1 | /*
|
---|
2 | * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <openssl/e_os2.h>
|
---|
11 | #include <string.h>
|
---|
12 | #include <openssl/crypto.h>
|
---|
13 |
|
---|
14 | struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
|
---|
15 | {
|
---|
16 | struct tm *ts = NULL;
|
---|
17 |
|
---|
18 | #if defined(OPENSSL_THREADS) && defined(OPENSSL_SYS_VMS)
|
---|
19 | {
|
---|
20 | /*
|
---|
21 | * On VMS, gmtime_r() takes a 32-bit pointer as second argument.
|
---|
22 | * Since we can't know that |result| is in a space that can easily
|
---|
23 | * translate to a 32-bit pointer, we must store temporarily on stack
|
---|
24 | * and copy the result. The stack is always reachable with 32-bit
|
---|
25 | * pointers.
|
---|
26 | */
|
---|
27 | #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE
|
---|
28 | # pragma pointer_size save
|
---|
29 | # pragma pointer_size 32
|
---|
30 | #endif
|
---|
31 | struct tm data, *ts2 = &data;
|
---|
32 | #if defined OPENSSL_SYS_VMS && __INITIAL_POINTER_SIZE
|
---|
33 | # pragma pointer_size restore
|
---|
34 | #endif
|
---|
35 | if (gmtime_r(timer, ts2) == NULL)
|
---|
36 | return NULL;
|
---|
37 | memcpy(result, ts2, sizeof(struct tm));
|
---|
38 | ts = result;
|
---|
39 | }
|
---|
40 | #elif defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_MACOSX)
|
---|
41 | if (gmtime_r(timer, result) == NULL)
|
---|
42 | return NULL;
|
---|
43 | ts = result;
|
---|
44 | #elif defined (OPENSSL_SYS_WINDOWS) && defined(_MSC_VER) && _MSC_VER >= 1400
|
---|
45 | if (gmtime_s(result, timer))
|
---|
46 | return NULL;
|
---|
47 | ts = result;
|
---|
48 | #else
|
---|
49 | ts = gmtime(timer);
|
---|
50 | if (ts == NULL)
|
---|
51 | return NULL;
|
---|
52 |
|
---|
53 | memcpy(result, ts, sizeof(struct tm));
|
---|
54 | ts = result;
|
---|
55 | #endif
|
---|
56 | return ts;
|
---|
57 | }
|
---|
58 |
|
---|
59 | /*
|
---|
60 | * Take a tm structure and add an offset to it. This avoids any OS issues
|
---|
61 | * with restricted date types and overflows which cause the year 2038
|
---|
62 | * problem.
|
---|
63 | */
|
---|
64 |
|
---|
65 | #define SECS_PER_DAY (24 * 60 * 60)
|
---|
66 |
|
---|
67 | static long date_to_julian(int y, int m, int d);
|
---|
68 | static void julian_to_date(long jd, int *y, int *m, int *d);
|
---|
69 | static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
|
---|
70 | long *pday, int *psec);
|
---|
71 |
|
---|
72 | int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
|
---|
73 | {
|
---|
74 | int time_sec, time_year, time_month, time_day;
|
---|
75 | long time_jd;
|
---|
76 |
|
---|
77 | /* Convert time and offset into Julian day and seconds */
|
---|
78 | if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))
|
---|
79 | return 0;
|
---|
80 |
|
---|
81 | /* Convert Julian day back to date */
|
---|
82 |
|
---|
83 | julian_to_date(time_jd, &time_year, &time_month, &time_day);
|
---|
84 |
|
---|
85 | if (time_year < 1900 || time_year > 9999)
|
---|
86 | return 0;
|
---|
87 |
|
---|
88 | /* Update tm structure */
|
---|
89 |
|
---|
90 | tm->tm_year = time_year - 1900;
|
---|
91 | tm->tm_mon = time_month - 1;
|
---|
92 | tm->tm_mday = time_day;
|
---|
93 |
|
---|
94 | tm->tm_hour = time_sec / 3600;
|
---|
95 | tm->tm_min = (time_sec / 60) % 60;
|
---|
96 | tm->tm_sec = time_sec % 60;
|
---|
97 |
|
---|
98 | return 1;
|
---|
99 |
|
---|
100 | }
|
---|
101 |
|
---|
102 | int OPENSSL_gmtime_diff(int *pday, int *psec,
|
---|
103 | const struct tm *from, const struct tm *to)
|
---|
104 | {
|
---|
105 | int from_sec, to_sec, diff_sec;
|
---|
106 | long from_jd, to_jd, diff_day;
|
---|
107 | if (!julian_adj(from, 0, 0, &from_jd, &from_sec))
|
---|
108 | return 0;
|
---|
109 | if (!julian_adj(to, 0, 0, &to_jd, &to_sec))
|
---|
110 | return 0;
|
---|
111 | diff_day = to_jd - from_jd;
|
---|
112 | diff_sec = to_sec - from_sec;
|
---|
113 | /* Adjust differences so both positive or both negative */
|
---|
114 | if (diff_day > 0 && diff_sec < 0) {
|
---|
115 | diff_day--;
|
---|
116 | diff_sec += SECS_PER_DAY;
|
---|
117 | }
|
---|
118 | if (diff_day < 0 && diff_sec > 0) {
|
---|
119 | diff_day++;
|
---|
120 | diff_sec -= SECS_PER_DAY;
|
---|
121 | }
|
---|
122 |
|
---|
123 | if (pday)
|
---|
124 | *pday = (int)diff_day;
|
---|
125 | if (psec)
|
---|
126 | *psec = diff_sec;
|
---|
127 |
|
---|
128 | return 1;
|
---|
129 |
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* Convert tm structure and offset into julian day and seconds */
|
---|
133 | static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
|
---|
134 | long *pday, int *psec)
|
---|
135 | {
|
---|
136 | int offset_hms, offset_day;
|
---|
137 | long time_jd;
|
---|
138 | int time_year, time_month, time_day;
|
---|
139 | /* split offset into days and day seconds */
|
---|
140 | offset_day = offset_sec / SECS_PER_DAY;
|
---|
141 | /* Avoid sign issues with % operator */
|
---|
142 | offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
|
---|
143 | offset_day += off_day;
|
---|
144 | /* Add current time seconds to offset */
|
---|
145 | offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
|
---|
146 | /* Adjust day seconds if overflow */
|
---|
147 | if (offset_hms >= SECS_PER_DAY) {
|
---|
148 | offset_day++;
|
---|
149 | offset_hms -= SECS_PER_DAY;
|
---|
150 | } else if (offset_hms < 0) {
|
---|
151 | offset_day--;
|
---|
152 | offset_hms += SECS_PER_DAY;
|
---|
153 | }
|
---|
154 |
|
---|
155 | /*
|
---|
156 | * Convert date of time structure into a Julian day number.
|
---|
157 | */
|
---|
158 |
|
---|
159 | time_year = tm->tm_year + 1900;
|
---|
160 | time_month = tm->tm_mon + 1;
|
---|
161 | time_day = tm->tm_mday;
|
---|
162 |
|
---|
163 | time_jd = date_to_julian(time_year, time_month, time_day);
|
---|
164 |
|
---|
165 | /* Work out Julian day of new date */
|
---|
166 | time_jd += offset_day;
|
---|
167 |
|
---|
168 | if (time_jd < 0)
|
---|
169 | return 0;
|
---|
170 |
|
---|
171 | *pday = time_jd;
|
---|
172 | *psec = offset_hms;
|
---|
173 | return 1;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /*
|
---|
177 | * Convert date to and from julian day Uses Fliegel & Van Flandern algorithm
|
---|
178 | */
|
---|
179 | static long date_to_julian(int y, int m, int d)
|
---|
180 | {
|
---|
181 | return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
|
---|
182 | (367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
|
---|
183 | (3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;
|
---|
184 | }
|
---|
185 |
|
---|
186 | static void julian_to_date(long jd, int *y, int *m, int *d)
|
---|
187 | {
|
---|
188 | long L = jd + 68569;
|
---|
189 | long n = (4 * L) / 146097;
|
---|
190 | long i, j;
|
---|
191 |
|
---|
192 | L = L - (146097 * n + 3) / 4;
|
---|
193 | i = (4000 * (L + 1)) / 1461001;
|
---|
194 | L = L - (1461 * i) / 4 + 31;
|
---|
195 | j = (80 * L) / 2447;
|
---|
196 | *d = L - (2447 * j) / 80;
|
---|
197 | L = j / 11;
|
---|
198 | *m = j + 2 - (12 * L);
|
---|
199 | *y = 100 * (n - 49) + i + L;
|
---|
200 | }
|
---|