1 | =pod
|
---|
2 |
|
---|
3 | =head1 NAME
|
---|
4 |
|
---|
5 | pem_password_cb,
|
---|
6 | PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey,
|
---|
7 | PEM_write_bio_PrivateKey_traditional, PEM_write_PrivateKey,
|
---|
8 | PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
|
---|
9 | PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
|
---|
10 | PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY, PEM_write_PUBKEY,
|
---|
11 | PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
|
---|
12 | PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
|
---|
13 | PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
|
---|
14 | PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
|
---|
15 | PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
|
---|
16 | PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
|
---|
17 | PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
|
---|
18 | PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters, PEM_write_bio_Parameters,
|
---|
19 | PEM_read_bio_DSAparams, PEM_read_DSAparams,
|
---|
20 | PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
|
---|
21 | PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
|
---|
22 | PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
|
---|
23 | PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
|
---|
24 | PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
|
---|
25 | PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
|
---|
26 | PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
|
---|
27 | PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
|
---|
28 | PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
|
---|
29 |
|
---|
30 | =head1 SYNOPSIS
|
---|
31 |
|
---|
32 | #include <openssl/pem.h>
|
---|
33 |
|
---|
34 | typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
|
---|
35 |
|
---|
36 | EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
|
---|
37 | pem_password_cb *cb, void *u);
|
---|
38 | EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
|
---|
39 | pem_password_cb *cb, void *u);
|
---|
40 | int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
41 | unsigned char *kstr, int klen,
|
---|
42 | pem_password_cb *cb, void *u);
|
---|
43 | int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
|
---|
44 | const EVP_CIPHER *enc,
|
---|
45 | unsigned char *kstr, int klen,
|
---|
46 | pem_password_cb *cb, void *u);
|
---|
47 | int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
48 | unsigned char *kstr, int klen,
|
---|
49 | pem_password_cb *cb, void *u);
|
---|
50 |
|
---|
51 | int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
52 | char *kstr, int klen,
|
---|
53 | pem_password_cb *cb, void *u);
|
---|
54 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
55 | char *kstr, int klen,
|
---|
56 | pem_password_cb *cb, void *u);
|
---|
57 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
|
---|
58 | char *kstr, int klen,
|
---|
59 | pem_password_cb *cb, void *u);
|
---|
60 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
|
---|
61 | char *kstr, int klen,
|
---|
62 | pem_password_cb *cb, void *u);
|
---|
63 |
|
---|
64 | EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
|
---|
65 | pem_password_cb *cb, void *u);
|
---|
66 | EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
|
---|
67 | pem_password_cb *cb, void *u);
|
---|
68 | int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
|
---|
69 | int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
|
---|
70 |
|
---|
71 | RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
|
---|
72 | pem_password_cb *cb, void *u);
|
---|
73 | RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
|
---|
74 | pem_password_cb *cb, void *u);
|
---|
75 | int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
|
---|
76 | unsigned char *kstr, int klen,
|
---|
77 | pem_password_cb *cb, void *u);
|
---|
78 | int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
|
---|
79 | unsigned char *kstr, int klen,
|
---|
80 | pem_password_cb *cb, void *u);
|
---|
81 |
|
---|
82 | RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
|
---|
83 | pem_password_cb *cb, void *u);
|
---|
84 | RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
|
---|
85 | pem_password_cb *cb, void *u);
|
---|
86 | int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
|
---|
87 | int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
|
---|
88 |
|
---|
89 | RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
|
---|
90 | pem_password_cb *cb, void *u);
|
---|
91 | RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
|
---|
92 | pem_password_cb *cb, void *u);
|
---|
93 | int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
|
---|
94 | int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
|
---|
95 |
|
---|
96 | DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
|
---|
97 | pem_password_cb *cb, void *u);
|
---|
98 | DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
|
---|
99 | pem_password_cb *cb, void *u);
|
---|
100 | int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
|
---|
101 | unsigned char *kstr, int klen,
|
---|
102 | pem_password_cb *cb, void *u);
|
---|
103 | int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
|
---|
104 | unsigned char *kstr, int klen,
|
---|
105 | pem_password_cb *cb, void *u);
|
---|
106 |
|
---|
107 | DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
|
---|
108 | pem_password_cb *cb, void *u);
|
---|
109 | DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
|
---|
110 | pem_password_cb *cb, void *u);
|
---|
111 | int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
|
---|
112 | int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
|
---|
113 |
|
---|
114 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
|
---|
115 | int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x);
|
---|
116 |
|
---|
117 | DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
|
---|
118 | DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
|
---|
119 | int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
|
---|
120 | int PEM_write_DSAparams(FILE *fp, DSA *x);
|
---|
121 |
|
---|
122 | DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
|
---|
123 | DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
|
---|
124 | int PEM_write_bio_DHparams(BIO *bp, DH *x);
|
---|
125 | int PEM_write_DHparams(FILE *fp, DH *x);
|
---|
126 |
|
---|
127 | X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
---|
128 | X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
---|
129 | int PEM_write_bio_X509(BIO *bp, X509 *x);
|
---|
130 | int PEM_write_X509(FILE *fp, X509 *x);
|
---|
131 |
|
---|
132 | X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
---|
133 | X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
---|
134 | int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
|
---|
135 | int PEM_write_X509_AUX(FILE *fp, X509 *x);
|
---|
136 |
|
---|
137 | X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
|
---|
138 | pem_password_cb *cb, void *u);
|
---|
139 | X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
|
---|
140 | pem_password_cb *cb, void *u);
|
---|
141 | int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
|
---|
142 | int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
|
---|
143 | int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
|
---|
144 | int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
|
---|
145 |
|
---|
146 | X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
|
---|
147 | pem_password_cb *cb, void *u);
|
---|
148 | X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
|
---|
149 | pem_password_cb *cb, void *u);
|
---|
150 | int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
|
---|
151 | int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
|
---|
152 |
|
---|
153 | PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
|
---|
154 | PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
|
---|
155 | int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
|
---|
156 | int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
|
---|
157 |
|
---|
158 | =head1 DESCRIPTION
|
---|
159 |
|
---|
160 | The PEM functions read or write structures in PEM format. In
|
---|
161 | this sense PEM format is simply base64 encoded data surrounded
|
---|
162 | by header lines.
|
---|
163 |
|
---|
164 | For more details about the meaning of arguments see the
|
---|
165 | B<PEM FUNCTION ARGUMENTS> section.
|
---|
166 |
|
---|
167 | Each operation has four functions associated with it. For
|
---|
168 | brevity the term "B<TYPE> functions" will be used below to collectively
|
---|
169 | refer to the PEM_read_bio_TYPE(), PEM_read_TYPE(),
|
---|
170 | PEM_write_bio_TYPE(), and PEM_write_TYPE() functions.
|
---|
171 |
|
---|
172 | The B<PrivateKey> functions read or write a private key in PEM format using an
|
---|
173 | EVP_PKEY structure. The write routines use PKCS#8 private key format and are
|
---|
174 | equivalent to PEM_write_bio_PKCS8PrivateKey().The read functions transparently
|
---|
175 | handle traditional and PKCS#8 format encrypted and unencrypted keys.
|
---|
176 |
|
---|
177 | PEM_write_bio_PrivateKey_traditional() writes out a private key in the
|
---|
178 | "traditional" format with a simple private key marker and should only
|
---|
179 | be used for compatibility with legacy programs.
|
---|
180 |
|
---|
181 | PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private
|
---|
182 | key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
|
---|
183 | PKCS#5 v2.0 password based encryption algorithms. The B<cipher> argument
|
---|
184 | specifies the encryption algorithm to use: unlike some other PEM routines the
|
---|
185 | encryption is applied at the PKCS#8 level and not in the PEM headers. If
|
---|
186 | B<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
|
---|
187 | structure is used instead.
|
---|
188 |
|
---|
189 | PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
|
---|
190 | also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
|
---|
191 | it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
|
---|
192 | to use is specified in the B<nid> parameter and should be the NID of the
|
---|
193 | corresponding OBJECT IDENTIFIER (see NOTES section).
|
---|
194 |
|
---|
195 | The B<PUBKEY> functions process a public key using an EVP_PKEY
|
---|
196 | structure. The public key is encoded as a SubjectPublicKeyInfo
|
---|
197 | structure.
|
---|
198 |
|
---|
199 | The B<RSAPrivateKey> functions process an RSA private key using an
|
---|
200 | RSA structure. The write routines uses traditional format. The read
|
---|
201 | routines handles the same formats as the B<PrivateKey>
|
---|
202 | functions but an error occurs if the private key is not RSA.
|
---|
203 |
|
---|
204 | The B<RSAPublicKey> functions process an RSA public key using an
|
---|
205 | RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
|
---|
206 | structure.
|
---|
207 |
|
---|
208 | The B<RSA_PUBKEY> functions also process an RSA public key using
|
---|
209 | an RSA structure. However, the public key is encoded using a
|
---|
210 | SubjectPublicKeyInfo structure and an error occurs if the public
|
---|
211 | key is not RSA.
|
---|
212 |
|
---|
213 | The B<DSAPrivateKey> functions process a DSA private key using a
|
---|
214 | DSA structure. The write routines uses traditional format. The read
|
---|
215 | routines handles the same formats as the B<PrivateKey>
|
---|
216 | functions but an error occurs if the private key is not DSA.
|
---|
217 |
|
---|
218 | The B<DSA_PUBKEY> functions process a DSA public key using
|
---|
219 | a DSA structure. The public key is encoded using a
|
---|
220 | SubjectPublicKeyInfo structure and an error occurs if the public
|
---|
221 | key is not DSA.
|
---|
222 |
|
---|
223 | The B<Parameters> functions read or write key parameters in PEM format using
|
---|
224 | an EVP_PKEY structure. The encoding depends on the type of key; for DSA key
|
---|
225 | parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
|
---|
226 | key parameters, it will be a PKCS#3 DHparameter structure. I<These functions
|
---|
227 | only exist for the B<BIO> type>.
|
---|
228 |
|
---|
229 | The B<DSAparams> functions process DSA parameters using a DSA
|
---|
230 | structure. The parameters are encoded using a Dss-Parms structure
|
---|
231 | as defined in RFC2459.
|
---|
232 |
|
---|
233 | The B<DHparams> functions process DH parameters using a DH
|
---|
234 | structure. The parameters are encoded using a PKCS#3 DHparameter
|
---|
235 | structure.
|
---|
236 |
|
---|
237 | The B<X509> functions process an X509 certificate using an X509
|
---|
238 | structure. They will also process a trusted X509 certificate but
|
---|
239 | any trust settings are discarded.
|
---|
240 |
|
---|
241 | The B<X509_AUX> functions process a trusted X509 certificate using
|
---|
242 | an X509 structure.
|
---|
243 |
|
---|
244 | The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
|
---|
245 | certificate request using an X509_REQ structure. The B<X509_REQ>
|
---|
246 | write functions use B<CERTIFICATE REQUEST> in the header whereas
|
---|
247 | the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
|
---|
248 | (as required by some CAs). The B<X509_REQ> read functions will
|
---|
249 | handle either form so there are no B<X509_REQ_NEW> read functions.
|
---|
250 |
|
---|
251 | The B<X509_CRL> functions process an X509 CRL using an X509_CRL
|
---|
252 | structure.
|
---|
253 |
|
---|
254 | The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
|
---|
255 | structure.
|
---|
256 |
|
---|
257 | =head1 PEM FUNCTION ARGUMENTS
|
---|
258 |
|
---|
259 | The PEM functions have many common arguments.
|
---|
260 |
|
---|
261 | The B<bp> BIO parameter (if present) specifies the BIO to read from
|
---|
262 | or write to.
|
---|
263 |
|
---|
264 | The B<fp> FILE parameter (if present) specifies the FILE pointer to
|
---|
265 | read from or write to.
|
---|
266 |
|
---|
267 | The PEM read functions all take an argument B<TYPE **x> and return
|
---|
268 | a B<TYPE *> pointer. Where B<TYPE> is whatever structure the function
|
---|
269 | uses. If B<x> is NULL then the parameter is ignored. If B<x> is not
|
---|
270 | NULL but B<*x> is NULL then the structure returned will be written
|
---|
271 | to B<*x>. If neither B<x> nor B<*x> is NULL then an attempt is made
|
---|
272 | to reuse the structure at B<*x> (but see BUGS and EXAMPLES sections).
|
---|
273 | Irrespective of the value of B<x> a pointer to the structure is always
|
---|
274 | returned (or NULL if an error occurred).
|
---|
275 |
|
---|
276 | The PEM functions which write private keys take an B<enc> parameter
|
---|
277 | which specifies the encryption algorithm to use, encryption is done
|
---|
278 | at the PEM level. If this parameter is set to NULL then the private
|
---|
279 | key is written in unencrypted form.
|
---|
280 |
|
---|
281 | The B<cb> argument is the callback to use when querying for the pass
|
---|
282 | phrase used for encrypted PEM structures (normally only private keys).
|
---|
283 |
|
---|
284 | For the PEM write routines if the B<kstr> parameter is not NULL then
|
---|
285 | B<klen> bytes at B<kstr> are used as the passphrase and B<cb> is
|
---|
286 | ignored.
|
---|
287 |
|
---|
288 | If the B<cb> parameters is set to NULL and the B<u> parameter is not
|
---|
289 | NULL then the B<u> parameter is interpreted as a null terminated string
|
---|
290 | to use as the passphrase. If both B<cb> and B<u> are NULL then the
|
---|
291 | default callback routine is used which will typically prompt for the
|
---|
292 | passphrase on the current terminal with echoing turned off.
|
---|
293 |
|
---|
294 | The default passphrase callback is sometimes inappropriate (for example
|
---|
295 | in a GUI application) so an alternative can be supplied. The callback
|
---|
296 | routine has the following form:
|
---|
297 |
|
---|
298 | int cb(char *buf, int size, int rwflag, void *u);
|
---|
299 |
|
---|
300 | B<buf> is the buffer to write the passphrase to. B<size> is the maximum
|
---|
301 | length of the passphrase (i.e. the size of buf). B<rwflag> is a flag
|
---|
302 | which is set to 0 when reading and 1 when writing. A typical routine
|
---|
303 | will ask the user to verify the passphrase (for example by prompting
|
---|
304 | for it twice) if B<rwflag> is 1. The B<u> parameter has the same
|
---|
305 | value as the B<u> parameter passed to the PEM routine. It allows
|
---|
306 | arbitrary data to be passed to the callback by the application
|
---|
307 | (for example a window handle in a GUI application). The callback
|
---|
308 | B<must> return the number of characters in the passphrase or -1 if
|
---|
309 | an error occurred.
|
---|
310 |
|
---|
311 | =head1 NOTES
|
---|
312 |
|
---|
313 | The old B<PrivateKey> write routines are retained for compatibility.
|
---|
314 | New applications should write private keys using the
|
---|
315 | PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
|
---|
316 | because they are more secure (they use an iteration count of 2048 whereas
|
---|
317 | the traditional routines use a count of 1) unless compatibility with older
|
---|
318 | versions of OpenSSL is important.
|
---|
319 |
|
---|
320 | The B<PrivateKey> read routines can be used in all applications because
|
---|
321 | they handle all formats transparently.
|
---|
322 |
|
---|
323 | A frequent cause of problems is attempting to use the PEM routines like
|
---|
324 | this:
|
---|
325 |
|
---|
326 | X509 *x;
|
---|
327 |
|
---|
328 | PEM_read_bio_X509(bp, &x, 0, NULL);
|
---|
329 |
|
---|
330 | this is a bug because an attempt will be made to reuse the data at B<x>
|
---|
331 | which is an uninitialised pointer.
|
---|
332 |
|
---|
333 | These functions make no assumption regarding the pass phrase received from the
|
---|
334 | password callback.
|
---|
335 | It will simply be treated as a byte sequence.
|
---|
336 |
|
---|
337 | =head1 PEM ENCRYPTION FORMAT
|
---|
338 |
|
---|
339 | These old B<PrivateKey> routines use a non standard technique for encryption.
|
---|
340 |
|
---|
341 | The private key (or other data) takes the following form:
|
---|
342 |
|
---|
343 | -----BEGIN RSA PRIVATE KEY-----
|
---|
344 | Proc-Type: 4,ENCRYPTED
|
---|
345 | DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
|
---|
346 |
|
---|
347 | ...base64 encoded data...
|
---|
348 | -----END RSA PRIVATE KEY-----
|
---|
349 |
|
---|
350 | The line beginning with I<Proc-Type> contains the version and the
|
---|
351 | protection on the encapsulated data. The line beginning I<DEK-Info>
|
---|
352 | contains two comma separated values: the encryption algorithm name as
|
---|
353 | used by EVP_get_cipherbyname() and an initialization vector used by the
|
---|
354 | cipher encoded as a set of hexadecimal digits. After those two lines is
|
---|
355 | the base64-encoded encrypted data.
|
---|
356 |
|
---|
357 | The encryption key is derived using EVP_BytesToKey(). The cipher's
|
---|
358 | initialization vector is passed to EVP_BytesToKey() as the B<salt>
|
---|
359 | parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
|
---|
360 | (regardless of the size of the initialization vector). The user's
|
---|
361 | password is passed to EVP_BytesToKey() using the B<data> and B<datal>
|
---|
362 | parameters. Finally, the library uses an iteration count of 1 for
|
---|
363 | EVP_BytesToKey().
|
---|
364 |
|
---|
365 | The B<key> derived by EVP_BytesToKey() along with the original initialization
|
---|
366 | vector is then used to decrypt the encrypted data. The B<iv> produced by
|
---|
367 | EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
|
---|
368 | the function.
|
---|
369 |
|
---|
370 | The pseudo code to derive the key would look similar to:
|
---|
371 |
|
---|
372 | EVP_CIPHER* cipher = EVP_des_ede3_cbc();
|
---|
373 | EVP_MD* md = EVP_md5();
|
---|
374 |
|
---|
375 | unsigned int nkey = EVP_CIPHER_key_length(cipher);
|
---|
376 | unsigned int niv = EVP_CIPHER_iv_length(cipher);
|
---|
377 | unsigned char key[nkey];
|
---|
378 | unsigned char iv[niv];
|
---|
379 |
|
---|
380 | memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
|
---|
381 | rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
|
---|
382 | if (rc != nkey)
|
---|
383 | /* Error */
|
---|
384 |
|
---|
385 | /* On success, use key and iv to initialize the cipher */
|
---|
386 |
|
---|
387 | =head1 BUGS
|
---|
388 |
|
---|
389 | The PEM read routines in some versions of OpenSSL will not correctly reuse
|
---|
390 | an existing structure. Therefore, the following:
|
---|
391 |
|
---|
392 | PEM_read_bio_X509(bp, &x, 0, NULL);
|
---|
393 |
|
---|
394 | where B<x> already contains a valid certificate, may not work, whereas:
|
---|
395 |
|
---|
396 | X509_free(x);
|
---|
397 | x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
---|
398 |
|
---|
399 | is guaranteed to work.
|
---|
400 |
|
---|
401 | =head1 RETURN VALUES
|
---|
402 |
|
---|
403 | The read routines return either a pointer to the structure read or NULL
|
---|
404 | if an error occurred.
|
---|
405 |
|
---|
406 | The write routines return 1 for success or 0 for failure.
|
---|
407 |
|
---|
408 | =head1 EXAMPLES
|
---|
409 |
|
---|
410 | Although the PEM routines take several arguments in almost all applications
|
---|
411 | most of them are set to 0 or NULL.
|
---|
412 |
|
---|
413 | Read a certificate in PEM format from a BIO:
|
---|
414 |
|
---|
415 | X509 *x;
|
---|
416 |
|
---|
417 | x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
---|
418 | if (x == NULL)
|
---|
419 | /* Error */
|
---|
420 |
|
---|
421 | Alternative method:
|
---|
422 |
|
---|
423 | X509 *x = NULL;
|
---|
424 |
|
---|
425 | if (!PEM_read_bio_X509(bp, &x, 0, NULL))
|
---|
426 | /* Error */
|
---|
427 |
|
---|
428 | Write a certificate to a BIO:
|
---|
429 |
|
---|
430 | if (!PEM_write_bio_X509(bp, x))
|
---|
431 | /* Error */
|
---|
432 |
|
---|
433 | Write a private key (using traditional format) to a BIO using
|
---|
434 | triple DES encryption, the pass phrase is prompted for:
|
---|
435 |
|
---|
436 | if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
|
---|
437 | /* Error */
|
---|
438 |
|
---|
439 | Write a private key (using PKCS#8 format) to a BIO using triple
|
---|
440 | DES encryption, using the pass phrase "hello":
|
---|
441 |
|
---|
442 | if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
|
---|
443 | NULL, 0, 0, "hello"))
|
---|
444 | /* Error */
|
---|
445 |
|
---|
446 | Read a private key from a BIO using a pass phrase callback:
|
---|
447 |
|
---|
448 | key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
|
---|
449 | if (key == NULL)
|
---|
450 | /* Error */
|
---|
451 |
|
---|
452 | Skeleton pass phrase callback:
|
---|
453 |
|
---|
454 | int pass_cb(char *buf, int size, int rwflag, void *u)
|
---|
455 | {
|
---|
456 |
|
---|
457 | /* We'd probably do something else if 'rwflag' is 1 */
|
---|
458 | printf("Enter pass phrase for \"%s\"\n", (char *)u);
|
---|
459 |
|
---|
460 | /* get pass phrase, length 'len' into 'tmp' */
|
---|
461 | char *tmp = "hello";
|
---|
462 | if (tmp == NULL) /* An error occurred */
|
---|
463 | return -1;
|
---|
464 |
|
---|
465 | size_t len = strlen(tmp);
|
---|
466 |
|
---|
467 | if (len > size)
|
---|
468 | len = size;
|
---|
469 | memcpy(buf, tmp, len);
|
---|
470 | return len;
|
---|
471 | }
|
---|
472 |
|
---|
473 | =head1 SEE ALSO
|
---|
474 |
|
---|
475 | L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>,
|
---|
476 | L<passphrase-encoding(7)>
|
---|
477 |
|
---|
478 | =head1 HISTORY
|
---|
479 |
|
---|
480 | The old Netscape certificate sequences were no longer documented
|
---|
481 | in OpenSSL 1.1.0; applications should use the PKCS7 standard instead
|
---|
482 | as they will be formally deprecated in a future releases.
|
---|
483 |
|
---|
484 | =head1 COPYRIGHT
|
---|
485 |
|
---|
486 | Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
487 |
|
---|
488 | Licensed under the OpenSSL license (the "License"). You may not use
|
---|
489 | this file except in compliance with the License. You can obtain a copy
|
---|
490 | in the file LICENSE in the source distribution or at
|
---|
491 | L<https://www.openssl.org/source/license.html>.
|
---|
492 |
|
---|
493 | =cut
|
---|