else {
1587 /* ctx->iv has the right size and is already padded. */
1588 memcpy(ctx->iv, iv, ctx->ivlen);
1589 s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
1590 ctx->fc, &ctx->kma.param);
1591 ctx->fc |= S390X_KMA_HS;
1592
1593 ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
1594 ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
1595 ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
1596 ctx->kma.param.t.g[0] = 0;
1597 ctx->kma.param.t.g[1] = 0;
1598 }
1599}
1600
1601/*-
1602 * Performs various operations on the context structure depending on control
1603 * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
1604 * Code is big-endian.
1605 */
1606static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1607{
1608 S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
1609 S390X_AES_GCM_CTX *gctx_out;
1610 EVP_CIPHER_CTX *out;
1611 unsigned char *buf, *iv;
1612 int ivlen, enc, len;
1613
1614 switch (type) {
1615 case EVP_CTRL_INIT:
1616 ivlen = EVP_CIPHER_iv_length(c->cipher);
1617 iv = EVP_CIPHER_CTX_iv_noconst(c);
1618 gctx->key_set = 0;
1619 gctx->iv_set = 0;
1620 gctx->ivlen = ivlen;
1621 gctx->iv = iv;
1622 gctx->taglen = -1;
1623 gctx->iv_gen = 0;
1624 gctx->tls_aad_len = -1;
1625 return 1;
1626
1627 case EVP_CTRL_GET_IVLEN:
1628 *(int *)ptr = gctx->ivlen;
1629 return 1;
1630
1631 case EVP_CTRL_AEAD_SET_IVLEN:
1632 if (arg <= 0)
1633 return 0;
1634
1635 if (arg != 12) {
1636 iv = EVP_CIPHER_CTX_iv_noconst(c);
1637 len = S390X_gcm_ivpadlen(arg);
1638
1639 /* Allocate memory for iv if needed. */
1640 if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
1641 if (gctx->iv != iv)
1642 OPENSSL_free(gctx->iv);
1643
1644 if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
1645 EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
1646 return 0;
1647 }
1648 }
1649 /* Add padding. */
1650 memset(gctx->iv + arg, 0, len - arg - 8);
1651 *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
1652 }
1653 gctx->ivlen = arg;
1654 return 1;
1655
1656 case EVP_CTRL_AEAD_SET_TAG:
1657 buf = EVP_CIPHER_CTX_buf_noconst(c);
1658 enc = EVP_CIPHER_CTX_encrypting(c);
1659 if (arg <= 0 || arg > 16 || enc)
1660 return 0;
1661
1662 memcpy(buf, ptr, arg);
1663 gctx->taglen = arg;
1664 return 1;
1665
1666 case EVP_CTRL_AEAD_GET_TAG:
1667 enc = EVP_CIPHER_CTX_encrypting(c);
1668 if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
1669 return 0;
1670
1671 memcpy(ptr, gctx->kma.param.t.b, arg);
1672 return 1;
1673
1674 case EVP_CTRL_GCM_SET_IV_FIXED:
1675 /* Special case: -1 length restores whole iv */
1676 if (arg == -1) {
1677 memcpy(gctx->iv, ptr, gctx->ivlen);
1678 gctx->iv_gen = 1;
1679 return 1;
1680 }
1681 /*
1682 * Fixed field must be at least 4 bytes and invocation field at least
1683 * 8.
1684 */
1685 if ((arg < 4) || (gctx->ivlen - arg) < 8)
1686 return 0;
1687
1688 if (arg)
1689 memcpy(gctx->iv, ptr, arg);
1690
1691 enc = EVP_CIPHER_CTX_encrypting(c);
1692 if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
1693 return 0;
1694
1695 gctx->iv_gen = 1;
1696 return 1;
1697
1698 case EVP_CTRL_GCM_IV_GEN:
1699 if (gctx->iv_gen == 0 || gctx->key_set == 0)
1700 return 0;
1701
1702 s390x_aes_gcm_setiv(gctx, gctx->iv);
1703
1704 if (arg <= 0 || arg > gctx->ivlen)
1705 arg = gctx->ivlen;
1706
1707 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
1708 /*
1709 * Invocation field will be at least 8 bytes in size and so no need
1710 * to check wrap around or increment more than last 8 bytes.
1711 */
1712 ctr64_inc(gctx->iv + gctx->ivlen - 8);
1713 gctx->iv_set = 1;
1714 return 1;
1715
1716 case EVP_CTRL_GCM_SET_IV_INV:
1717 enc = EVP_CIPHER_CTX_encrypting(c);
1718 if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
1719 return 0;
1720
1721 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
1722 s390x_aes_gcm_setiv(gctx, gctx->iv);
1723 gctx->iv_set = 1;
1724 return 1;
1725
1726 case EVP_CTRL_AEAD_TLS1_AAD:
1727 /* Save the aad for later use. */
1728 if (arg != EVP_AEAD_TLS1_AAD_LEN)
1729 return 0;
1730
1731 buf = EVP_CIPHER_CTX_buf_noconst(c);
1732 memcpy(buf, ptr, arg);
1733 gctx->tls_aad_len = arg;
1734
1735 len = buf[arg - 2] << 8 | buf[arg - 1];
1736 /* Correct length for explicit iv. */
1737 if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
1738 return 0;
1739 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
1740
1741 /* If decrypting correct for tag too. */
1742 enc = EVP_CIPHER_CTX_encrypting(c);
1743 if (!enc) {
1744 if (len < EVP_GCM_TLS_TAG_LEN)
1745 return 0;
1746 len -= EVP_GCM_TLS_TAG_LEN;
1747 }
1748 buf[arg - 2] = len >> 8;
1749 buf[arg - 1] = len & 0xff;
1750 /* Extra padding: tag appended to record. */
1751 return EVP_GCM_TLS_TAG_LEN;
1752
1753 case EVP_CTRL_COPY:
1754 out = ptr;
1755 gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
1756 iv = EVP_CIPHER_CTX_iv_noconst(c);
1757
1758 if (gctx->iv == iv) {
1759 gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
1760 } else {
1761 len = S390X_gcm_ivpadlen(gctx->ivlen);
1762
1763 if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
1764 EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
1765 return 0;
1766 }
1767
1768 memcpy(gctx_out->iv, gctx->iv, len);
1769 }
1770 return 1;
1771
1772 default:
1773 return -1;
1774 }
1775}
1776
1777/*-
1778 * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
1779 */
1780static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
1781 const unsigned char *key,
1782 const unsigned char *iv, int enc)
1783{
1784 S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
1785 int keylen;
1786
1787 if (iv == NULL && key == NULL)
1788 return 1;
1789
1790 if (key != NULL) {
1791 keylen = EVP_CIPHER_CTX_key_length(ctx);
1792 memcpy(&gctx->kma.param.k, key, keylen);
1793
1794 gctx->fc = S390X_AES_FC(keylen);
1795 if (!enc)
1796 gctx->fc |= S390X_DECRYPT;
1797
1798 if (iv == NULL && gctx->iv_set)
1799 iv = gctx->iv;
1800
1801 if (iv != NULL) {
1802 s390x_aes_gcm_setiv(gctx, iv);
1803 gctx->iv_set = 1;
1804 }
1805 gctx->key_set = 1;
1806 } else {
1807 if (gctx->key_set)
1808 s390x_aes_gcm_setiv(gctx, iv);
1809 else
1810 memcpy(gctx->iv, iv, gctx->ivlen);
1811
1812 gctx->iv_set = 1;
1813 gctx->iv_gen = 0;
1814 }
1815 return 1;
1816}
1817
1818/*-
1819 * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
1820 * if successful. Otherwise -1 is returned. Code is big-endian.
1821 */
1822static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1823 const unsigned char *in, size_t len)
1824{
1825 S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
1826 const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
1827 const int enc = EVP_CIPHER_CTX_encrypting(ctx);
1828 int rv = -1;
1829
1830 if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
1831 return -1;
1832
1833 if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
1834 : EVP_CTRL_GCM_SET_IV_INV,
1835 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
1836 goto err;
1837
1838 in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1839 out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1840 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
1841
1842 gctx->kma.param.taadl = gctx->tls_aad_len << 3;
1843 gctx->kma.param.tpcl = len << 3;
1844 s390x_kma(buf, gctx->tls_aad_len, in, len, out,
1845 gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
1846
1847 if (enc) {
1848 memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
1849 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
1850 } else {
1851 if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
1852 EVP_GCM_TLS_TAG_LEN)) {
1853 OPENSSL_cleanse(out, len);
1854 goto err;
1855 }
1856 rv = len;
1857 }
1858err:
1859 gctx->iv_set = 0;
1860 gctx->tls_aad_len = -1;
1861 return rv;
1862}
1863
1864/*-
1865 * Called from EVP layer to initialize context, process additional
1866 * authenticated data, en/de-crypt plain/cipher-text and authenticate
1867 * ciphertext or process a TLS packet, depending on context. Returns bytes
1868 * written on success. Otherwise -1 is returned. Code is big-endian.
1869 */
1870static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1871 const unsigned char *in, size_t len)
1872{
1873 S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
1874 unsigned char *buf, tmp[16];
1875 int enc;
1876
1877 if (!gctx->key_set)
1878 return -1;
1879
1880 if (gctx->tls_aad_len >= 0)
1881 return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
1882
1883 if (!gctx->iv_set)
1884 return -1;
1885
1886 if (in != NULL) {
1887 if (out == NULL) {
1888 if (s390x_aes_gcm_aad(gctx, in, len))
1889 return -1;
1890 } else {
1891 if (s390x_aes_gcm(gctx, in, out, len))
1892 return -1;
1893 }
1894 return len;
1895 } else {
1896 gctx->kma.param.taadl <<= 3;
1897 gctx->kma.param.tpcl <<= 3;
1898 s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
1899 gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
1900 /* recall that we already did en-/decrypt gctx->mres
1901 * and returned it to caller... */
1902 OPENSSL_cleanse(tmp, gctx->mreslen);
1903 gctx->iv_set = 0;
1904
1905 enc = EVP_CIPHER_CTX_encrypting(ctx);
1906 if (enc) {
1907 gctx->taglen = 16;
1908 } else {
1909 if (gctx->taglen < 0)
1910 return -1;
1911
1912 buf = EVP_CIPHER_CTX_buf_noconst(ctx);
1913 if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
1914 return -1;
1915 }
1916 return 0;
1917 }
1918}
1919
1920static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
1921{
1922 S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
1923 const unsigned char *iv;
1924
1925 if (gctx == NULL)
1926 return 0;
1927
1928 iv = EVP_CIPHER_CTX_iv(c);
1929 if (iv != gctx->iv)
1930 OPENSSL_free(gctx->iv);
1931
1932 OPENSSL_cleanse(gctx, sizeof(*gctx));
1933 return 1;
1934}
1935
1936# define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
1937# define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
1938# define S390X_aes_256_xts_CAPABLE 1
1939
1940# define s390x_aes_xts_init_key aes_xts_init_key
1941static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
1942 const unsigned char *key,
1943 const unsigned char *iv, int enc);
1944# define s390x_aes_xts_cipher aes_xts_cipher
1945static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1946 const unsigned char *in, size_t len);
1947# define s390x_aes_xts_ctrl aes_xts_ctrl
1948static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
1949# define s390x_aes_xts_cleanup aes_xts_cleanup
1950
1951# define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
1952 (OPENSSL_s390xcap_P.kmac[0] & \
1953 S390X_CAPBIT(S390X_AES_128)))
1954# define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
1955 (OPENSSL_s390xcap_P.kmac[0] & \
1956 S390X_CAPBIT(S390X_AES_192)))
1957# define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
1958 (OPENSSL_s390xcap_P.kmac[0] & \
1959 S390X_CAPBIT(S390X_AES_256)))
1960
1961# define S390X_CCM_AAD_FLAG 0x40
1962
1963/*-
1964 * Set nonce and length fields. Code is big-endian.
1965 */
1966static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
1967 const unsigned char *nonce,
1968 size_t mlen)
1969{
1970 ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
1971 ctx->aes.ccm.nonce.g[1] = mlen;
1972 memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
1973}
1974
1975/*-
1976 * Process additional authenticated data. Code is big-endian.
1977 */
1978static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
1979 size_t alen)
1980{
1981 unsigned char *ptr;
1982 int i, rem;
1983
1984 if (!alen)
1985 return;
1986
1987 ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
1988
1989 /* Suppress 'type-punned pointer dereference' warning. */
1990 ptr = ctx->aes.ccm.buf.b;
1991
1992 if (alen < ((1 << 16) - (1 << 8))) {
1993 *(uint16_t *)ptr = alen;
1994 i = 2;
1995 } else if (sizeof(alen) == 8
1996 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
1997 *(uint16_t *)ptr = 0xffff;
1998 *(uint64_t *)(ptr + 2) = alen;
1999 i = 10;
2000 } else {
2001 *(uint16_t *)ptr = 0xfffe;
2002 *(uint32_t *)(ptr + 2) = alen;
2003 i = 6;
2004 }
2005
2006 while (i < 16 && alen) {
2007 ctx->aes.ccm.buf.b[i] = *aad;
2008 ++aad;
2009 --alen;
2010 ++i;
2011 }
2012 while (i < 16) {
2013 ctx->aes.ccm.buf.b[i] = 0;
2014 ++i;
2015 }
2016
2017 ctx->aes.ccm.kmac_param.icv.g[0] = 0;
2018 ctx->aes.ccm.kmac_param.icv.g[1] = 0;
2019 s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
2020 &ctx->aes.ccm.kmac_param);
2021 ctx->aes.ccm.blocks += 2;
2022
2023 rem = alen & 0xf;
2024 alen &= ~(size_t)0xf;
2025 if (alen) {
2026 s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
2027 ctx->aes.ccm.blocks += alen >> 4;
2028 aad += alen;
2029 }
2030 if (rem) {
2031 for (i = 0; i < rem; i++)
2032 ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
2033
2034 s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
2035 ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
2036 ctx->aes.ccm.kmac_param.k);
2037 ctx->aes.ccm.blocks++;
2038 }
2039}
2040
2041/*-
2042 * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
2043 * success.
2044 */
2045static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
2046 unsigned char *out, size_t len, int enc)
2047{
2048 size_t n, rem;
2049 unsigned int i, l, num;
2050 unsigned char flags;
2051
2052 flags = ctx->aes.ccm.nonce.b[0];
2053 if (!(flags & S390X_CCM_AAD_FLAG)) {
2054 s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
2055 ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
2056 ctx->aes.ccm.blocks++;
2057 }
2058 l = flags & 0x7;
2059 ctx->aes.ccm.nonce.b[0] = l;
2060
2061 /*-
2062 * Reconstruct length from encoded length field
2063 * and initialize it with counter value.
2064 */
2065 n = 0;
2066 for (i = 15 - l; i < 15; i++) {
2067 n |= ctx->aes.ccm.nonce.b[i];
2068 ctx->aes.ccm.nonce.b[i] = 0;
2069 n <<= 8;
2070 }
2071 n |= ctx->aes.ccm.nonce.b[15];
2072 ctx->aes.ccm.nonce.b[15] = 1;
2073
2074 if (n != len)
2075 return -1; /* length mismatch */
2076
2077 if (enc) {
2078 /* Two operations per block plus one for tag encryption */
2079 ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
2080 if (ctx->aes.ccm.blocks > (1ULL << 61))
2081 return -2; /* too much data */
2082 }
2083
2084 num = 0;
2085 rem = len & 0xf;
2086 len &= ~(size_t)0xf;
2087
2088 if (enc) {
2089 /* mac-then-encrypt */
2090 if (len)
2091 s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
2092 if (rem) {
2093 for (i = 0; i < rem; i++)
2094 ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
2095
2096 s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
2097 ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
2098 ctx->aes.ccm.kmac_param.k);
2099 }
2100
2101 CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
2102 ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
2103 &num, (ctr128_f)AES_ctr32_encrypt);
2104 } else {
2105 /* decrypt-then-mac */
2106 CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
2107 ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
2108 &num, (ctr128_f)AES_ctr32_encrypt);
2109
2110 if (len)
2111 s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
2112 if (rem) {
2113 for (i = 0; i < rem; i++)
2114 ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
2115
2116 s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
2117 ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
2118 ctx->aes.ccm.kmac_param.k);
2119 }
2120 }
2121 /* encrypt tag */
2122 for (i = 15 - l; i < 16; i++)
2123 ctx->aes.ccm.nonce.b[i] = 0;
2124
2125 s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
2126 ctx->aes.ccm.kmac_param.k);
2127 ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
2128 ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
2129
2130 ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
2131 return 0;
2132}
2133
2134/*-
2135 * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
2136 * if successful. Otherwise -1 is returned.
2137 */
2138static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2139 const unsigned char *in, size_t len)
2140{
2141 S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
2142 unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
2143 unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
2144 const int enc = EVP_CIPHER_CTX_encrypting(ctx);
2145
2146 if (out != in
2147 || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
2148 return -1;
2149
2150 if (enc) {
2151 /* Set explicit iv (sequence number). */
2152 memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
2153 }
2154
2155 len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
2156 /*-
2157 * Get explicit iv (sequence number). We already have fixed iv
2158 * (server/client_write_iv) here.
2159 */
2160 memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
2161 s390x_aes_ccm_setiv(cctx, ivec, len);
2162
2163 /* Process aad (sequence number|type|version|length) */
2164 s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
2165
2166 in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
2167 out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
2168
2169 if (enc) {
2170 if (s390x_aes_ccm(cctx, in, out, len, enc))
2171 return -1;
2172
2173 memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
2174 return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
2175 } else {
2176 if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
2177 if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
2178 cctx->aes.ccm.m))
2179 return len;
2180 }
2181
2182 OPENSSL_cleanse(out, len);
2183 return -1;
2184 }
2185}
2186
2187/*-
2188 * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
2189 * returned.
2190 */
2191static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
2192 const unsigned char *key,
2193 const unsigned char *iv, int enc)
2194{
2195 S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
2196 unsigned char *ivec;
2197 int keylen;
2198
2199 if (iv == NULL && key == NULL)
2200 return 1;
2201
2202 if (key != NULL) {
2203 keylen = EVP_CIPHER_CTX_key_length(ctx);
2204 cctx->aes.ccm.fc = S390X_AES_FC(keylen);
2205 memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
2206
2207 /* Store encoded m and l. */
2208 cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
2209 | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
2210 memset(cctx->aes.ccm.nonce.b + 1, 0,
2211 sizeof(cctx->aes.ccm.nonce.b));
2212 cctx->aes.ccm.blocks = 0;
2213
2214 cctx->aes.ccm.key_set = 1;
2215 }
2216
2217 if (iv != NULL) {
2218 ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
2219 memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
2220
2221 cctx->aes.ccm.iv_set = 1;
2222 }
2223
2224 return 1;
2225}
2226
2227/*-
2228 * Called from EVP layer to initialize context, process additional
2229 * authenticated data, en/de-crypt plain/cipher-text and authenticate
2230 * plaintext or process a TLS packet, depending on context. Returns bytes
2231 * written on success. Otherwise -1 is returned.
2232 */
2233static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2234 const unsigned char *in, size_t len)
2235{
2236 S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
2237 const int enc = EVP_CIPHER_CTX_encrypting(ctx);
2238 int rv;
2239 unsigned char *buf, *ivec;
2240
2241 if (!cctx->aes.ccm.key_set)
2242 return -1;
2243
2244 if (cctx->aes.ccm.tls_aad_len >= 0)
2245 return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
2246
2247 /*-
2248 * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
2249 * so integrity must be checked already at Update() i.e., before
2250 * potentially corrupted data is output.
2251 */
2252 if (in == NULL && out != NULL)
2253 return 0;
2254
2255 if (!cctx->aes.ccm.iv_set)
2256 return -1;
2257
2258 if (out == NULL) {
2259 /* Update(): Pass message length. */
2260 if (in == NULL) {
2261 ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
2262 s390x_aes_ccm_setiv(cctx, ivec, len);
2263
2264 cctx->aes.ccm.len_set = 1;
2265 return len;
2266 }
2267
2268 /* Update(): Process aad. */
2269 if (!cctx->aes.ccm.len_set && len)
2270 return -1;
2271
2272 s390x_aes_ccm_aad(cctx, in, len);
2273 return len;
2274 }
2275
2276 /* The tag must be set before actually decrypting data */
2277 if (!enc && !cctx->aes.ccm.tag_set)
2278 return -1;
2279
2280 /* Update(): Process message. */
2281
2282 if (!cctx->aes.ccm.len_set) {
2283 /*-
2284 * In case message length was not previously set explicitly via
2285 * Update(), set it now.
2286 */
2287 ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
2288 s390x_aes_ccm_setiv(cctx, ivec, len);
2289
2290 cctx->aes.ccm.len_set = 1;
2291 }
2292
2293 if (enc) {
2294 if (s390x_aes_ccm(cctx, in, out, len, enc))
2295 return -1;
2296
2297 cctx->aes.ccm.tag_set = 1;
2298 return len;
2299 } else {
2300 rv = -1;
2301
2302 if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
2303 buf = EVP_CIPHER_CTX_buf_noconst(ctx);
2304 if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
2305 cctx->aes.ccm.m))
2306 rv = len;
2307 }
2308
2309 if (rv == -1)
2310 OPENSSL_cleanse(out, len);
2311
2312 cctx->aes.ccm.iv_set = 0;
2313 cctx->aes.ccm.tag_set = 0;
2314 cctx->aes.ccm.len_set = 0;
2315 return rv;
2316 }
2317}
2318
2319/*-
2320 * Performs various operations on the context structure depending on control
2321 * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
2322 * Code is big-endian.
2323 */
2324static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
2325{
2326 S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
2327 unsigned char *buf, *iv;
2328 int enc, len;
2329
2330 switch (type) {
2331 case EVP_CTRL_INIT:
2332 cctx->aes.ccm.key_set = 0;
2333 cctx->aes.ccm.iv_set = 0;
2334 cctx->aes.ccm.l = 8;
2335 cctx->aes.ccm.m = 12;
2336 cctx->aes.ccm.tag_set = 0;
2337 cctx->aes.ccm.len_set = 0;
2338 cctx->aes.ccm.tls_aad_len = -1;
2339 return 1;
2340
2341 case EVP_CTRL_GET_IVLEN:
2342 *(int *)ptr = 15 - cctx->aes.ccm.l;
2343 return 1;
2344
2345 case EVP_CTRL_AEAD_TLS1_AAD:
2346 if (arg != EVP_AEAD_TLS1_AAD_LEN)
2347 return 0;
2348
2349 /* Save the aad for later use. */
2350 buf = EVP_CIPHER_CTX_buf_noconst(c);
2351 memcpy(buf, ptr, arg);
2352 cctx->aes.ccm.tls_aad_len = arg;
2353
2354 len = buf[arg - 2] << 8 | buf[arg - 1];
2355 if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
2356 return 0;
2357
2358 /* Correct length for explicit iv. */
2359 len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
2360
2361 enc = EVP_CIPHER_CTX_encrypting(c);
2362 if (!enc) {
2363 if (len < cctx->aes.ccm.m)
2364 return 0;
2365
2366 /* Correct length for tag. */
2367 len -= cctx->aes.ccm.m;
2368 }
2369
2370 buf[arg - 2] = len >> 8;
2371 buf[arg - 1] = len & 0xff;
2372
2373 /* Extra padding: tag appended to record. */
2374 return cctx->aes.ccm.m;
2375
2376 case EVP_CTRL_CCM_SET_IV_FIXED:
2377 if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
2378 return 0;
2379
2380 /* Copy to first part of the iv. */
2381 iv = EVP_CIPHER_CTX_iv_noconst(c);
2382 memcpy(iv, ptr, arg);
2383 return 1;
2384
2385 case EVP_CTRL_AEAD_SET_IVLEN:
2386 arg = 15 - arg;
2387 /* fall-through */
2388
2389 case EVP_CTRL_CCM_SET_L:
2390 if (arg < 2 || arg > 8)
2391 return 0;
2392
2393 cctx->aes.ccm.l = arg;
2394 return 1;
2395
2396 case EVP_CTRL_AEAD_SET_TAG:
2397 if ((arg & 1) || arg < 4 || arg > 16)
2398 return 0;
2399
2400 enc = EVP_CIPHER_CTX_encrypting(c);
2401 if (enc && ptr)
2402 return 0;
2403
2404 if (ptr) {
2405 cctx->aes.ccm.tag_set = 1;
2406 buf = EVP_CIPHER_CTX_buf_noconst(c);
2407 memcpy(buf, ptr, arg);
2408 }
2409
2410 cctx->aes.ccm.m = arg;
2411 return 1;
2412
2413 case EVP_CTRL_AEAD_GET_TAG:
2414 enc = EVP_CIPHER_CTX_encrypting(c);
2415 if (!enc || !cctx->aes.ccm.tag_set)
2416 return 0;
2417
2418 if(arg < cctx->aes.ccm.m)
2419 return 0;
2420
2421 memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
2422 cctx->aes.ccm.tag_set = 0;
2423 cctx->aes.ccm.iv_set = 0;
2424 cctx->aes.ccm.len_set = 0;
2425 return 1;
2426
2427 case EVP_CTRL_COPY:
2428 return 1;
2429
2430 default:
2431 return -1;
2432 }
2433}
2434
2435# define s390x_aes_ccm_cleanup aes_ccm_cleanup
2436
2437# ifndef OPENSSL_NO_OCB
2438# define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
2439# define S390X_aes_128_ocb_CAPABLE 0
2440# define S390X_aes_192_ocb_CAPABLE 0
2441# define S390X_aes_256_ocb_CAPABLE 0
2442
2443# define s390x_aes_ocb_init_key aes_ocb_init_key
2444static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2445 const unsigned char *iv, int enc);
2446# define s390x_aes_ocb_cipher aes_ocb_cipher
2447static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2448 const unsigned char *in, size_t len);
2449# define s390x_aes_ocb_cleanup aes_ocb_cleanup
2450static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
2451# define s390x_aes_ocb_ctrl aes_ocb_ctrl
2452static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
2453# endif
2454
2455# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
2456 MODE,flags) \
2457static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
2458 nid##_##keylen##_##nmode,blocksize, \
2459 keylen / 8, \
2460 ivlen, \
2461 flags | EVP_CIPH_##MODE##_MODE, \
2462 s390x_aes_##mode##_init_key, \
2463 s390x_aes_##mode##_cipher, \
2464 NULL, \
2465 sizeof(S390X_AES_##MODE##_CTX), \
2466 NULL, \
2467 NULL, \
2468 NULL, \
2469 NULL \
2470}; \
2471static const EVP_CIPHER aes_##keylen##_##mode = { \
2472 nid##_##keylen##_##nmode, \
2473 blocksize, \
2474 keylen / 8, \
2475 ivlen, \
2476 flags | EVP_CIPH_##MODE##_MODE, \
2477 aes_init_key, \
2478 aes_##mode##_cipher, \
2479 NULL, \
2480 sizeof(EVP_AES_KEY), \
2481 NULL, \
2482 NULL, \
2483 NULL, \
2484 NULL \
2485}; \
2486const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
2487{ \
2488 return S390X_aes_##keylen##_##mode##_CAPABLE ? \
2489 &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
2490}
2491
2492# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
2493static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
2494 nid##_##keylen##_##mode, \
2495 blocksize, \
2496 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
2497 ivlen, \
2498 flags | EVP_CIPH_##MODE##_MODE, \
2499 s390x_aes_##mode##_init_key, \
2500 s390x_aes_##mode##_cipher, \
2501 s390x_aes_##mode##_cleanup, \
2502 sizeof(S390X_AES_##MODE##_CTX), \
2503 NULL, \
2504 NULL, \
2505 s390x_aes_##mode##_ctrl, \
2506 NULL \
2507}; \
2508static const EVP_CIPHER aes_##keylen##_##mode = { \
2509 nid##_##keylen##_##mode,blocksize, \
2510 (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
2511 ivlen, \
2512 flags | EVP_CIPH_##MODE##_MODE, \
2513 aes_##mode##_init_key, \
2514 aes_##mode##_cipher, \
2515 aes_##mode##_cleanup, \
2516 sizeof(EVP_AES_##MODE##_CTX), \
2517 NULL, \
2518 NULL, \
2519 aes_##mode##_ctrl, \
2520 NULL \
2521}; \
2522const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
2523{ \
2524 return S390X_aes_##keylen##_##mode##_CAPABLE ? \
2525 &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
2526}
2527
2528#else
2529
2530# define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
2531static const EVP_CIPHER aes_##keylen##_##mode = { \
2532 nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
2533 flags|EVP_CIPH_##MODE##_MODE, \
2534 aes_init_key, \
2535 aes_##mode##_cipher, \
2536 NULL, \
2537 sizeof(EVP_AES_KEY), \
2538 NULL,NULL,NULL,NULL }; \
2539const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
2540{ return &aes_##keylen##_##mode; }
2541
2542# define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
2543static const EVP_CIPHER aes_##keylen##_##mode = { \
2544 nid##_##keylen##_##mode,blocksize, \
2545 (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
2546 flags|EVP_CIPH_##MODE##_MODE, \
2547 aes_##mode##_init_key, \
2548 aes_##mode##_cipher, \
2549 aes_##mode##_cleanup, \
2550 sizeof(EVP_AES_##MODE##_CTX), \
2551 NULL,NULL,aes_##mode##_ctrl,NULL }; \
2552const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
2553{ return &aes_##keylen##_##mode; }
2554
2555#endif
2556
2557#if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
2558# include "arm_arch.h"
2559# if __ARM_MAX_ARCH__>=7
2560# if defined(BSAES_ASM)
2561# define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
2562# endif
2563# if defined(VPAES_ASM)
2564# define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
2565# endif
2566# define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
2567# define HWAES_set_encrypt_key aes_v8_set_encrypt_key
2568# define HWAES_set_decrypt_key aes_v8_set_decrypt_key
2569# define HWAES_encrypt aes_v8_encrypt
2570# define HWAES_decrypt aes_v8_decrypt
2571# define HWAES_cbc_encrypt aes_v8_cbc_encrypt
2572# define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
2573# endif
2574#endif
2575
2576#if defined(HWAES_CAPABLE)
2577int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
2578 AES_KEY *key);
2579int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
2580 AES_KEY *key);
2581void HWAES_encrypt(const unsigned char *in, unsigned char *out,
2582 const AES_KEY *key);
2583void HWAES_decrypt(const unsigned char *in, unsigned char *out,
2584 const AES_KEY *key);
2585void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
2586 size_t length, const AES_KEY *key,
2587 unsigned char *ivec, const int enc);
2588void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
2589 size_t len, const AES_KEY *key,
2590 const unsigned char ivec[16]);
2591void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
2592 size_t len, const AES_KEY *key1,
2593 const AES_KEY *key2, const unsigned char iv[16]);
2594void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
2595 size_t len, const AES_KEY *key1,
2596 const AES_KEY *key2, const unsigned char iv[16]);
2597#endif
2598
2599#define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
2600 BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
2601 BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
2602 BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
2603 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
2604 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
2605 BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
2606 BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
2607
2608static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2609 const unsigned char *iv, int enc)
2610{
2611 int ret, mode;
2612 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2613
2614 mode = EVP_CIPHER_CTX_mode(ctx);
2615 if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
2616 && !enc) {
2617#ifdef HWAES_CAPABLE
2618 if (HWAES_CAPABLE) {
2619 ret = HWAES_set_decrypt_key(key,
2620 EVP_CIPHER_CTX_key_length(ctx) * 8,
2621 &dat->ks.ks);
2622 dat->block = (block128_f) HWAES_decrypt;
2623 dat->stream.cbc = NULL;
2624# ifdef HWAES_cbc_encrypt
2625 if (mode == EVP_CIPH_CBC_MODE)
2626 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
2627# endif
2628 } else
2629#endif
2630#ifdef BSAES_CAPABLE
2631 if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
2632 ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
2633 &dat->ks.ks);
2634 dat->block = (block128_f) AES_decrypt;
2635 dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
2636 } else
2637#endif
2638#ifdef VPAES_CAPABLE
2639 if (VPAES_CAPABLE) {
2640 ret = vpaes_set_decrypt_key(key,
2641 EVP_CIPHER_CTX_key_length(ctx) * 8,
2642 &dat->ks.ks);
2643 dat->block = (block128_f) vpaes_decrypt;
2644 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
2645 (cbc128_f) vpaes_cbc_encrypt : NULL;
2646 } else
2647#endif
2648 {
2649 ret = AES_set_decrypt_key(key,
2650 EVP_CIPHER_CTX_key_length(ctx) * 8,
2651 &dat->ks.ks);
2652 dat->block = (block128_f) AES_decrypt;
2653 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
2654 (cbc128_f) AES_cbc_encrypt : NULL;
2655 }
2656 } else
2657#ifdef HWAES_CAPABLE
2658 if (HWAES_CAPABLE) {
2659 ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
2660 &dat->ks.ks);
2661 dat->block = (block128_f) HWAES_encrypt;
2662 dat->stream.cbc = NULL;
2663# ifdef HWAES_cbc_encrypt
2664 if (mode == EVP_CIPH_CBC_MODE)
2665 dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
2666 else
2667# endif
2668# ifdef HWAES_ctr32_encrypt_blocks
2669 if (mode == EVP_CIPH_CTR_MODE)
2670 dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
2671 else
2672# endif
2673 (void)0; /* terminate potentially open 'else' */
2674 } else
2675#endif
2676#ifdef BSAES_CAPABLE
2677 if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
2678 ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
2679 &dat->ks.ks);
2680 dat->block = (block128_f) AES_encrypt;
2681 dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
2682 } else
2683#endif
2684#ifdef VPAES_CAPABLE
2685 if (VPAES_CAPABLE) {
2686 ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
2687 &dat->ks.ks);
2688 dat->block = (block128_f) vpaes_encrypt;
2689 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
2690 (cbc128_f) vpaes_cbc_encrypt : NULL;
2691 } else
2692#endif
2693 {
2694 ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
2695 &dat->ks.ks);
2696 dat->block = (block128_f) AES_encrypt;
2697 dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
2698 (cbc128_f) AES_cbc_encrypt : NULL;
2699#ifdef AES_CTR_ASM
2700 if (mode == EVP_CIPH_CTR_MODE)
2701 dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
2702#endif
2703 }
2704
2705 if (ret < 0) {
2706 EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
2707 return 0;
2708 }
2709
2710 return 1;
2711}
2712
2713static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2714 const unsigned char *in, size_t len)
2715{
2716 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2717
2718 if (dat->stream.cbc)
2719 (*dat->stream.cbc) (in, out, len, &dat->ks,
2720 EVP_CIPHER_CTX_iv_noconst(ctx),
2721 EVP_CIPHER_CTX_encrypting(ctx));
2722 else if (EVP_CIPHER_CTX_encrypting(ctx))
2723 CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
2724 EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
2725 else
2726 CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
2727 EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
2728
2729 return 1;
2730}
2731
2732static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2733 const unsigned char *in, size_t len)
2734{
2735 size_t bl = EVP_CIPHER_CTX_block_size(ctx);
2736 size_t i;
2737 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2738
2739 if (len < bl)
2740 return 1;
2741
2742 for (i = 0, len -= bl; i <= len; i += bl)
2743 (*dat->block) (in + i, out + i, &dat->ks);
2744
2745 return 1;
2746}
2747
2748static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2749 const unsigned char *in, size_t len)
2750{
2751 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2752
2753 int num = EVP_CIPHER_CTX_num(ctx);
2754 CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
2755 EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
2756 EVP_CIPHER_CTX_set_num(ctx, num);
2757 return 1;
2758}
2759
2760static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2761 const unsigned char *in, size_t len)
2762{
2763 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2764
2765 int num = EVP_CIPHER_CTX_num(ctx);
2766 CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
2767 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
2768 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
2769 EVP_CIPHER_CTX_set_num(ctx, num);
2770 return 1;
2771}
2772
2773static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2774 const unsigned char *in, size_t len)
2775{
2776 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2777
2778 int num = EVP_CIPHER_CTX_num(ctx);
2779 CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
2780 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
2781 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
2782 EVP_CIPHER_CTX_set_num(ctx, num);
2783 return 1;
2784}
2785
2786static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2787 const unsigned char *in, size_t len)
2788{
2789 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2790
2791 if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
2792 int num = EVP_CIPHER_CTX_num(ctx);
2793 CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
2794 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
2795 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
2796 EVP_CIPHER_CTX_set_num(ctx, num);
2797 return 1;
2798 }
2799
2800 while (len >= MAXBITCHUNK) {
2801 int num = EVP_CIPHER_CTX_num(ctx);
2802 CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
2803 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
2804 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
2805 EVP_CIPHER_CTX_set_num(ctx, num);
2806 len -= MAXBITCHUNK;
2807 out += MAXBITCHUNK;
2808 in += MAXBITCHUNK;
2809 }
2810 if (len) {
2811 int num = EVP_CIPHER_CTX_num(ctx);
2812 CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
2813 EVP_CIPHER_CTX_iv_noconst(ctx), &num,
2814 EVP_CIPHER_CTX_encrypting(ctx), dat->block);
2815 EVP_CIPHER_CTX_set_num(ctx, num);
2816 }
2817
2818 return 1;
2819}
2820
2821static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
2822 const unsigned char *in, size_t len)
2823{
2824 unsigned int num = EVP_CIPHER_CTX_num(ctx);
2825 EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
2826
2827 if (dat->stream.ctr)
2828 CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
2829 EVP_CIPHER_CTX_iv_noconst(ctx),
2830 EVP_CIPHER_CTX_buf_noconst(ctx),
2831 &num, dat->stream.ctr);
2832 else
2833 CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
2834 EVP_CIPHER_CTX_iv_noconst(ctx),
2835 EVP_CIPHER_CTX_buf_noconst(ctx), &num,
2836 dat->block);
2837 EVP_CIPHER_CTX_set_num(ctx, num);
2838 return 1;
2839}
2840
2841BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
2842 BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
2843 BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
2844
2845static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
2846{
2847 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
2848 if (gctx == NULL)
2849 return 0;
2850 OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
2851 if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
2852 OPENSSL_free(gctx->iv);
2853 return 1;
2854}
2855
2856static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
2857{
2858 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
2859 switch (type) {
2860 case EVP_CTRL_INIT:
2861 gctx->key_set = 0;
2862 gctx->iv_set = 0;
2863 gctx->ivlen = EVP_CIPHER_iv_length(c->cipher);
2864 gctx->iv = c->iv;
2865 gctx->taglen = -1;
2866 gctx->iv_gen = 0;
2867 gctx->tls_aad_len = -1;
2868 return 1;
2869
2870 case EVP_CTRL_GET_IVLEN:
2871 *(int *)ptr = gctx->ivlen;
2872 return 1;
2873
2874 case EVP_CTRL_AEAD_SET_IVLEN:
2875 if (arg <= 0)
2876 return 0;
2877 /* Allocate memory for IV if needed */
2878 if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
2879 if (gctx->iv != c->iv)
2880 OPENSSL_free(gctx->iv);
2881 if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
2882 EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
2883 return 0;
2884 }
2885 }
2886 gctx->ivlen = arg;
2887 return 1;
2888
2889 case EVP_CTRL_AEAD_SET_TAG:
2890 if (arg <= 0 || arg > 16 || c->encrypt)
2891 return 0;
2892 memcpy(c->buf, ptr, arg);
2893 gctx->taglen = arg;
2894 return 1;
2895
2896 case EVP_CTRL_AEAD_GET_TAG:
2897 if (arg <= 0 || arg > 16 || !c->encrypt
2898 || gctx->taglen < 0)
2899 return 0;
2900 memcpy(ptr, c->buf, arg);
2901 return 1;
2902
2903 case EVP_CTRL_GCM_SET_IV_FIXED:
2904 /* Special case: -1 length restores whole IV */
2905 if (arg == -1) {
2906 memcpy(gctx->iv, ptr, gctx->ivlen);
2907 gctx->iv_gen = 1;
2908 return 1;
2909 }
2910 /*
2911 * Fixed field must be at least 4 bytes and invocation field at least
2912 * 8.
2913 */
2914 if ((arg < 4) || (gctx->ivlen - arg) < 8)
2915 return 0;
2916 if (arg)
2917 memcpy(gctx->iv, ptr, arg);
2918 if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
2919 return 0;
2920 gctx->iv_gen = 1;
2921 return 1;
2922
2923 case EVP_CTRL_GCM_IV_GEN:
2924 if (gctx->iv_gen == 0 || gctx->key_set == 0)
2925 return 0;
2926 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
2927 if (arg <= 0 || arg > gctx->ivlen)
2928 arg = gctx->ivlen;
2929 memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
2930 /*
2931 * Invocation field will be at least 8 bytes in size and so no need
2932 * to check wrap around or increment more than last 8 bytes.
2933 */
2934 ctr64_inc(gctx->iv + gctx->ivlen - 8);
2935 gctx->iv_set = 1;
2936 return 1;
2937
2938 case EVP_CTRL_GCM_SET_IV_INV:
2939 if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
2940 return 0;
2941 memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
2942 CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
2943 gctx->iv_set = 1;
2944 return 1;
2945
2946 case EVP_CTRL_AEAD_TLS1_AAD:
2947 /* Save the AAD for later use */
2948 if (arg != EVP_AEAD_TLS1_AAD_LEN)
2949 return 0;
2950 memcpy(c->buf, ptr, arg);
2951 gctx->tls_aad_len = arg;
2952 {
2953 unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
2954 /* Correct length for explicit IV */
2955 if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
2956 return 0;
2957 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
2958 /* If decrypting correct for tag too */
2959 if (!c->encrypt) {
2960 if (len < EVP_GCM_TLS_TAG_LEN)
2961 return 0;
2962 len -= EVP_GCM_TLS_TAG_LEN;
2963 }
2964 c->buf[arg - 2] = len >> 8;
2965 c->buf[arg - 1] = len & 0xff;
2966 }
2967 /* Extra padding: tag appended to record */
2968 return EVP_GCM_TLS_TAG_LEN;
2969
2970 case EVP_CTRL_COPY:
2971 {
2972 EVP_CIPHER_CTX *out = ptr;
2973 EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
2974 if (gctx->gcm.key) {
2975 if (gctx->gcm.key != &gctx->ks)
2976 return 0;
2977 gctx_out->gcm.key = &gctx_out->ks;
2978 }
2979 if (gctx->iv == c->iv)
2980 gctx_out->iv = out->iv;
2981 else {
2982 if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
2983 EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
2984 return 0;
2985 }
2986 memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
2987 }
2988 return 1;
2989 }
2990
2991 default:
2992 return -1;
2993
2994 }
2995}
2996
2997static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
2998 const unsigned char *iv, int enc)
2999{
3000 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
3001 if (!iv && !key)
3002 return 1;
3003 if (key) {
3004 do {
3005#ifdef HWAES_CAPABLE
3006 if (HWAES_CAPABLE) {
3007 HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
3008 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
3009 (block128_f) HWAES_encrypt);
3010# ifdef HWAES_ctr32_encrypt_blocks
3011 gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
3012# else
3013 gctx->ctr = NULL;
3014# endif
3015 break;
3016 } else
3017#endif
3018#ifdef BSAES_CAPABLE
3019 if (BSAES_CAPABLE) {
3020 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
3021 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
3022 (block128_f) AES_encrypt);
3023 gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
3024 break;
3025 } else
3026#endif
3027#ifdef VPAES_CAPABLE
3028 if (VPAES_CAPABLE) {
3029 vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
3030 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
3031 (block128_f) vpaes_encrypt);
3032 gctx->ctr = NULL;
3033 break;
3034 } else
3035#endif
3036 (void)0; /* terminate potentially open 'else' */
3037
3038 AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
3039 CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
3040 (block128_f) AES_encrypt);
3041#ifdef AES_CTR_ASM
3042 gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
3043#else
3044 gctx->ctr = NULL;
3045#endif
3046 } while (0);
3047
3048 /*
3049 * If we have an iv can set it directly, otherwise use saved IV.
3050 */
3051 if (iv == NULL && gctx->iv_set)
3052 iv = gctx->iv;
3053 if (iv) {
3054 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
3055 gctx->iv_set = 1;
3056 }
3057 gctx->key_set = 1;
3058 } else {
3059 /* If key set use IV, otherwise copy */
3060 if (gctx->key_set)
3061 CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
3062 else
3063 memcpy(gctx->iv, iv, gctx->ivlen);
3064 gctx->iv_set = 1;
3065 gctx->iv_gen = 0;
3066 }
3067 return 1;
3068}
3069
3070/*
3071 * Handle TLS GCM packet format. This consists of the last portion of the IV
3072 * followed by the payload and finally the tag. On encrypt generate IV,
3073 * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
3074 * and verify tag.
3075 */
3076
3077static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3078 const unsigned char *in, size_t len)
3079{
3080 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
3081 int rv = -1;
3082 /* Encrypt/decrypt must be performed in place */
3083 if (out != in
3084 || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
3085 return -1;
3086 /*
3087 * Set IV from start of buffer or generate IV and write to start of
3088 * buffer.
3089 */
3090 if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
3091 : EVP_CTRL_GCM_SET_IV_INV,
3092 EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
3093 goto err;
3094 /* Use saved AAD */
3095 if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
3096 goto err;
3097 /* Fix buffer and length to point to payload */
3098 in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
3099 out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
3100 len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
3101 if (ctx->encrypt) {
3102 /* Encrypt payload */
3103 if (gctx->ctr) {
3104 size_t bulk = 0;
3105#if defined(AES_GCM_ASM)
3106 if (len >= 32 && AES_GCM_ASM(gctx)) {
3107 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
3108 return -1;
3109
3110 bulk = AES_gcm_encrypt(in, out, len,
3111 gctx->gcm.key,
3112 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3113 gctx->gcm.len.u[1] += bulk;
3114 }
3115#endif
3116 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
3117 in + bulk,
3118 out + bulk,
3119 len - bulk, gctx->ctr))
3120 goto err;
3121 } else {
3122 size_t bulk = 0;
3123#if defined(AES_GCM_ASM2)
3124 if (len >= 32 && AES_GCM_ASM2(gctx)) {
3125 if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
3126 return -1;
3127
3128 bulk = AES_gcm_encrypt(in, out, len,
3129 gctx->gcm.key,
3130 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3131 gctx->gcm.len.u[1] += bulk;
3132 }
3133#endif
3134 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
3135 in + bulk, out + bulk, len - bulk))
3136 goto err;
3137 }
3138 out += len;
3139 /* Finally write tag */
3140 CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
3141 rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
3142 } else {
3143 /* Decrypt */
3144 if (gctx->ctr) {
3145 size_t bulk = 0;
3146#if defined(AES_GCM_ASM)
3147 if (len >= 16 && AES_GCM_ASM(gctx)) {
3148 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
3149 return -1;
3150
3151 bulk = AES_gcm_decrypt(in, out, len,
3152 gctx->gcm.key,
3153 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3154 gctx->gcm.len.u[1] += bulk;
3155 }
3156#endif
3157 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
3158 in + bulk,
3159 out + bulk,
3160 len - bulk, gctx->ctr))
3161 goto err;
3162 } else {
3163 size_t bulk = 0;
3164#if defined(AES_GCM_ASM2)
3165 if (len >= 16 && AES_GCM_ASM2(gctx)) {
3166 if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
3167 return -1;
3168
3169 bulk = AES_gcm_decrypt(in, out, len,
3170 gctx->gcm.key,
3171 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3172 gctx->gcm.len.u[1] += bulk;
3173 }
3174#endif
3175 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
3176 in + bulk, out + bulk, len - bulk))
3177 goto err;
3178 }
3179 /* Retrieve tag */
3180 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
3181 /* If tag mismatch wipe buffer */
3182 if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
3183 OPENSSL_cleanse(out, len);
3184 goto err;
3185 }
3186 rv = len;
3187 }
3188
3189 err:
3190 gctx->iv_set = 0;
3191 gctx->tls_aad_len = -1;
3192 return rv;
3193}
3194
3195static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3196 const unsigned char *in, size_t len)
3197{
3198 EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
3199 /* If not set up, return error */
3200 if (!gctx->key_set)
3201 return -1;
3202
3203 if (gctx->tls_aad_len >= 0)
3204 return aes_gcm_tls_cipher(ctx, out, in, len);
3205
3206 if (!gctx->iv_set)
3207 return -1;
3208 if (in) {
3209 if (out == NULL) {
3210 if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
3211 return -1;
3212 } else if (ctx->encrypt) {
3213 if (gctx->ctr) {
3214 size_t bulk = 0;
3215#if defined(AES_GCM_ASM)
3216 if (len >= 32 && AES_GCM_ASM(gctx)) {
3217 size_t res = (16 - gctx->gcm.mres) % 16;
3218
3219 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
3220 return -1;
3221
3222 bulk = AES_gcm_encrypt(in + res,
3223 out + res, len - res,
3224 gctx->gcm.key, gctx->gcm.Yi.c,
3225 gctx->gcm.Xi.u);
3226 gctx->gcm.len.u[1] += bulk;
3227 bulk += res;
3228 }
3229#endif
3230 if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
3231 in + bulk,
3232 out + bulk,
3233 len - bulk, gctx->ctr))
3234 return -1;
3235 } else {
3236 size_t bulk = 0;
3237#if defined(AES_GCM_ASM2)
3238 if (len >= 32 && AES_GCM_ASM2(gctx)) {
3239 size_t res = (16 - gctx->gcm.mres) % 16;
3240
3241 if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
3242 return -1;
3243
3244 bulk = AES_gcm_encrypt(in + res,
3245 out + res, len - res,
3246 gctx->gcm.key, gctx->gcm.Yi.c,
3247 gctx->gcm.Xi.u);
3248 gctx->gcm.len.u[1] += bulk;
3249 bulk += res;
3250 }
3251#endif
3252 if (CRYPTO_gcm128_encrypt(&gctx->gcm,
3253 in + bulk, out + bulk, len - bulk))
3254 return -1;
3255 }
3256 } else {
3257 if (gctx->ctr) {
3258 size_t bulk = 0;
3259#if defined(AES_GCM_ASM)
3260 if (len >= 16 && AES_GCM_ASM(gctx)) {
3261 size_t res = (16 - gctx->gcm.mres) % 16;
3262
3263 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
3264 return -1;
3265
3266 bulk = AES_gcm_decrypt(in + res,
3267 out + res, len - res,
3268 gctx->gcm.key,
3269 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3270 gctx->gcm.len.u[1] += bulk;
3271 bulk += res;
3272 }
3273#endif
3274 if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
3275 in + bulk,
3276 out + bulk,
3277 len - bulk, gctx->ctr))
3278 return -1;
3279 } else {
3280 size_t bulk = 0;
3281#if defined(AES_GCM_ASM2)
3282 if (len >= 16 && AES_GCM_ASM2(gctx)) {
3283 size_t res = (16 - gctx->gcm.mres) % 16;
3284
3285 if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
3286 return -1;
3287
3288 bulk = AES_gcm_decrypt(in + res,
3289 out + res, len - res,
3290 gctx->gcm.key,
3291 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
3292 gctx->gcm.len.u[1] += bulk;
3293 bulk += res;
3294 }
3295#endif
3296 if (CRYPTO_gcm128_decrypt(&gctx->gcm,
3297 in + bulk, out + bulk, len - bulk))
3298 return -1;
3299 }
3300 }
3301 return len;
3302 } else {
3303 if (!ctx->encrypt) {
3304 if (gctx->taglen < 0)
3305 return -1;
3306 if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
3307 return -1;
3308 gctx->iv_set = 0;
3309 return 0;
3310 }
3311 CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
3312 gctx->taglen = 16;
3313 /* Don't reuse the IV */
3314 gctx->iv_set = 0;
3315 return 0;
3316 }
3317
3318}
3319
3320#define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
3321 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
3322 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
3323 | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
3324
3325BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
3326 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3327 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
3328 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3329 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
3330 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3331
3332static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
3333{
3334 EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
3335
3336 if (type == EVP_CTRL_COPY) {
3337 EVP_CIPHER_CTX *out = ptr;
3338 EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
3339
3340 if (xctx->xts.key1) {
3341 if (xctx->xts.key1 != &xctx->ks1)
3342 return 0;
3343 xctx_out->xts.key1 = &xctx_out->ks1;
3344 }
3345 if (xctx->xts.key2) {
3346 if (xctx->xts.key2 != &xctx->ks2)
3347 return 0;
3348 xctx_out->xts.key2 = &xctx_out->ks2;
3349 }
3350 return 1;
3351 } else if (type != EVP_CTRL_INIT)
3352 return -1;
3353 /* key1 and key2 are used as an indicator both key and IV are set */
3354 xctx->xts.key1 = NULL;
3355 xctx->xts.key2 = NULL;
3356 return 1;
3357}
3358
3359static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
3360 const unsigned char *iv, int enc)
3361{
3362 EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
3363
3364 if (!iv && !key)
3365 return 1;
3366
3367 if (key)
3368 do {
3369 /* The key is two half length keys in reality */
3370 const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
3371
3372 /*
3373 * Verify that the two keys are different.
3374 *
3375 * This addresses the vulnerability described in Rogaway's
3376 * September 2004 paper:
3377 *
3378 * "Efficient Instantiations of Tweakable Blockciphers and
3379 * Refinements to Modes OCB and PMAC".
3380 * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
3381 *
3382 * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
3383 * that:
3384 * "The check for Key_1 != Key_2 shall be done at any place
3385 * BEFORE using the keys in the XTS-AES algorithm to process
3386 * data with them."
3387 */
3388 if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
3389 EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
3390 return 0;
3391 }
3392
3393#ifdef AES_XTS_ASM
3394 xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
3395#else
3396 xctx->stream = NULL;
3397#endif
3398 /* key_len is two AES keys */
3399#ifdef HWAES_CAPABLE
3400 if (HWAES_CAPABLE) {
3401 if (enc) {
3402 HWAES_set_encrypt_key(key,
3403 EVP_CIPHER_CTX_key_length(ctx) * 4,
3404 &xctx->ks1.ks);
3405 xctx->xts.block1 = (block128_f) HWAES_encrypt;
3406# ifdef HWAES_xts_encrypt
3407 xctx->stream = HWAES_xts_encrypt;
3408# endif
3409 } else {
3410 HWAES_set_decrypt_key(key,
3411 EVP_CIPHER_CTX_key_length(ctx) * 4,
3412 &xctx->ks1.ks);
3413 xctx->xts.block1 = (block128_f) HWAES_decrypt;
3414# ifdef HWAES_xts_decrypt
3415 xctx->stream = HWAES_xts_decrypt;
3416#endif
3417 }
3418
3419 HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
3420 EVP_CIPHER_CTX_key_length(ctx) * 4,
3421 &xctx->ks2.ks);
3422 xctx->xts.block2 = (block128_f) HWAES_encrypt;
3423
3424 xctx->xts.key1 = &xctx->ks1;
3425 break;
3426 } else
3427#endif
3428#ifdef BSAES_CAPABLE
3429 if (BSAES_CAPABLE)
3430 xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
3431 else
3432#endif
3433#ifdef VPAES_CAPABLE
3434 if (VPAES_CAPABLE) {
3435 if (enc) {
3436 vpaes_set_encrypt_key(key,
3437 EVP_CIPHER_CTX_key_length(ctx) * 4,
3438 &xctx->ks1.ks);
3439 xctx->xts.block1 = (block128_f) vpaes_encrypt;
3440 } else {
3441 vpaes_set_decrypt_key(key,
3442 EVP_CIPHER_CTX_key_length(ctx) * 4,
3443 &xctx->ks1.ks);
3444 xctx->xts.block1 = (block128_f) vpaes_decrypt;
3445 }
3446
3447 vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
3448 EVP_CIPHER_CTX_key_length(ctx) * 4,
3449 &xctx->ks2.ks);
3450 xctx->xts.block2 = (block128_f) vpaes_encrypt;
3451
3452 xctx->xts.key1 = &xctx->ks1;
3453 break;
3454 } else
3455#endif
3456 (void)0; /* terminate potentially open 'else' */
3457
3458 if (enc) {
3459 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
3460 &xctx->ks1.ks);
3461 xctx->xts.block1 = (block128_f) AES_encrypt;
3462 } else {
3463 AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
3464 &xctx->ks1.ks);
3465 xctx->xts.block1 = (block128_f) AES_decrypt;
3466 }
3467
3468 AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
3469 EVP_CIPHER_CTX_key_length(ctx) * 4,
3470 &xctx->ks2.ks);
3471 xctx->xts.block2 = (block128_f) AES_encrypt;
3472
3473 xctx->xts.key1 = &xctx->ks1;
3474 } while (0);
3475
3476 if (iv) {
3477 xctx->xts.key2 = &xctx->ks2;
3478 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
3479 }
3480
3481 return 1;
3482}
3483
3484static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3485 const unsigned char *in, size_t len)
3486{
3487 EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
3488 if (!xctx->xts.key1 || !xctx->xts.key2)
3489 return 0;
3490 if (!out || !in || len < AES_BLOCK_SIZE)
3491 return 0;
3492 if (xctx->stream)
3493 (*xctx->stream) (in, out, len,
3494 xctx->xts.key1, xctx->xts.key2,
3495 EVP_CIPHER_CTX_iv_noconst(ctx));
3496 else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
3497 in, out, len,
3498 EVP_CIPHER_CTX_encrypting(ctx)))
3499 return 0;
3500 return 1;
3501}
3502
3503#define aes_xts_cleanup NULL
3504
3505#define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
3506 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
3507 | EVP_CIPH_CUSTOM_COPY)
3508
3509BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
3510 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
3511
3512static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
3513{
3514 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
3515 switch (type) {
3516 case EVP_CTRL_INIT:
3517 cctx->key_set = 0;
3518 cctx->iv_set = 0;
3519 cctx->L = 8;
3520 cctx->M = 12;
3521 cctx->tag_set = 0;
3522 cctx->len_set = 0;
3523 cctx->tls_aad_len = -1;
3524 return 1;
3525 case EVP_CTRL_GET_IVLEN:
3526 *(int *)ptr = 15 - cctx->L;
3527 return 1;
3528 case EVP_CTRL_AEAD_TLS1_AAD:
3529 /* Save the AAD for later use */
3530 if (arg != EVP_AEAD_TLS1_AAD_LEN)
3531 return 0;
3532 memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
3533 cctx->tls_aad_len = arg;
3534 {
3535 uint16_t len =
3536 EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
3537 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
3538 /* Correct length for explicit IV */
3539 if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
3540 return 0;
3541 len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
3542 /* If decrypting correct for tag too */
3543 if (!EVP_CIPHER_CTX_encrypting(c)) {
3544 if (len < cctx->M)
3545 return 0;
3546 len -= cctx->M;
3547 }
3548 EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
3549 EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
3550 }
3551 /* Extra padding: tag appended to record */
3552 return cctx->M;
3553
3554 case EVP_CTRL_CCM_SET_IV_FIXED:
3555 /* Sanity check length */
3556 if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
3557 return 0;
3558 /* Just copy to first part of IV */
3559 memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
3560 return 1;
3561
3562 case EVP_CTRL_AEAD_SET_IVLEN:
3563 arg = 15 - arg;
3564 /* fall thru */
3565 case EVP_CTRL_CCM_SET_L:
3566 if (arg < 2 || arg > 8)
3567 return 0;
3568 cctx->L = arg;
3569 return 1;
3570
3571 case EVP_CTRL_AEAD_SET_TAG:
3572 if ((arg & 1) || arg < 4 || arg > 16)
3573 return 0;
3574 if (EVP_CIPHER_CTX_encrypting(c) && ptr)
3575 return 0;
3576 if (ptr) {
3577 cctx->tag_set = 1;
3578 memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
3579 }
3580 cctx->M = arg;
3581 return 1;
3582
3583 case EVP_CTRL_AEAD_GET_TAG:
3584 if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
3585 return 0;
3586 if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
3587 return 0;
3588 cctx->tag_set = 0;
3589 cctx->iv_set = 0;
3590 cctx->len_set = 0;
3591 return 1;
3592
3593 case EVP_CTRL_COPY:
3594 {
3595 EVP_CIPHER_CTX *out = ptr;
3596 EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
3597 if (cctx->ccm.key) {
3598 if (cctx->ccm.key != &cctx->ks)
3599 return 0;
3600 cctx_out->ccm.key = &cctx_out->ks;
3601 }
3602 return 1;
3603 }
3604
3605 default:
3606 return -1;
3607
3608 }
3609}
3610
3611static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
3612 const unsigned char *iv, int enc)
3613{
3614 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
3615 if (!iv && !key)
3616 return 1;
3617 if (key)
3618 do {
3619#ifdef HWAES_CAPABLE
3620 if (HWAES_CAPABLE) {
3621 HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
3622 &cctx->ks.ks);
3623
3624 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
3625 &cctx->ks, (block128_f) HWAES_encrypt);
3626 cctx->str = NULL;
3627 cctx->key_set = 1;
3628 break;
3629 } else
3630#endif
3631#ifdef VPAES_CAPABLE
3632 if (VPAES_CAPABLE) {
3633 vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
3634 &cctx->ks.ks);
3635 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
3636 &cctx->ks, (block128_f) vpaes_encrypt);
3637 cctx->str = NULL;
3638 cctx->key_set = 1;
3639 break;
3640 }
3641#endif
3642 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
3643 &cctx->ks.ks);
3644 CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
3645 &cctx->ks, (block128_f) AES_encrypt);
3646 cctx->str = NULL;
3647 cctx->key_set = 1;
3648 } while (0);
3649 if (iv) {
3650 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
3651 cctx->iv_set = 1;
3652 }
3653 return 1;
3654}
3655
3656static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3657 const unsigned char *in, size_t len)
3658{
3659 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
3660 CCM128_CONTEXT *ccm = &cctx->ccm;
3661 /* Encrypt/decrypt must be performed in place */
3662 if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
3663 return -1;
3664 /* If encrypting set explicit IV from sequence number (start of AAD) */
3665 if (EVP_CIPHER_CTX_encrypting(ctx))
3666 memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
3667 EVP_CCM_TLS_EXPLICIT_IV_LEN);
3668 /* Get rest of IV from explicit IV */
3669 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
3670 EVP_CCM_TLS_EXPLICIT_IV_LEN);
3671 /* Correct length value */
3672 len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
3673 if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
3674 len))
3675 return -1;
3676 /* Use saved AAD */
3677 CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
3678 /* Fix buffer to point to payload */
3679 in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
3680 out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
3681 if (EVP_CIPHER_CTX_encrypting(ctx)) {
3682 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
3683 cctx->str) :
3684 CRYPTO_ccm128_encrypt(ccm, in, out, len))
3685 return -1;
3686 if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
3687 return -1;
3688 return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
3689 } else {
3690 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
3691 cctx->str) :
3692 !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
3693 unsigned char tag[16];
3694 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
3695 if (!CRYPTO_memcmp(tag, in + len, cctx->M))
3696 return len;
3697 }
3698 }
3699 OPENSSL_cleanse(out, len);
3700 return -1;
3701 }
3702}
3703
3704static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3705 const unsigned char *in, size_t len)
3706{
3707 EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
3708 CCM128_CONTEXT *ccm = &cctx->ccm;
3709 /* If not set up, return error */
3710 if (!cctx->key_set)
3711 return -1;
3712
3713 if (cctx->tls_aad_len >= 0)
3714 return aes_ccm_tls_cipher(ctx, out, in, len);
3715
3716 /* EVP_*Final() doesn't return any data */
3717 if (in == NULL && out != NULL)
3718 return 0;
3719
3720 if (!cctx->iv_set)
3721 return -1;
3722
3723 if (!out) {
3724 if (!in) {
3725 if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
3726 15 - cctx->L, len))
3727 return -1;
3728 cctx->len_set = 1;
3729 return len;
3730 }
3731 /* If have AAD need message length */
3732 if (!cctx->len_set && len)
3733 return -1;
3734 CRYPTO_ccm128_aad(ccm, in, len);
3735 return len;
3736 }
3737
3738 /* The tag must be set before actually decrypting data */
3739 if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
3740 return -1;
3741
3742 /* If not set length yet do it */
3743 if (!cctx->len_set) {
3744 if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
3745 15 - cctx->L, len))
3746 return -1;
3747 cctx->len_set = 1;
3748 }
3749 if (EVP_CIPHER_CTX_encrypting(ctx)) {
3750 if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
3751 cctx->str) :
3752 CRYPTO_ccm128_encrypt(ccm, in, out, len))
3753 return -1;
3754 cctx->tag_set = 1;
3755 return len;
3756 } else {
3757 int rv = -1;
3758 if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
3759 cctx->str) :
3760 !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
3761 unsigned char tag[16];
3762 if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
3763 if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
3764 cctx->M))
3765 rv = len;
3766 }
3767 }
3768 if (rv == -1)
3769 OPENSSL_cleanse(out, len);
3770 cctx->iv_set = 0;
3771 cctx->tag_set = 0;
3772 cctx->len_set = 0;
3773 return rv;
3774 }
3775}
3776
3777#define aes_ccm_cleanup NULL
3778
3779BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
3780 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3781 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
3782 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3783 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
3784 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
3785
3786typedef struct {
3787 union {
3788 double align;
3789 AES_KEY ks;
3790 } ks;
3791 /* Indicates if IV has been set */
3792 unsigned char *iv;
3793} EVP_AES_WRAP_CTX;
3794
3795static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
3796 const unsigned char *iv, int enc)
3797{
3798 EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
3799 if (!iv && !key)
3800 return 1;
3801 if (key) {
3802 if (EVP_CIPHER_CTX_encrypting(ctx))
3803 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
3804 &wctx->ks.ks);
3805 else
3806 AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
3807 &wctx->ks.ks);
3808 if (!iv)
3809 wctx->iv = NULL;
3810 }
3811 if (iv) {
3812 memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
3813 wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
3814 }
3815 return 1;
3816}
3817
3818static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
3819 const unsigned char *in, size_t inlen)
3820{
3821 EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
3822 size_t rv;
3823 /* AES wrap with padding has IV length of 4, without padding 8 */
3824 int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
3825 /* No final operation so always return zero length */
3826 if (!in)
3827 return 0;
3828 /* Input length must always be non-zero */
3829 if (!inlen)
3830 return -1;
3831 /* If decrypting need at least 16 bytes and multiple of 8 */
3832 if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
3833 return -1;
3834 /* If not padding input must be multiple of 8 */
3835 if (!pad && inlen & 0x7)
3836 return -1;
3837 if (is_partially_overlapping(out, in, inlen)) {
3838 EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
3839 return 0;
3840 }
3841 if (!out) {
3842 if (EVP_CIPHER_CTX_encrypting(ctx)) {
3843 /* If padding round up to multiple of 8 */
3844 if (pad)
3845 inlen = (inlen + 7) / 8 * 8;
3846 /* 8 byte prefix */
3847 return inlen + 8;
3848 } else {
3849 /*
3850 * If not padding output will be exactly 8 bytes smaller than
3851 * input. If padding it will be at least 8 bytes smaller but we
3852 * don't know how much.
3853 */
3854 return inlen - 8;
3855 }
3856 }
3857 if (pad) {
3858 if (EVP_CIPHER_CTX_encrypting(ctx))
3859 rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
3860 out, in, inlen,
3861 (block128_f) AES_encrypt);
3862 else
3863 rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
3864 out, in, inlen,
3865 (block128_f) AES_decrypt);
3866 } else {
3867 if (EVP_CIPHER_CTX_encrypting(ctx))
3868 rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
3869 out, in, inlen, (block128_f) AES_encrypt);
3870 else
3871 rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
3872 out, in, inlen, (block128_f) AES_decrypt);
3873 }
3874 return rv ? (int)rv : -1;
3875}
3876
3877#define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
3878 | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
3879 | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
3880
3881static const EVP_CIPHER aes_128_wrap = {
3882 NID_id_aes128_wrap,
3883 8, 16, 8, WRAP_FLAGS,
3884 aes_wrap_init_key, aes_wrap_cipher,
3885 NULL,
3886 sizeof(EVP_AES_WRAP_CTX),
3887 NULL, NULL, NULL, NULL
3888};
3889
3890const EVP_CIPHER *EVP_aes_128_wrap(void)
3891{
3892 return &aes_128_wrap;
3893}
3894
3895static const EVP_CIPHER aes_192_wrap = {
3896 NID_id_aes192_wrap,
3897 8, 24, 8, WRAP_FLAGS,
3898 aes_wrap_init_key, aes_wrap_cipher,
3899 NULL,
3900 sizeof(EVP_AES_WRAP_CTX),
3901 NULL, NULL, NULL, NULL
3902};
3903
3904const EVP_CIPHER *EVP_aes_192_wrap(void)
3905{
3906 return &aes_192_wrap;
3907}
3908
3909static const EVP_CIPHER aes_256_wrap = {
3910 NID_id_aes256_wrap,
3911 8, 32, 8, WRAP_FLAGS,
3912 aes_wrap_init_key, aes_wrap_cipher,
3913 NULL,
3914 sizeof(EVP_AES_WRAP_CTX),
3915 NULL, NULL, NULL, NULL
3916};
3917
3918const EVP_CIPHER *EVP_aes_256_wrap(void)
3919{
3920 return &aes_256_wrap;
3921}
3922
3923static const EVP_CIPHER aes_128_wrap_pad = {
3924 NID_id_aes128_wrap_pad,
3925 8, 16, 4, WRAP_FLAGS,
3926 aes_wrap_init_key, aes_wrap_cipher,
3927 NULL,
3928 sizeof(EVP_AES_WRAP_CTX),
3929 NULL, NULL, NULL, NULL
3930};
3931
3932const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
3933{
3934 return &aes_128_wrap_pad;
3935}
3936
3937static const EVP_CIPHER aes_192_wrap_pad = {
3938 NID_id_aes192_wrap_pad,
3939 8, 24, 4, WRAP_FLAGS,
3940 aes_wrap_init_key, aes_wrap_cipher,
3941 NULL,
3942 sizeof(EVP_AES_WRAP_CTX),
3943 NULL, NULL, NULL, NULL
3944};
3945
3946const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
3947{
3948 return &aes_192_wrap_pad;
3949}
3950
3951static const EVP_CIPHER aes_256_wrap_pad = {
3952 NID_id_aes256_wrap_pad,
3953 8, 32, 4, WRAP_FLAGS,
3954 aes_wrap_init_key, aes_wrap_cipher,
3955 NULL,
3956 sizeof(EVP_AES_WRAP_CTX),
3957 NULL, NULL, NULL, NULL
3958};
3959
3960const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
3961{
3962 return &aes_256_wrap_pad;
3963}
3964
3965#ifndef OPENSSL_NO_OCB
3966static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
3967{
3968 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
3969 EVP_CIPHER_CTX *newc;
3970 EVP_AES_OCB_CTX *new_octx;
3971
3972 switch (type) {
3973 case EVP_CTRL_INIT:
3974 octx->key_set = 0;
3975 octx->iv_set = 0;
3976 octx->ivlen = EVP_CIPHER_iv_length(c->cipher);
3977 octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
3978 octx->taglen = 16;
3979 octx->data_buf_len = 0;
3980 octx->aad_buf_len = 0;
3981 return 1;
3982
3983 case EVP_CTRL_GET_IVLEN:
3984 *(int *)ptr = octx->ivlen;
3985 return 1;
3986
3987 case EVP_CTRL_AEAD_SET_IVLEN:
3988 /* IV len must be 1 to 15 */
3989 if (arg <= 0 || arg > 15)
3990 return 0;
3991
3992 octx->ivlen = arg;
3993 return 1;
3994
3995 case EVP_CTRL_AEAD_SET_TAG:
3996 if (!ptr) {
3997 /* Tag len must be 0 to 16 */
3998 if (arg < 0 || arg > 16)
3999 return 0;
4000
4001 octx->taglen = arg;
4002 return 1;
4003 }
4004 if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
4005 return 0;
4006 memcpy(octx->tag, ptr, arg);
4007 return 1;
4008
4009 case EVP_CTRL_AEAD_GET_TAG:
4010 if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
4011 return 0;
4012
4013 memcpy(ptr, octx->tag, arg);
4014 return 1;
4015
4016 case EVP_CTRL_COPY:
4017 newc = (EVP_CIPHER_CTX *)ptr;
4018 new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
4019 return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
4020 &new_octx->ksenc.ks,
4021 &new_octx->ksdec.ks);
4022
4023 default:
4024 return -1;
4025
4026 }
4027}
4028
4029# ifdef HWAES_CAPABLE
4030# ifdef HWAES_ocb_encrypt
4031void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
4032 size_t blocks, const void *key,
4033 size_t start_block_num,
4034 unsigned char offset_i[16],
4035 const unsigned char L_[][16],
4036 unsigned char checksum[16]);
4037# else
4038# define HWAES_ocb_encrypt ((ocb128_f)NULL)
4039# endif
4040# ifdef HWAES_ocb_decrypt
4041void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
4042 size_t blocks, const void *key,
4043 size_t start_block_num,
4044 unsigned char offset_i[16],
4045 const unsigned char L_[][16],
4046 unsigned char checksum[16]);
4047# else
4048# define HWAES_ocb_decrypt ((ocb128_f)NULL)
4049# endif
4050# endif
4051
4052static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
4053 const unsigned char *iv, int enc)
4054{
4055 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
4056 if (!iv && !key)
4057 return 1;
4058 if (key) {
4059 do {
4060 /*
4061 * We set both the encrypt and decrypt key here because decrypt
4062 * needs both. We could possibly optimise to remove setting the
4063 * decrypt for an encryption operation.
4064 */
4065# ifdef HWAES_CAPABLE
4066 if (HWAES_CAPABLE) {
4067 HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4068 &octx->ksenc.ks);
4069 HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4070 &octx->ksdec.ks);
4071 if (!CRYPTO_ocb128_init(&octx->ocb,
4072 &octx->ksenc.ks, &octx->ksdec.ks,
4073 (block128_f) HWAES_encrypt,
4074 (block128_f) HWAES_decrypt,
4075 enc ? HWAES_ocb_encrypt
4076 : HWAES_ocb_decrypt))
4077 return 0;
4078 break;
4079 }
4080# endif
4081# ifdef VPAES_CAPABLE
4082 if (VPAES_CAPABLE) {
4083 vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4084 &octx->ksenc.ks);
4085 vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4086 &octx->ksdec.ks);
4087 if (!CRYPTO_ocb128_init(&octx->ocb,
4088 &octx->ksenc.ks, &octx->ksdec.ks,
4089 (block128_f) vpaes_encrypt,
4090 (block128_f) vpaes_decrypt,
4091 NULL))
4092 return 0;
4093 break;
4094 }
4095# endif
4096 AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4097 &octx->ksenc.ks);
4098 AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
4099 &octx->ksdec.ks);
4100 if (!CRYPTO_ocb128_init(&octx->ocb,
4101 &octx->ksenc.ks, &octx->ksdec.ks,
4102 (block128_f) AES_encrypt,
4103 (block128_f) AES_decrypt,
4104 NULL))
4105 return 0;
4106 }
4107 while (0);
4108
4109 /*
4110 * If we have an iv we can set it directly, otherwise use saved IV.
4111 */
4112 if (iv == NULL && octx->iv_set)
4113 iv = octx->iv;
4114 if (iv) {
4115 if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
4116 != 1)
4117 return 0;
4118 octx->iv_set = 1;
4119 }
4120 octx->key_set = 1;
4121 } else {
4122 /* If key set use IV, otherwise copy */
4123 if (octx->key_set)
4124 CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
4125 else
4126 memcpy(octx->iv, iv, octx->ivlen);
4127 octx->iv_set = 1;
4128 }
4129 return 1;
4130}
4131
4132static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
4133 const unsigned char *in, size_t len)
4134{
4135 unsigned char *buf;
4136 int *buf_len;
4137 int written_len = 0;
4138 size_t trailing_len;
4139 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
4140
4141 /* If IV or Key not set then return error */
4142 if (!octx->iv_set)
4143 return -1;
4144
4145 if (!octx->key_set)
4146 return -1;
4147
4148 if (in != NULL) {
4149 /*
4150 * Need to ensure we are only passing full blocks to low level OCB
4151 * routines. We do it here rather than in EVP_EncryptUpdate/
4152 * EVP_DecryptUpdate because we need to pass full blocks of AAD too
4153 * and those routines don't support that
4154 */
4155
4156 /* Are we dealing with AAD or normal data here? */
4157 if (out == NULL) {
4158 buf = octx->aad_buf;
4159 buf_len = &(octx->aad_buf_len);
4160 } else {
4161 buf = octx->data_buf;
4162 buf_len = &(octx->data_buf_len);
4163
4164 if (is_partially_overlapping(out + *buf_len, in, len)) {
4165 EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
4166 return 0;
4167 }
4168 }
4169
4170 /*
4171 * If we've got a partially filled buffer from a previous call then
4172 * use that data first
4173 */
4174 if (*buf_len > 0) {
4175 unsigned int remaining;
4176
4177 remaining = AES_BLOCK_SIZE - (*buf_len);
4178 if (remaining > len) {
4179 memcpy(buf + (*buf_len), in, len);
4180 *(buf_len) += len;
4181 return 0;
4182 }
4183 memcpy(buf + (*buf_len), in, remaining);
4184
4185 /*
4186 * If we get here we've filled the buffer, so process it
4187 */
4188 len -= remaining;
4189 in += remaining;
4190 if (out == NULL) {
4191 if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
4192 return -1;
4193 } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
4194 if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
4195 AES_BLOCK_SIZE))
4196 return -1;
4197 } else {
4198 if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
4199 AES_BLOCK_SIZE))
4200 return -1;
4201 }
4202 written_len = AES_BLOCK_SIZE;
4203 *buf_len = 0;
4204 if (out != NULL)
4205 out += AES_BLOCK_SIZE;
4206 }
4207
4208 /* Do we have a partial block to handle at the end? */
4209 trailing_len = len % AES_BLOCK_SIZE;
4210
4211 /*
4212 * If we've got some full blocks to handle, then process these first
4213 */
4214 if (len != trailing_len) {
4215 if (out == NULL) {
4216 if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
4217 return -1;
4218 } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
4219 if (!CRYPTO_ocb128_encrypt
4220 (&octx->ocb, in, out, len - trailing_len))
4221 return -1;
4222 } else {
4223 if (!CRYPTO_ocb128_decrypt
4224 (&octx->ocb, in, out, len - trailing_len))
4225 return -1;
4226 }
4227 written_len += len - trailing_len;
4228 in += len - trailing_len;
4229 }
4230
4231 /* Handle any trailing partial block */
4232 if (trailing_len > 0) {
4233 memcpy(buf, in, trailing_len);
4234 *buf_len = trailing_len;
4235 }
4236
4237 return written_len;
4238 } else {
4239 /*
4240 * First of all empty the buffer of any partial block that we might
4241 * have been provided - both for data and AAD
4242 */
4243 if (octx->data_buf_len > 0) {
4244 if (EVP_CIPHER_CTX_encrypting(ctx)) {
4245 if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
4246 octx->data_buf_len))
4247 return -1;
4248 } else {
4249 if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
4250 octx->data_buf_len))
4251 return -1;
4252 }
4253 written_len = octx->data_buf_len;
4254 octx->data_buf_len = 0;
4255 }
4256 if (octx->aad_buf_len > 0) {
4257 if (!CRYPTO_ocb128_aad
4258 (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
4259 return -1;
4260 octx->aad_buf_len = 0;
4261 }
4262 /* If decrypting then verify */
4263 if (!EVP_CIPHER_CTX_encrypting(ctx)) {
4264 if (octx->taglen < 0)
4265 return -1;
4266 if (CRYPTO_ocb128_finish(&octx->ocb,
4267 octx->tag, octx->taglen) != 0)
4268 return -1;
4269 octx->iv_set = 0;
4270 return written_len;
4271 }
4272 /* If encrypting then just get the tag */
4273 if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
4274 return -1;
4275 /* Don't reuse the IV */
4276 octx->iv_set = 0;
4277 return written_len;
4278 }
4279}
4280
4281static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
4282{
4283 EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
4284 CRYPTO_ocb128_cleanup(&octx->ocb);
4285 return 1;
4286}
4287
4288BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
4289 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
4290BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
4291 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
4292BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
4293 EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
4294#endif /* OPENSSL_NO_OCB */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette