1 | /*
|
---|
2 | * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include "internal/cryptlib.h"
|
---|
12 | #include "internal/numbers.h"
|
---|
13 | #include <limits.h>
|
---|
14 | #include <openssl/asn1.h>
|
---|
15 | #include <openssl/bn.h>
|
---|
16 | #include "asn1_local.h"
|
---|
17 |
|
---|
18 | ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
|
---|
19 | {
|
---|
20 | return ASN1_STRING_dup(x);
|
---|
21 | }
|
---|
22 |
|
---|
23 | int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
|
---|
24 | {
|
---|
25 | int neg, ret;
|
---|
26 | /* Compare signs */
|
---|
27 | neg = x->type & V_ASN1_NEG;
|
---|
28 | if (neg != (y->type & V_ASN1_NEG)) {
|
---|
29 | if (neg)
|
---|
30 | return -1;
|
---|
31 | else
|
---|
32 | return 1;
|
---|
33 | }
|
---|
34 |
|
---|
35 | ret = ASN1_STRING_cmp(x, y);
|
---|
36 |
|
---|
37 | if (neg)
|
---|
38 | return -ret;
|
---|
39 | else
|
---|
40 | return ret;
|
---|
41 | }
|
---|
42 |
|
---|
43 | /*-
|
---|
44 | * This converts a big endian buffer and sign into its content encoding.
|
---|
45 | * This is used for INTEGER and ENUMERATED types.
|
---|
46 | * The internal representation is an ASN1_STRING whose data is a big endian
|
---|
47 | * representation of the value, ignoring the sign. The sign is determined by
|
---|
48 | * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
|
---|
49 | *
|
---|
50 | * Positive integers are no problem: they are almost the same as the DER
|
---|
51 | * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
|
---|
52 | *
|
---|
53 | * Negative integers are a bit trickier...
|
---|
54 | * The DER representation of negative integers is in 2s complement form.
|
---|
55 | * The internal form is converted by complementing each octet and finally
|
---|
56 | * adding one to the result. This can be done less messily with a little trick.
|
---|
57 | * If the internal form has trailing zeroes then they will become FF by the
|
---|
58 | * complement and 0 by the add one (due to carry) so just copy as many trailing
|
---|
59 | * zeros to the destination as there are in the source. The carry will add one
|
---|
60 | * to the last none zero octet: so complement this octet and add one and finally
|
---|
61 | * complement any left over until you get to the start of the string.
|
---|
62 | *
|
---|
63 | * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
|
---|
64 | * with 0xff. However if the first byte is 0x80 and one of the following bytes
|
---|
65 | * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
|
---|
66 | * followed by optional zeros isn't padded.
|
---|
67 | */
|
---|
68 |
|
---|
69 | /*
|
---|
70 | * If |pad| is zero, the operation is effectively reduced to memcpy,
|
---|
71 | * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
|
---|
72 | * Note that in latter case sequence of zeros yields itself, and so
|
---|
73 | * does 0x80 followed by any number of zeros. These properties are
|
---|
74 | * used elsewhere below...
|
---|
75 | */
|
---|
76 | static void twos_complement(unsigned char *dst, const unsigned char *src,
|
---|
77 | size_t len, unsigned char pad)
|
---|
78 | {
|
---|
79 | unsigned int carry = pad & 1;
|
---|
80 |
|
---|
81 | /* Begin at the end of the encoding */
|
---|
82 | dst += len;
|
---|
83 | src += len;
|
---|
84 | /* two's complement value: ~value + 1 */
|
---|
85 | while (len-- != 0) {
|
---|
86 | *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
|
---|
87 | carry >>= 8;
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
|
---|
92 | unsigned char **pp)
|
---|
93 | {
|
---|
94 | unsigned int pad = 0;
|
---|
95 | size_t ret, i;
|
---|
96 | unsigned char *p, pb = 0;
|
---|
97 |
|
---|
98 | if (b != NULL && blen) {
|
---|
99 | ret = blen;
|
---|
100 | i = b[0];
|
---|
101 | if (!neg && (i > 127)) {
|
---|
102 | pad = 1;
|
---|
103 | pb = 0;
|
---|
104 | } else if (neg) {
|
---|
105 | pb = 0xFF;
|
---|
106 | if (i > 128) {
|
---|
107 | pad = 1;
|
---|
108 | } else if (i == 128) {
|
---|
109 | /*
|
---|
110 | * Special case [of minimal negative for given length]:
|
---|
111 | * if any other bytes non zero we pad, otherwise we don't.
|
---|
112 | */
|
---|
113 | for (pad = 0, i = 1; i < blen; i++)
|
---|
114 | pad |= b[i];
|
---|
115 | pb = pad != 0 ? 0xffU : 0;
|
---|
116 | pad = pb & 1;
|
---|
117 | }
|
---|
118 | }
|
---|
119 | ret += pad;
|
---|
120 | } else {
|
---|
121 | ret = 1;
|
---|
122 | blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
|
---|
123 | }
|
---|
124 |
|
---|
125 | if (pp == NULL || (p = *pp) == NULL)
|
---|
126 | return ret;
|
---|
127 |
|
---|
128 | /*
|
---|
129 | * This magically handles all corner cases, such as '(b == NULL ||
|
---|
130 | * blen == 0)', non-negative value, "negative" zero, 0x80 followed
|
---|
131 | * by any number of zeros...
|
---|
132 | */
|
---|
133 | *p = pb;
|
---|
134 | p += pad; /* yes, p[0] can be written twice, but it's little
|
---|
135 | * price to pay for eliminated branches */
|
---|
136 | twos_complement(p, b, blen, pb);
|
---|
137 |
|
---|
138 | *pp += ret;
|
---|
139 | return ret;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /*
|
---|
143 | * convert content octets into a big endian buffer. Returns the length
|
---|
144 | * of buffer or 0 on error: for malformed INTEGER. If output buffer is
|
---|
145 | * NULL just return length.
|
---|
146 | */
|
---|
147 |
|
---|
148 | static size_t c2i_ibuf(unsigned char *b, int *pneg,
|
---|
149 | const unsigned char *p, size_t plen)
|
---|
150 | {
|
---|
151 | int neg, pad;
|
---|
152 | /* Zero content length is illegal */
|
---|
153 | if (plen == 0) {
|
---|
154 | ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
|
---|
155 | return 0;
|
---|
156 | }
|
---|
157 | neg = p[0] & 0x80;
|
---|
158 | if (pneg)
|
---|
159 | *pneg = neg;
|
---|
160 | /* Handle common case where length is 1 octet separately */
|
---|
161 | if (plen == 1) {
|
---|
162 | if (b != NULL) {
|
---|
163 | if (neg)
|
---|
164 | b[0] = (p[0] ^ 0xFF) + 1;
|
---|
165 | else
|
---|
166 | b[0] = p[0];
|
---|
167 | }
|
---|
168 | return 1;
|
---|
169 | }
|
---|
170 |
|
---|
171 | pad = 0;
|
---|
172 | if (p[0] == 0) {
|
---|
173 | pad = 1;
|
---|
174 | } else if (p[0] == 0xFF) {
|
---|
175 | size_t i;
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Special case [of "one less minimal negative" for given length]:
|
---|
179 | * if any other bytes non zero it was padded, otherwise not.
|
---|
180 | */
|
---|
181 | for (pad = 0, i = 1; i < plen; i++)
|
---|
182 | pad |= p[i];
|
---|
183 | pad = pad != 0 ? 1 : 0;
|
---|
184 | }
|
---|
185 | /* reject illegal padding: first two octets MSB can't match */
|
---|
186 | if (pad && (neg == (p[1] & 0x80))) {
|
---|
187 | ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
|
---|
188 | return 0;
|
---|
189 | }
|
---|
190 |
|
---|
191 | /* skip over pad */
|
---|
192 | p += pad;
|
---|
193 | plen -= pad;
|
---|
194 |
|
---|
195 | if (b != NULL)
|
---|
196 | twos_complement(b, p, plen, neg ? 0xffU : 0);
|
---|
197 |
|
---|
198 | return plen;
|
---|
199 | }
|
---|
200 |
|
---|
201 | int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
|
---|
202 | {
|
---|
203 | return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
|
---|
204 | }
|
---|
205 |
|
---|
206 | /* Convert big endian buffer into uint64_t, return 0 on error */
|
---|
207 | static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
|
---|
208 | {
|
---|
209 | size_t i;
|
---|
210 | uint64_t r;
|
---|
211 |
|
---|
212 | if (blen > sizeof(*pr)) {
|
---|
213 | ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
|
---|
214 | return 0;
|
---|
215 | }
|
---|
216 | if (b == NULL)
|
---|
217 | return 0;
|
---|
218 | for (r = 0, i = 0; i < blen; i++) {
|
---|
219 | r <<= 8;
|
---|
220 | r |= b[i];
|
---|
221 | }
|
---|
222 | *pr = r;
|
---|
223 | return 1;
|
---|
224 | }
|
---|
225 |
|
---|
226 | /*
|
---|
227 | * Write uint64_t to big endian buffer and return offset to first
|
---|
228 | * written octet. In other words it returns offset in range from 0
|
---|
229 | * to 7, with 0 denoting 8 written octets and 7 - one.
|
---|
230 | */
|
---|
231 | static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
|
---|
232 | {
|
---|
233 | size_t off = sizeof(uint64_t);
|
---|
234 |
|
---|
235 | do {
|
---|
236 | b[--off] = (unsigned char)r;
|
---|
237 | } while (r >>= 8);
|
---|
238 |
|
---|
239 | return off;
|
---|
240 | }
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
|
---|
244 | * overflow warnings.
|
---|
245 | */
|
---|
246 | #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
|
---|
247 |
|
---|
248 | /* signed version of asn1_get_uint64 */
|
---|
249 | static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
|
---|
250 | int neg)
|
---|
251 | {
|
---|
252 | uint64_t r;
|
---|
253 | if (asn1_get_uint64(&r, b, blen) == 0)
|
---|
254 | return 0;
|
---|
255 | if (neg) {
|
---|
256 | if (r <= INT64_MAX) {
|
---|
257 | /* Most significant bit is guaranteed to be clear, negation
|
---|
258 | * is guaranteed to be meaningful in platform-neutral sense. */
|
---|
259 | *pr = -(int64_t)r;
|
---|
260 | } else if (r == ABS_INT64_MIN) {
|
---|
261 | /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
|
---|
262 | * on ones'-complement system. */
|
---|
263 | *pr = (int64_t)(0 - r);
|
---|
264 | } else {
|
---|
265 | ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
|
---|
266 | return 0;
|
---|
267 | }
|
---|
268 | } else {
|
---|
269 | if (r <= INT64_MAX) {
|
---|
270 | *pr = (int64_t)r;
|
---|
271 | } else {
|
---|
272 | ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
|
---|
273 | return 0;
|
---|
274 | }
|
---|
275 | }
|
---|
276 | return 1;
|
---|
277 | }
|
---|
278 |
|
---|
279 | /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
|
---|
280 | ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
---|
281 | long len)
|
---|
282 | {
|
---|
283 | ASN1_INTEGER *ret = NULL;
|
---|
284 | size_t r;
|
---|
285 | int neg;
|
---|
286 |
|
---|
287 | r = c2i_ibuf(NULL, NULL, *pp, len);
|
---|
288 |
|
---|
289 | if (r == 0)
|
---|
290 | return NULL;
|
---|
291 |
|
---|
292 | if ((a == NULL) || ((*a) == NULL)) {
|
---|
293 | ret = ASN1_INTEGER_new();
|
---|
294 | if (ret == NULL)
|
---|
295 | return NULL;
|
---|
296 | ret->type = V_ASN1_INTEGER;
|
---|
297 | } else
|
---|
298 | ret = *a;
|
---|
299 |
|
---|
300 | if (ASN1_STRING_set(ret, NULL, r) == 0)
|
---|
301 | goto err;
|
---|
302 |
|
---|
303 | c2i_ibuf(ret->data, &neg, *pp, len);
|
---|
304 |
|
---|
305 | if (neg)
|
---|
306 | ret->type |= V_ASN1_NEG;
|
---|
307 |
|
---|
308 | *pp += len;
|
---|
309 | if (a != NULL)
|
---|
310 | (*a) = ret;
|
---|
311 | return ret;
|
---|
312 | err:
|
---|
313 | ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
|
---|
314 | if ((a == NULL) || (*a != ret))
|
---|
315 | ASN1_INTEGER_free(ret);
|
---|
316 | return NULL;
|
---|
317 | }
|
---|
318 |
|
---|
319 | static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
|
---|
320 | {
|
---|
321 | if (a == NULL) {
|
---|
322 | ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
|
---|
323 | return 0;
|
---|
324 | }
|
---|
325 | if ((a->type & ~V_ASN1_NEG) != itype) {
|
---|
326 | ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
|
---|
327 | return 0;
|
---|
328 | }
|
---|
329 | return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
|
---|
330 | }
|
---|
331 |
|
---|
332 | static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
|
---|
333 | {
|
---|
334 | unsigned char tbuf[sizeof(r)];
|
---|
335 | size_t off;
|
---|
336 |
|
---|
337 | a->type = itype;
|
---|
338 | if (r < 0) {
|
---|
339 | /* Most obvious '-r' triggers undefined behaviour for most
|
---|
340 | * common INT64_MIN. Even though below '0 - (uint64_t)r' can
|
---|
341 | * appear two's-complement centric, it does produce correct/
|
---|
342 | * expected result even on one's-complement. This is because
|
---|
343 | * cast to unsigned has to change bit pattern... */
|
---|
344 | off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
|
---|
345 | a->type |= V_ASN1_NEG;
|
---|
346 | } else {
|
---|
347 | off = asn1_put_uint64(tbuf, r);
|
---|
348 | a->type &= ~V_ASN1_NEG;
|
---|
349 | }
|
---|
350 | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
---|
351 | }
|
---|
352 |
|
---|
353 | static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
|
---|
354 | int itype)
|
---|
355 | {
|
---|
356 | if (a == NULL) {
|
---|
357 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
|
---|
358 | return 0;
|
---|
359 | }
|
---|
360 | if ((a->type & ~V_ASN1_NEG) != itype) {
|
---|
361 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
|
---|
362 | return 0;
|
---|
363 | }
|
---|
364 | if (a->type & V_ASN1_NEG) {
|
---|
365 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
|
---|
366 | return 0;
|
---|
367 | }
|
---|
368 | return asn1_get_uint64(pr, a->data, a->length);
|
---|
369 | }
|
---|
370 |
|
---|
371 | static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
|
---|
372 | {
|
---|
373 | unsigned char tbuf[sizeof(r)];
|
---|
374 | size_t off;
|
---|
375 |
|
---|
376 | a->type = itype;
|
---|
377 | off = asn1_put_uint64(tbuf, r);
|
---|
378 | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
|
---|
379 | }
|
---|
380 |
|
---|
381 | /*
|
---|
382 | * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
|
---|
383 | * integers: some broken software can encode a positive INTEGER with its MSB
|
---|
384 | * set as negative (it doesn't add a padding zero).
|
---|
385 | */
|
---|
386 |
|
---|
387 | ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
|
---|
388 | long length)
|
---|
389 | {
|
---|
390 | ASN1_INTEGER *ret = NULL;
|
---|
391 | const unsigned char *p;
|
---|
392 | unsigned char *s;
|
---|
393 | long len;
|
---|
394 | int inf, tag, xclass;
|
---|
395 | int i;
|
---|
396 |
|
---|
397 | if ((a == NULL) || ((*a) == NULL)) {
|
---|
398 | if ((ret = ASN1_INTEGER_new()) == NULL)
|
---|
399 | return NULL;
|
---|
400 | ret->type = V_ASN1_INTEGER;
|
---|
401 | } else
|
---|
402 | ret = (*a);
|
---|
403 |
|
---|
404 | p = *pp;
|
---|
405 | inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
|
---|
406 | if (inf & 0x80) {
|
---|
407 | i = ASN1_R_BAD_OBJECT_HEADER;
|
---|
408 | goto err;
|
---|
409 | }
|
---|
410 |
|
---|
411 | if (tag != V_ASN1_INTEGER) {
|
---|
412 | i = ASN1_R_EXPECTING_AN_INTEGER;
|
---|
413 | goto err;
|
---|
414 | }
|
---|
415 |
|
---|
416 | /*
|
---|
417 | * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
|
---|
418 | * a missing NULL parameter.
|
---|
419 | */
|
---|
420 | s = OPENSSL_malloc((int)len + 1);
|
---|
421 | if (s == NULL) {
|
---|
422 | i = ERR_R_MALLOC_FAILURE;
|
---|
423 | goto err;
|
---|
424 | }
|
---|
425 | ret->type = V_ASN1_INTEGER;
|
---|
426 | if (len) {
|
---|
427 | if ((*p == 0) && (len != 1)) {
|
---|
428 | p++;
|
---|
429 | len--;
|
---|
430 | }
|
---|
431 | memcpy(s, p, (int)len);
|
---|
432 | p += len;
|
---|
433 | }
|
---|
434 |
|
---|
435 | OPENSSL_free(ret->data);
|
---|
436 | ret->data = s;
|
---|
437 | ret->length = (int)len;
|
---|
438 | if (a != NULL)
|
---|
439 | (*a) = ret;
|
---|
440 | *pp = p;
|
---|
441 | return ret;
|
---|
442 | err:
|
---|
443 | ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
|
---|
444 | if ((a == NULL) || (*a != ret))
|
---|
445 | ASN1_INTEGER_free(ret);
|
---|
446 | return NULL;
|
---|
447 | }
|
---|
448 |
|
---|
449 | static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
|
---|
450 | int atype)
|
---|
451 | {
|
---|
452 | ASN1_INTEGER *ret;
|
---|
453 | int len;
|
---|
454 |
|
---|
455 | if (ai == NULL) {
|
---|
456 | ret = ASN1_STRING_type_new(atype);
|
---|
457 | } else {
|
---|
458 | ret = ai;
|
---|
459 | ret->type = atype;
|
---|
460 | }
|
---|
461 |
|
---|
462 | if (ret == NULL) {
|
---|
463 | ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
|
---|
464 | goto err;
|
---|
465 | }
|
---|
466 |
|
---|
467 | if (BN_is_negative(bn) && !BN_is_zero(bn))
|
---|
468 | ret->type |= V_ASN1_NEG_INTEGER;
|
---|
469 |
|
---|
470 | len = BN_num_bytes(bn);
|
---|
471 |
|
---|
472 | if (len == 0)
|
---|
473 | len = 1;
|
---|
474 |
|
---|
475 | if (ASN1_STRING_set(ret, NULL, len) == 0) {
|
---|
476 | ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
|
---|
477 | goto err;
|
---|
478 | }
|
---|
479 |
|
---|
480 | /* Correct zero case */
|
---|
481 | if (BN_is_zero(bn))
|
---|
482 | ret->data[0] = 0;
|
---|
483 | else
|
---|
484 | len = BN_bn2bin(bn, ret->data);
|
---|
485 | ret->length = len;
|
---|
486 | return ret;
|
---|
487 | err:
|
---|
488 | if (ret != ai)
|
---|
489 | ASN1_INTEGER_free(ret);
|
---|
490 | return NULL;
|
---|
491 | }
|
---|
492 |
|
---|
493 | static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
|
---|
494 | int itype)
|
---|
495 | {
|
---|
496 | BIGNUM *ret;
|
---|
497 |
|
---|
498 | if ((ai->type & ~V_ASN1_NEG) != itype) {
|
---|
499 | ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
|
---|
500 | return NULL;
|
---|
501 | }
|
---|
502 |
|
---|
503 | ret = BN_bin2bn(ai->data, ai->length, bn);
|
---|
504 | if (ret == NULL) {
|
---|
505 | ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
|
---|
506 | return NULL;
|
---|
507 | }
|
---|
508 | if (ai->type & V_ASN1_NEG)
|
---|
509 | BN_set_negative(ret, 1);
|
---|
510 | return ret;
|
---|
511 | }
|
---|
512 |
|
---|
513 | int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
|
---|
514 | {
|
---|
515 | return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
|
---|
516 | }
|
---|
517 |
|
---|
518 | int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
|
---|
519 | {
|
---|
520 | return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
|
---|
521 | }
|
---|
522 |
|
---|
523 | int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
|
---|
524 | {
|
---|
525 | return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
|
---|
526 | }
|
---|
527 |
|
---|
528 | int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
|
---|
529 | {
|
---|
530 | return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
|
---|
531 | }
|
---|
532 |
|
---|
533 | int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
|
---|
534 | {
|
---|
535 | return ASN1_INTEGER_set_int64(a, v);
|
---|
536 | }
|
---|
537 |
|
---|
538 | long ASN1_INTEGER_get(const ASN1_INTEGER *a)
|
---|
539 | {
|
---|
540 | int i;
|
---|
541 | int64_t r;
|
---|
542 | if (a == NULL)
|
---|
543 | return 0;
|
---|
544 | i = ASN1_INTEGER_get_int64(&r, a);
|
---|
545 | if (i == 0)
|
---|
546 | return -1;
|
---|
547 | if (r > LONG_MAX || r < LONG_MIN)
|
---|
548 | return -1;
|
---|
549 | return (long)r;
|
---|
550 | }
|
---|
551 |
|
---|
552 | ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
|
---|
553 | {
|
---|
554 | return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
|
---|
555 | }
|
---|
556 |
|
---|
557 | BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
|
---|
558 | {
|
---|
559 | return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
|
---|
560 | }
|
---|
561 |
|
---|
562 | int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
|
---|
563 | {
|
---|
564 | return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
|
---|
565 | }
|
---|
566 |
|
---|
567 | int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
|
---|
568 | {
|
---|
569 | return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
|
---|
570 | }
|
---|
571 |
|
---|
572 | int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
|
---|
573 | {
|
---|
574 | return ASN1_ENUMERATED_set_int64(a, v);
|
---|
575 | }
|
---|
576 |
|
---|
577 | long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
|
---|
578 | {
|
---|
579 | int i;
|
---|
580 | int64_t r;
|
---|
581 | if (a == NULL)
|
---|
582 | return 0;
|
---|
583 | if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
|
---|
584 | return -1;
|
---|
585 | if (a->length > (int)sizeof(long))
|
---|
586 | return 0xffffffffL;
|
---|
587 | i = ASN1_ENUMERATED_get_int64(&r, a);
|
---|
588 | if (i == 0)
|
---|
589 | return -1;
|
---|
590 | if (r > LONG_MAX || r < LONG_MIN)
|
---|
591 | return -1;
|
---|
592 | return (long)r;
|
---|
593 | }
|
---|
594 |
|
---|
595 | ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
|
---|
596 | {
|
---|
597 | return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
|
---|
598 | }
|
---|
599 |
|
---|
600 | BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
|
---|
601 | {
|
---|
602 | return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
|
---|
603 | }
|
---|
604 |
|
---|
605 | /* Internal functions used by x_int64.c */
|
---|
606 | int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
|
---|
607 | {
|
---|
608 | unsigned char buf[sizeof(uint64_t)];
|
---|
609 | size_t buflen;
|
---|
610 |
|
---|
611 | buflen = c2i_ibuf(NULL, NULL, *pp, len);
|
---|
612 | if (buflen == 0)
|
---|
613 | return 0;
|
---|
614 | if (buflen > sizeof(uint64_t)) {
|
---|
615 | ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
|
---|
616 | return 0;
|
---|
617 | }
|
---|
618 | (void)c2i_ibuf(buf, neg, *pp, len);
|
---|
619 | return asn1_get_uint64(ret, buf, buflen);
|
---|
620 | }
|
---|
621 |
|
---|
622 | int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
|
---|
623 | {
|
---|
624 | unsigned char buf[sizeof(uint64_t)];
|
---|
625 | size_t off;
|
---|
626 |
|
---|
627 | off = asn1_put_uint64(buf, r);
|
---|
628 | return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
|
---|
629 | }
|
---|
630 |
|
---|