VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1j/crypto/ec/ecp_nistp256.c@ 88461

Last change on this file since 88461 was 87984, checked in by vboxsync, 4 years ago

openssl-1.1.1j: Applied and adjusted our OpenSSL changes to 1.1.1j. bugref:9963

File size: 73.8 KB
Line 
1/*
2 * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/* Copyright 2011 Google Inc.
11 *
12 * Licensed under the Apache License, Version 2.0 (the "License");
13 *
14 * you may not use this file except in compliance with the License.
15 * You may obtain a copy of the License at
16 *
17 * http://www.apache.org/licenses/LICENSE-2.0
18 *
19 * Unless required by applicable law or agreed to in writing, software
20 * distributed under the License is distributed on an "AS IS" BASIS,
21 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22 * See the License for the specific language governing permissions and
23 * limitations under the License.
24 */
25
26/*
27 * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
28 *
29 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31 * work which got its smarts from Daniel J. Bernstein's work on the same.
32 */
33
34#include <openssl/opensslconf.h>
35#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36NON_EMPTY_TRANSLATION_UNIT
37#else
38
39# include <stdint.h>
40# include <string.h>
41# include <openssl/err.h>
42# include "ec_local.h"
43
44# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
45 /* even with gcc, the typedef won't work for 32-bit platforms */
46typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
47 * platforms */
48typedef __int128_t int128_t;
49# else
50# error "Your compiler doesn't appear to support 128-bit integer types"
51# endif
52
53typedef uint8_t u8;
54typedef uint32_t u32;
55typedef uint64_t u64;
56
57/*
58 * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
59 * can serialise an element of this field into 32 bytes. We call this an
60 * felem_bytearray.
61 */
62
63typedef u8 felem_bytearray[32];
64
65/*
66 * These are the parameters of P256, taken from FIPS 186-3, page 86. These
67 * values are big-endian.
68 */
69static const felem_bytearray nistp256_curve_params[5] = {
70 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
71 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
72 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
73 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
74 {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
75 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
76 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
77 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
78 {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
79 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
80 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
81 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
82 {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
83 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
84 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
85 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
86 {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
87 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
88 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
89 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
90};
91
92/*-
93 * The representation of field elements.
94 * ------------------------------------
95 *
96 * We represent field elements with either four 128-bit values, eight 128-bit
97 * values, or four 64-bit values. The field element represented is:
98 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
99 * or:
100 * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
101 *
102 * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
103 * apart, but are 128-bits wide, the most significant bits of each limb overlap
104 * with the least significant bits of the next.
105 *
106 * A field element with four limbs is an 'felem'. One with eight limbs is a
107 * 'longfelem'
108 *
109 * A field element with four, 64-bit values is called a 'smallfelem'. Small
110 * values are used as intermediate values before multiplication.
111 */
112
113# define NLIMBS 4
114
115typedef uint128_t limb;
116typedef limb felem[NLIMBS];
117typedef limb longfelem[NLIMBS * 2];
118typedef u64 smallfelem[NLIMBS];
119
120/* This is the value of the prime as four 64-bit words, little-endian. */
121static const u64 kPrime[4] =
122 { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
123static const u64 bottom63bits = 0x7ffffffffffffffful;
124
125/*
126 * bin32_to_felem takes a little-endian byte array and converts it into felem
127 * form. This assumes that the CPU is little-endian.
128 */
129static void bin32_to_felem(felem out, const u8 in[32])
130{
131 out[0] = *((u64 *)&in[0]);
132 out[1] = *((u64 *)&in[8]);
133 out[2] = *((u64 *)&in[16]);
134 out[3] = *((u64 *)&in[24]);
135}
136
137/*
138 * smallfelem_to_bin32 takes a smallfelem and serialises into a little
139 * endian, 32 byte array. This assumes that the CPU is little-endian.
140 */
141static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
142{
143 *((u64 *)&out[0]) = in[0];
144 *((u64 *)&out[8]) = in[1];
145 *((u64 *)&out[16]) = in[2];
146 *((u64 *)&out[24]) = in[3];
147}
148
149/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
150static int BN_to_felem(felem out, const BIGNUM *bn)
151{
152 felem_bytearray b_out;
153 int num_bytes;
154
155 if (BN_is_negative(bn)) {
156 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
157 return 0;
158 }
159 num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
160 if (num_bytes < 0) {
161 ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
162 return 0;
163 }
164 bin32_to_felem(out, b_out);
165 return 1;
166}
167
168/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
169static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
170{
171 felem_bytearray b_out;
172 smallfelem_to_bin32(b_out, in);
173 return BN_lebin2bn(b_out, sizeof(b_out), out);
174}
175
176/*-
177 * Field operations
178 * ----------------
179 */
180
181static void smallfelem_one(smallfelem out)
182{
183 out[0] = 1;
184 out[1] = 0;
185 out[2] = 0;
186 out[3] = 0;
187}
188
189static void smallfelem_assign(smallfelem out, const smallfelem in)
190{
191 out[0] = in[0];
192 out[1] = in[1];
193 out[2] = in[2];
194 out[3] = in[3];
195}
196
197static void felem_assign(felem out, const felem in)
198{
199 out[0] = in[0];
200 out[1] = in[1];
201 out[2] = in[2];
202 out[3] = in[3];
203}
204
205/* felem_sum sets out = out + in. */
206static void felem_sum(felem out, const felem in)
207{
208 out[0] += in[0];
209 out[1] += in[1];
210 out[2] += in[2];
211 out[3] += in[3];
212}
213
214/* felem_small_sum sets out = out + in. */
215static void felem_small_sum(felem out, const smallfelem in)
216{
217 out[0] += in[0];
218 out[1] += in[1];
219 out[2] += in[2];
220 out[3] += in[3];
221}
222
223/* felem_scalar sets out = out * scalar */
224static void felem_scalar(felem out, const u64 scalar)
225{
226 out[0] *= scalar;
227 out[1] *= scalar;
228 out[2] *= scalar;
229 out[3] *= scalar;
230}
231
232/* longfelem_scalar sets out = out * scalar */
233static void longfelem_scalar(longfelem out, const u64 scalar)
234{
235 out[0] *= scalar;
236 out[1] *= scalar;
237 out[2] *= scalar;
238 out[3] *= scalar;
239 out[4] *= scalar;
240 out[5] *= scalar;
241 out[6] *= scalar;
242 out[7] *= scalar;
243}
244
245# define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
246# define two105 (((limb)1) << 105)
247# define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
248
249/* zero105 is 0 mod p */
250static const felem zero105 =
251 { two105m41m9, two105, two105m41p9, two105m41p9 };
252
253/*-
254 * smallfelem_neg sets |out| to |-small|
255 * On exit:
256 * out[i] < out[i] + 2^105
257 */
258static void smallfelem_neg(felem out, const smallfelem small)
259{
260 /* In order to prevent underflow, we subtract from 0 mod p. */
261 out[0] = zero105[0] - small[0];
262 out[1] = zero105[1] - small[1];
263 out[2] = zero105[2] - small[2];
264 out[3] = zero105[3] - small[3];
265}
266
267/*-
268 * felem_diff subtracts |in| from |out|
269 * On entry:
270 * in[i] < 2^104
271 * On exit:
272 * out[i] < out[i] + 2^105
273 */
274static void felem_diff(felem out, const felem in)
275{
276 /*
277 * In order to prevent underflow, we add 0 mod p before subtracting.
278 */
279 out[0] += zero105[0];
280 out[1] += zero105[1];
281 out[2] += zero105[2];
282 out[3] += zero105[3];
283
284 out[0] -= in[0];
285 out[1] -= in[1];
286 out[2] -= in[2];
287 out[3] -= in[3];
288}
289
290# define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
291# define two107 (((limb)1) << 107)
292# define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
293
294/* zero107 is 0 mod p */
295static const felem zero107 =
296 { two107m43m11, two107, two107m43p11, two107m43p11 };
297
298/*-
299 * An alternative felem_diff for larger inputs |in|
300 * felem_diff_zero107 subtracts |in| from |out|
301 * On entry:
302 * in[i] < 2^106
303 * On exit:
304 * out[i] < out[i] + 2^107
305 */
306static void felem_diff_zero107(felem out, const felem in)
307{
308 /*
309 * In order to prevent underflow, we add 0 mod p before subtracting.
310 */
311 out[0] += zero107[0];
312 out[1] += zero107[1];
313 out[2] += zero107[2];
314 out[3] += zero107[3];
315
316 out[0] -= in[0];
317 out[1] -= in[1];
318 out[2] -= in[2];
319 out[3] -= in[3];
320}
321
322/*-
323 * longfelem_diff subtracts |in| from |out|
324 * On entry:
325 * in[i] < 7*2^67
326 * On exit:
327 * out[i] < out[i] + 2^70 + 2^40
328 */
329static void longfelem_diff(longfelem out, const longfelem in)
330{
331 static const limb two70m8p6 =
332 (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
333 static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
334 static const limb two70 = (((limb) 1) << 70);
335 static const limb two70m40m38p6 =
336 (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
337 (((limb) 1) << 6);
338 static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
339
340 /* add 0 mod p to avoid underflow */
341 out[0] += two70m8p6;
342 out[1] += two70p40;
343 out[2] += two70;
344 out[3] += two70m40m38p6;
345 out[4] += two70m6;
346 out[5] += two70m6;
347 out[6] += two70m6;
348 out[7] += two70m6;
349
350 /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
351 out[0] -= in[0];
352 out[1] -= in[1];
353 out[2] -= in[2];
354 out[3] -= in[3];
355 out[4] -= in[4];
356 out[5] -= in[5];
357 out[6] -= in[6];
358 out[7] -= in[7];
359}
360
361# define two64m0 (((limb)1) << 64) - 1
362# define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
363# define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
364# define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
365
366/* zero110 is 0 mod p */
367static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
368
369/*-
370 * felem_shrink converts an felem into a smallfelem. The result isn't quite
371 * minimal as the value may be greater than p.
372 *
373 * On entry:
374 * in[i] < 2^109
375 * On exit:
376 * out[i] < 2^64
377 */
378static void felem_shrink(smallfelem out, const felem in)
379{
380 felem tmp;
381 u64 a, b, mask;
382 u64 high, low;
383 static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
384
385 /* Carry 2->3 */
386 tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
387 /* tmp[3] < 2^110 */
388
389 tmp[2] = zero110[2] + (u64)in[2];
390 tmp[0] = zero110[0] + in[0];
391 tmp[1] = zero110[1] + in[1];
392 /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
393
394 /*
395 * We perform two partial reductions where we eliminate the high-word of
396 * tmp[3]. We don't update the other words till the end.
397 */
398 a = tmp[3] >> 64; /* a < 2^46 */
399 tmp[3] = (u64)tmp[3];
400 tmp[3] -= a;
401 tmp[3] += ((limb) a) << 32;
402 /* tmp[3] < 2^79 */
403
404 b = a;
405 a = tmp[3] >> 64; /* a < 2^15 */
406 b += a; /* b < 2^46 + 2^15 < 2^47 */
407 tmp[3] = (u64)tmp[3];
408 tmp[3] -= a;
409 tmp[3] += ((limb) a) << 32;
410 /* tmp[3] < 2^64 + 2^47 */
411
412 /*
413 * This adjusts the other two words to complete the two partial
414 * reductions.
415 */
416 tmp[0] += b;
417 tmp[1] -= (((limb) b) << 32);
418
419 /*
420 * In order to make space in tmp[3] for the carry from 2 -> 3, we
421 * conditionally subtract kPrime if tmp[3] is large enough.
422 */
423 high = (u64)(tmp[3] >> 64);
424 /* As tmp[3] < 2^65, high is either 1 or 0 */
425 high = 0 - high;
426 /*-
427 * high is:
428 * all ones if the high word of tmp[3] is 1
429 * all zeros if the high word of tmp[3] if 0
430 */
431 low = (u64)tmp[3];
432 mask = 0 - (low >> 63);
433 /*-
434 * mask is:
435 * all ones if the MSB of low is 1
436 * all zeros if the MSB of low if 0
437 */
438 low &= bottom63bits;
439 low -= kPrime3Test;
440 /* if low was greater than kPrime3Test then the MSB is zero */
441 low = ~low;
442 low = 0 - (low >> 63);
443 /*-
444 * low is:
445 * all ones if low was > kPrime3Test
446 * all zeros if low was <= kPrime3Test
447 */
448 mask = (mask & low) | high;
449 tmp[0] -= mask & kPrime[0];
450 tmp[1] -= mask & kPrime[1];
451 /* kPrime[2] is zero, so omitted */
452 tmp[3] -= mask & kPrime[3];
453 /* tmp[3] < 2**64 - 2**32 + 1 */
454
455 tmp[1] += ((u64)(tmp[0] >> 64));
456 tmp[0] = (u64)tmp[0];
457 tmp[2] += ((u64)(tmp[1] >> 64));
458 tmp[1] = (u64)tmp[1];
459 tmp[3] += ((u64)(tmp[2] >> 64));
460 tmp[2] = (u64)tmp[2];
461 /* tmp[i] < 2^64 */
462
463 out[0] = tmp[0];
464 out[1] = tmp[1];
465 out[2] = tmp[2];
466 out[3] = tmp[3];
467}
468
469/* smallfelem_expand converts a smallfelem to an felem */
470static void smallfelem_expand(felem out, const smallfelem in)
471{
472 out[0] = in[0];
473 out[1] = in[1];
474 out[2] = in[2];
475 out[3] = in[3];
476}
477
478/*-
479 * smallfelem_square sets |out| = |small|^2
480 * On entry:
481 * small[i] < 2^64
482 * On exit:
483 * out[i] < 7 * 2^64 < 2^67
484 */
485static void smallfelem_square(longfelem out, const smallfelem small)
486{
487 limb a;
488 u64 high, low;
489
490 a = ((uint128_t) small[0]) * small[0];
491 low = a;
492 high = a >> 64;
493 out[0] = low;
494 out[1] = high;
495
496 a = ((uint128_t) small[0]) * small[1];
497 low = a;
498 high = a >> 64;
499 out[1] += low;
500 out[1] += low;
501 out[2] = high;
502
503 a = ((uint128_t) small[0]) * small[2];
504 low = a;
505 high = a >> 64;
506 out[2] += low;
507 out[2] *= 2;
508 out[3] = high;
509
510 a = ((uint128_t) small[0]) * small[3];
511 low = a;
512 high = a >> 64;
513 out[3] += low;
514 out[4] = high;
515
516 a = ((uint128_t) small[1]) * small[2];
517 low = a;
518 high = a >> 64;
519 out[3] += low;
520 out[3] *= 2;
521 out[4] += high;
522
523 a = ((uint128_t) small[1]) * small[1];
524 low = a;
525 high = a >> 64;
526 out[2] += low;
527 out[3] += high;
528
529 a = ((uint128_t) small[1]) * small[3];
530 low = a;
531 high = a >> 64;
532 out[4] += low;
533 out[4] *= 2;
534 out[5] = high;
535
536 a = ((uint128_t) small[2]) * small[3];
537 low = a;
538 high = a >> 64;
539 out[5] += low;
540 out[5] *= 2;
541 out[6] = high;
542 out[6] += high;
543
544 a = ((uint128_t) small[2]) * small[2];
545 low = a;
546 high = a >> 64;
547 out[4] += low;
548 out[5] += high;
549
550 a = ((uint128_t) small[3]) * small[3];
551 low = a;
552 high = a >> 64;
553 out[6] += low;
554 out[7] = high;
555}
556
557/*-
558 * felem_square sets |out| = |in|^2
559 * On entry:
560 * in[i] < 2^109
561 * On exit:
562 * out[i] < 7 * 2^64 < 2^67
563 */
564static void felem_square(longfelem out, const felem in)
565{
566 u64 small[4];
567 felem_shrink(small, in);
568 smallfelem_square(out, small);
569}
570
571/*-
572 * smallfelem_mul sets |out| = |small1| * |small2|
573 * On entry:
574 * small1[i] < 2^64
575 * small2[i] < 2^64
576 * On exit:
577 * out[i] < 7 * 2^64 < 2^67
578 */
579static void smallfelem_mul(longfelem out, const smallfelem small1,
580 const smallfelem small2)
581{
582 limb a;
583 u64 high, low;
584
585 a = ((uint128_t) small1[0]) * small2[0];
586 low = a;
587 high = a >> 64;
588 out[0] = low;
589 out[1] = high;
590
591 a = ((uint128_t) small1[0]) * small2[1];
592 low = a;
593 high = a >> 64;
594 out[1] += low;
595 out[2] = high;
596
597 a = ((uint128_t) small1[1]) * small2[0];
598 low = a;
599 high = a >> 64;
600 out[1] += low;
601 out[2] += high;
602
603 a = ((uint128_t) small1[0]) * small2[2];
604 low = a;
605 high = a >> 64;
606 out[2] += low;
607 out[3] = high;
608
609 a = ((uint128_t) small1[1]) * small2[1];
610 low = a;
611 high = a >> 64;
612 out[2] += low;
613 out[3] += high;
614
615 a = ((uint128_t) small1[2]) * small2[0];
616 low = a;
617 high = a >> 64;
618 out[2] += low;
619 out[3] += high;
620
621 a = ((uint128_t) small1[0]) * small2[3];
622 low = a;
623 high = a >> 64;
624 out[3] += low;
625 out[4] = high;
626
627 a = ((uint128_t) small1[1]) * small2[2];
628 low = a;
629 high = a >> 64;
630 out[3] += low;
631 out[4] += high;
632
633 a = ((uint128_t) small1[2]) * small2[1];
634 low = a;
635 high = a >> 64;
636 out[3] += low;
637 out[4] += high;
638
639 a = ((uint128_t) small1[3]) * small2[0];
640 low = a;
641 high = a >> 64;
642 out[3] += low;
643 out[4] += high;
644
645 a = ((uint128_t) small1[1]) * small2[3];
646 low = a;
647 high = a >> 64;
648 out[4] += low;
649 out[5] = high;
650
651 a = ((uint128_t) small1[2]) * small2[2];
652 low = a;
653 high = a >> 64;
654 out[4] += low;
655 out[5] += high;
656
657 a = ((uint128_t) small1[3]) * small2[1];
658 low = a;
659 high = a >> 64;
660 out[4] += low;
661 out[5] += high;
662
663 a = ((uint128_t) small1[2]) * small2[3];
664 low = a;
665 high = a >> 64;
666 out[5] += low;
667 out[6] = high;
668
669 a = ((uint128_t) small1[3]) * small2[2];
670 low = a;
671 high = a >> 64;
672 out[5] += low;
673 out[6] += high;
674
675 a = ((uint128_t) small1[3]) * small2[3];
676 low = a;
677 high = a >> 64;
678 out[6] += low;
679 out[7] = high;
680}
681
682/*-
683 * felem_mul sets |out| = |in1| * |in2|
684 * On entry:
685 * in1[i] < 2^109
686 * in2[i] < 2^109
687 * On exit:
688 * out[i] < 7 * 2^64 < 2^67
689 */
690static void felem_mul(longfelem out, const felem in1, const felem in2)
691{
692 smallfelem small1, small2;
693 felem_shrink(small1, in1);
694 felem_shrink(small2, in2);
695 smallfelem_mul(out, small1, small2);
696}
697
698/*-
699 * felem_small_mul sets |out| = |small1| * |in2|
700 * On entry:
701 * small1[i] < 2^64
702 * in2[i] < 2^109
703 * On exit:
704 * out[i] < 7 * 2^64 < 2^67
705 */
706static void felem_small_mul(longfelem out, const smallfelem small1,
707 const felem in2)
708{
709 smallfelem small2;
710 felem_shrink(small2, in2);
711 smallfelem_mul(out, small1, small2);
712}
713
714# define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
715# define two100 (((limb)1) << 100)
716# define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
717/* zero100 is 0 mod p */
718static const felem zero100 =
719 { two100m36m4, two100, two100m36p4, two100m36p4 };
720
721/*-
722 * Internal function for the different flavours of felem_reduce.
723 * felem_reduce_ reduces the higher coefficients in[4]-in[7].
724 * On entry:
725 * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
726 * out[1] >= in[7] + 2^32*in[4]
727 * out[2] >= in[5] + 2^32*in[5]
728 * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
729 * On exit:
730 * out[0] <= out[0] + in[4] + 2^32*in[5]
731 * out[1] <= out[1] + in[5] + 2^33*in[6]
732 * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
733 * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
734 */
735static void felem_reduce_(felem out, const longfelem in)
736{
737 int128_t c;
738 /* combine common terms from below */
739 c = in[4] + (in[5] << 32);
740 out[0] += c;
741 out[3] -= c;
742
743 c = in[5] - in[7];
744 out[1] += c;
745 out[2] -= c;
746
747 /* the remaining terms */
748 /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
749 out[1] -= (in[4] << 32);
750 out[3] += (in[4] << 32);
751
752 /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
753 out[2] -= (in[5] << 32);
754
755 /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
756 out[0] -= in[6];
757 out[0] -= (in[6] << 32);
758 out[1] += (in[6] << 33);
759 out[2] += (in[6] * 2);
760 out[3] -= (in[6] << 32);
761
762 /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
763 out[0] -= in[7];
764 out[0] -= (in[7] << 32);
765 out[2] += (in[7] << 33);
766 out[3] += (in[7] * 3);
767}
768
769/*-
770 * felem_reduce converts a longfelem into an felem.
771 * To be called directly after felem_square or felem_mul.
772 * On entry:
773 * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
774 * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
775 * On exit:
776 * out[i] < 2^101
777 */
778static void felem_reduce(felem out, const longfelem in)
779{
780 out[0] = zero100[0] + in[0];
781 out[1] = zero100[1] + in[1];
782 out[2] = zero100[2] + in[2];
783 out[3] = zero100[3] + in[3];
784
785 felem_reduce_(out, in);
786
787 /*-
788 * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
789 * out[1] > 2^100 - 2^64 - 7*2^96 > 0
790 * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
791 * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
792 *
793 * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
794 * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
795 * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
796 * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
797 */
798}
799
800/*-
801 * felem_reduce_zero105 converts a larger longfelem into an felem.
802 * On entry:
803 * in[0] < 2^71
804 * On exit:
805 * out[i] < 2^106
806 */
807static void felem_reduce_zero105(felem out, const longfelem in)
808{
809 out[0] = zero105[0] + in[0];
810 out[1] = zero105[1] + in[1];
811 out[2] = zero105[2] + in[2];
812 out[3] = zero105[3] + in[3];
813
814 felem_reduce_(out, in);
815
816 /*-
817 * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
818 * out[1] > 2^105 - 2^71 - 2^103 > 0
819 * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
820 * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
821 *
822 * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
823 * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
824 * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
825 * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
826 */
827}
828
829/*
830 * subtract_u64 sets *result = *result - v and *carry to one if the
831 * subtraction underflowed.
832 */
833static void subtract_u64(u64 *result, u64 *carry, u64 v)
834{
835 uint128_t r = *result;
836 r -= v;
837 *carry = (r >> 64) & 1;
838 *result = (u64)r;
839}
840
841/*
842 * felem_contract converts |in| to its unique, minimal representation. On
843 * entry: in[i] < 2^109
844 */
845static void felem_contract(smallfelem out, const felem in)
846{
847 unsigned i;
848 u64 all_equal_so_far = 0, result = 0, carry;
849
850 felem_shrink(out, in);
851 /* small is minimal except that the value might be > p */
852
853 all_equal_so_far--;
854 /*
855 * We are doing a constant time test if out >= kPrime. We need to compare
856 * each u64, from most-significant to least significant. For each one, if
857 * all words so far have been equal (m is all ones) then a non-equal
858 * result is the answer. Otherwise we continue.
859 */
860 for (i = 3; i < 4; i--) {
861 u64 equal;
862 uint128_t a = ((uint128_t) kPrime[i]) - out[i];
863 /*
864 * if out[i] > kPrime[i] then a will underflow and the high 64-bits
865 * will all be set.
866 */
867 result |= all_equal_so_far & ((u64)(a >> 64));
868
869 /*
870 * if kPrime[i] == out[i] then |equal| will be all zeros and the
871 * decrement will make it all ones.
872 */
873 equal = kPrime[i] ^ out[i];
874 equal--;
875 equal &= equal << 32;
876 equal &= equal << 16;
877 equal &= equal << 8;
878 equal &= equal << 4;
879 equal &= equal << 2;
880 equal &= equal << 1;
881 equal = 0 - (equal >> 63);
882
883 all_equal_so_far &= equal;
884 }
885
886 /*
887 * if all_equal_so_far is still all ones then the two values are equal
888 * and so out >= kPrime is true.
889 */
890 result |= all_equal_so_far;
891
892 /* if out >= kPrime then we subtract kPrime. */
893 subtract_u64(&out[0], &carry, result & kPrime[0]);
894 subtract_u64(&out[1], &carry, carry);
895 subtract_u64(&out[2], &carry, carry);
896 subtract_u64(&out[3], &carry, carry);
897
898 subtract_u64(&out[1], &carry, result & kPrime[1]);
899 subtract_u64(&out[2], &carry, carry);
900 subtract_u64(&out[3], &carry, carry);
901
902 subtract_u64(&out[2], &carry, result & kPrime[2]);
903 subtract_u64(&out[3], &carry, carry);
904
905 subtract_u64(&out[3], &carry, result & kPrime[3]);
906}
907
908static void smallfelem_square_contract(smallfelem out, const smallfelem in)
909{
910 longfelem longtmp;
911 felem tmp;
912
913 smallfelem_square(longtmp, in);
914 felem_reduce(tmp, longtmp);
915 felem_contract(out, tmp);
916}
917
918static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
919 const smallfelem in2)
920{
921 longfelem longtmp;
922 felem tmp;
923
924 smallfelem_mul(longtmp, in1, in2);
925 felem_reduce(tmp, longtmp);
926 felem_contract(out, tmp);
927}
928
929/*-
930 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
931 * otherwise.
932 * On entry:
933 * small[i] < 2^64
934 */
935static limb smallfelem_is_zero(const smallfelem small)
936{
937 limb result;
938 u64 is_p;
939
940 u64 is_zero = small[0] | small[1] | small[2] | small[3];
941 is_zero--;
942 is_zero &= is_zero << 32;
943 is_zero &= is_zero << 16;
944 is_zero &= is_zero << 8;
945 is_zero &= is_zero << 4;
946 is_zero &= is_zero << 2;
947 is_zero &= is_zero << 1;
948 is_zero = 0 - (is_zero >> 63);
949
950 is_p = (small[0] ^ kPrime[0]) |
951 (small[1] ^ kPrime[1]) |
952 (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
953 is_p--;
954 is_p &= is_p << 32;
955 is_p &= is_p << 16;
956 is_p &= is_p << 8;
957 is_p &= is_p << 4;
958 is_p &= is_p << 2;
959 is_p &= is_p << 1;
960 is_p = 0 - (is_p >> 63);
961
962 is_zero |= is_p;
963
964 result = is_zero;
965 result |= ((limb) is_zero) << 64;
966 return result;
967}
968
969static int smallfelem_is_zero_int(const void *small)
970{
971 return (int)(smallfelem_is_zero(small) & ((limb) 1));
972}
973
974/*-
975 * felem_inv calculates |out| = |in|^{-1}
976 *
977 * Based on Fermat's Little Theorem:
978 * a^p = a (mod p)
979 * a^{p-1} = 1 (mod p)
980 * a^{p-2} = a^{-1} (mod p)
981 */
982static void felem_inv(felem out, const felem in)
983{
984 felem ftmp, ftmp2;
985 /* each e_I will hold |in|^{2^I - 1} */
986 felem e2, e4, e8, e16, e32, e64;
987 longfelem tmp;
988 unsigned i;
989
990 felem_square(tmp, in);
991 felem_reduce(ftmp, tmp); /* 2^1 */
992 felem_mul(tmp, in, ftmp);
993 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
994 felem_assign(e2, ftmp);
995 felem_square(tmp, ftmp);
996 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
997 felem_square(tmp, ftmp);
998 felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
999 felem_mul(tmp, ftmp, e2);
1000 felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
1001 felem_assign(e4, ftmp);
1002 felem_square(tmp, ftmp);
1003 felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
1004 felem_square(tmp, ftmp);
1005 felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
1006 felem_square(tmp, ftmp);
1007 felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
1008 felem_square(tmp, ftmp);
1009 felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
1010 felem_mul(tmp, ftmp, e4);
1011 felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
1012 felem_assign(e8, ftmp);
1013 for (i = 0; i < 8; i++) {
1014 felem_square(tmp, ftmp);
1015 felem_reduce(ftmp, tmp);
1016 } /* 2^16 - 2^8 */
1017 felem_mul(tmp, ftmp, e8);
1018 felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
1019 felem_assign(e16, ftmp);
1020 for (i = 0; i < 16; i++) {
1021 felem_square(tmp, ftmp);
1022 felem_reduce(ftmp, tmp);
1023 } /* 2^32 - 2^16 */
1024 felem_mul(tmp, ftmp, e16);
1025 felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
1026 felem_assign(e32, ftmp);
1027 for (i = 0; i < 32; i++) {
1028 felem_square(tmp, ftmp);
1029 felem_reduce(ftmp, tmp);
1030 } /* 2^64 - 2^32 */
1031 felem_assign(e64, ftmp);
1032 felem_mul(tmp, ftmp, in);
1033 felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
1034 for (i = 0; i < 192; i++) {
1035 felem_square(tmp, ftmp);
1036 felem_reduce(ftmp, tmp);
1037 } /* 2^256 - 2^224 + 2^192 */
1038
1039 felem_mul(tmp, e64, e32);
1040 felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
1041 for (i = 0; i < 16; i++) {
1042 felem_square(tmp, ftmp2);
1043 felem_reduce(ftmp2, tmp);
1044 } /* 2^80 - 2^16 */
1045 felem_mul(tmp, ftmp2, e16);
1046 felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
1047 for (i = 0; i < 8; i++) {
1048 felem_square(tmp, ftmp2);
1049 felem_reduce(ftmp2, tmp);
1050 } /* 2^88 - 2^8 */
1051 felem_mul(tmp, ftmp2, e8);
1052 felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
1053 for (i = 0; i < 4; i++) {
1054 felem_square(tmp, ftmp2);
1055 felem_reduce(ftmp2, tmp);
1056 } /* 2^92 - 2^4 */
1057 felem_mul(tmp, ftmp2, e4);
1058 felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
1059 felem_square(tmp, ftmp2);
1060 felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
1061 felem_square(tmp, ftmp2);
1062 felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
1063 felem_mul(tmp, ftmp2, e2);
1064 felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
1065 felem_square(tmp, ftmp2);
1066 felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
1067 felem_square(tmp, ftmp2);
1068 felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
1069 felem_mul(tmp, ftmp2, in);
1070 felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
1071
1072 felem_mul(tmp, ftmp2, ftmp);
1073 felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
1074}
1075
1076static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
1077{
1078 felem tmp;
1079
1080 smallfelem_expand(tmp, in);
1081 felem_inv(tmp, tmp);
1082 felem_contract(out, tmp);
1083}
1084
1085/*-
1086 * Group operations
1087 * ----------------
1088 *
1089 * Building on top of the field operations we have the operations on the
1090 * elliptic curve group itself. Points on the curve are represented in Jacobian
1091 * coordinates
1092 */
1093
1094/*-
1095 * point_double calculates 2*(x_in, y_in, z_in)
1096 *
1097 * The method is taken from:
1098 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1099 *
1100 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1101 * while x_out == y_in is not (maybe this works, but it's not tested).
1102 */
1103static void
1104point_double(felem x_out, felem y_out, felem z_out,
1105 const felem x_in, const felem y_in, const felem z_in)
1106{
1107 longfelem tmp, tmp2;
1108 felem delta, gamma, beta, alpha, ftmp, ftmp2;
1109 smallfelem small1, small2;
1110
1111 felem_assign(ftmp, x_in);
1112 /* ftmp[i] < 2^106 */
1113 felem_assign(ftmp2, x_in);
1114 /* ftmp2[i] < 2^106 */
1115
1116 /* delta = z^2 */
1117 felem_square(tmp, z_in);
1118 felem_reduce(delta, tmp);
1119 /* delta[i] < 2^101 */
1120
1121 /* gamma = y^2 */
1122 felem_square(tmp, y_in);
1123 felem_reduce(gamma, tmp);
1124 /* gamma[i] < 2^101 */
1125 felem_shrink(small1, gamma);
1126
1127 /* beta = x*gamma */
1128 felem_small_mul(tmp, small1, x_in);
1129 felem_reduce(beta, tmp);
1130 /* beta[i] < 2^101 */
1131
1132 /* alpha = 3*(x-delta)*(x+delta) */
1133 felem_diff(ftmp, delta);
1134 /* ftmp[i] < 2^105 + 2^106 < 2^107 */
1135 felem_sum(ftmp2, delta);
1136 /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
1137 felem_scalar(ftmp2, 3);
1138 /* ftmp2[i] < 3 * 2^107 < 2^109 */
1139 felem_mul(tmp, ftmp, ftmp2);
1140 felem_reduce(alpha, tmp);
1141 /* alpha[i] < 2^101 */
1142 felem_shrink(small2, alpha);
1143
1144 /* x' = alpha^2 - 8*beta */
1145 smallfelem_square(tmp, small2);
1146 felem_reduce(x_out, tmp);
1147 felem_assign(ftmp, beta);
1148 felem_scalar(ftmp, 8);
1149 /* ftmp[i] < 8 * 2^101 = 2^104 */
1150 felem_diff(x_out, ftmp);
1151 /* x_out[i] < 2^105 + 2^101 < 2^106 */
1152
1153 /* z' = (y + z)^2 - gamma - delta */
1154 felem_sum(delta, gamma);
1155 /* delta[i] < 2^101 + 2^101 = 2^102 */
1156 felem_assign(ftmp, y_in);
1157 felem_sum(ftmp, z_in);
1158 /* ftmp[i] < 2^106 + 2^106 = 2^107 */
1159 felem_square(tmp, ftmp);
1160 felem_reduce(z_out, tmp);
1161 felem_diff(z_out, delta);
1162 /* z_out[i] < 2^105 + 2^101 < 2^106 */
1163
1164 /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1165 felem_scalar(beta, 4);
1166 /* beta[i] < 4 * 2^101 = 2^103 */
1167 felem_diff_zero107(beta, x_out);
1168 /* beta[i] < 2^107 + 2^103 < 2^108 */
1169 felem_small_mul(tmp, small2, beta);
1170 /* tmp[i] < 7 * 2^64 < 2^67 */
1171 smallfelem_square(tmp2, small1);
1172 /* tmp2[i] < 7 * 2^64 */
1173 longfelem_scalar(tmp2, 8);
1174 /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
1175 longfelem_diff(tmp, tmp2);
1176 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1177 felem_reduce_zero105(y_out, tmp);
1178 /* y_out[i] < 2^106 */
1179}
1180
1181/*
1182 * point_double_small is the same as point_double, except that it operates on
1183 * smallfelems
1184 */
1185static void
1186point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
1187 const smallfelem x_in, const smallfelem y_in,
1188 const smallfelem z_in)
1189{
1190 felem felem_x_out, felem_y_out, felem_z_out;
1191 felem felem_x_in, felem_y_in, felem_z_in;
1192
1193 smallfelem_expand(felem_x_in, x_in);
1194 smallfelem_expand(felem_y_in, y_in);
1195 smallfelem_expand(felem_z_in, z_in);
1196 point_double(felem_x_out, felem_y_out, felem_z_out,
1197 felem_x_in, felem_y_in, felem_z_in);
1198 felem_shrink(x_out, felem_x_out);
1199 felem_shrink(y_out, felem_y_out);
1200 felem_shrink(z_out, felem_z_out);
1201}
1202
1203/* copy_conditional copies in to out iff mask is all ones. */
1204static void copy_conditional(felem out, const felem in, limb mask)
1205{
1206 unsigned i;
1207 for (i = 0; i < NLIMBS; ++i) {
1208 const limb tmp = mask & (in[i] ^ out[i]);
1209 out[i] ^= tmp;
1210 }
1211}
1212
1213/* copy_small_conditional copies in to out iff mask is all ones. */
1214static void copy_small_conditional(felem out, const smallfelem in, limb mask)
1215{
1216 unsigned i;
1217 const u64 mask64 = mask;
1218 for (i = 0; i < NLIMBS; ++i) {
1219 out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
1220 }
1221}
1222
1223/*-
1224 * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1225 *
1226 * The method is taken from:
1227 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1228 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1229 *
1230 * This function includes a branch for checking whether the two input points
1231 * are equal, (while not equal to the point at infinity). This case never
1232 * happens during single point multiplication, so there is no timing leak for
1233 * ECDH or ECDSA signing.
1234 */
1235static void point_add(felem x3, felem y3, felem z3,
1236 const felem x1, const felem y1, const felem z1,
1237 const int mixed, const smallfelem x2,
1238 const smallfelem y2, const smallfelem z2)
1239{
1240 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1241 longfelem tmp, tmp2;
1242 smallfelem small1, small2, small3, small4, small5;
1243 limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1244 limb points_equal;
1245
1246 felem_shrink(small3, z1);
1247
1248 z1_is_zero = smallfelem_is_zero(small3);
1249 z2_is_zero = smallfelem_is_zero(z2);
1250
1251 /* ftmp = z1z1 = z1**2 */
1252 smallfelem_square(tmp, small3);
1253 felem_reduce(ftmp, tmp);
1254 /* ftmp[i] < 2^101 */
1255 felem_shrink(small1, ftmp);
1256
1257 if (!mixed) {
1258 /* ftmp2 = z2z2 = z2**2 */
1259 smallfelem_square(tmp, z2);
1260 felem_reduce(ftmp2, tmp);
1261 /* ftmp2[i] < 2^101 */
1262 felem_shrink(small2, ftmp2);
1263
1264 felem_shrink(small5, x1);
1265
1266 /* u1 = ftmp3 = x1*z2z2 */
1267 smallfelem_mul(tmp, small5, small2);
1268 felem_reduce(ftmp3, tmp);
1269 /* ftmp3[i] < 2^101 */
1270
1271 /* ftmp5 = z1 + z2 */
1272 felem_assign(ftmp5, z1);
1273 felem_small_sum(ftmp5, z2);
1274 /* ftmp5[i] < 2^107 */
1275
1276 /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
1277 felem_square(tmp, ftmp5);
1278 felem_reduce(ftmp5, tmp);
1279 /* ftmp2 = z2z2 + z1z1 */
1280 felem_sum(ftmp2, ftmp);
1281 /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
1282 felem_diff(ftmp5, ftmp2);
1283 /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
1284
1285 /* ftmp2 = z2 * z2z2 */
1286 smallfelem_mul(tmp, small2, z2);
1287 felem_reduce(ftmp2, tmp);
1288
1289 /* s1 = ftmp2 = y1 * z2**3 */
1290 felem_mul(tmp, y1, ftmp2);
1291 felem_reduce(ftmp6, tmp);
1292 /* ftmp6[i] < 2^101 */
1293 } else {
1294 /*
1295 * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1296 */
1297
1298 /* u1 = ftmp3 = x1*z2z2 */
1299 felem_assign(ftmp3, x1);
1300 /* ftmp3[i] < 2^106 */
1301
1302 /* ftmp5 = 2z1z2 */
1303 felem_assign(ftmp5, z1);
1304 felem_scalar(ftmp5, 2);
1305 /* ftmp5[i] < 2*2^106 = 2^107 */
1306
1307 /* s1 = ftmp2 = y1 * z2**3 */
1308 felem_assign(ftmp6, y1);
1309 /* ftmp6[i] < 2^106 */
1310 }
1311
1312 /* u2 = x2*z1z1 */
1313 smallfelem_mul(tmp, x2, small1);
1314 felem_reduce(ftmp4, tmp);
1315
1316 /* h = ftmp4 = u2 - u1 */
1317 felem_diff_zero107(ftmp4, ftmp3);
1318 /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
1319 felem_shrink(small4, ftmp4);
1320
1321 x_equal = smallfelem_is_zero(small4);
1322
1323 /* z_out = ftmp5 * h */
1324 felem_small_mul(tmp, small4, ftmp5);
1325 felem_reduce(z_out, tmp);
1326 /* z_out[i] < 2^101 */
1327
1328 /* ftmp = z1 * z1z1 */
1329 smallfelem_mul(tmp, small1, small3);
1330 felem_reduce(ftmp, tmp);
1331
1332 /* s2 = tmp = y2 * z1**3 */
1333 felem_small_mul(tmp, y2, ftmp);
1334 felem_reduce(ftmp5, tmp);
1335
1336 /* r = ftmp5 = (s2 - s1)*2 */
1337 felem_diff_zero107(ftmp5, ftmp6);
1338 /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
1339 felem_scalar(ftmp5, 2);
1340 /* ftmp5[i] < 2^109 */
1341 felem_shrink(small1, ftmp5);
1342 y_equal = smallfelem_is_zero(small1);
1343
1344 /*
1345 * The formulae are incorrect if the points are equal, in affine coordinates
1346 * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
1347 * happens.
1348 *
1349 * We use bitwise operations to avoid potential side-channels introduced by
1350 * the short-circuiting behaviour of boolean operators.
1351 *
1352 * The special case of either point being the point at infinity (z1 and/or
1353 * z2 are zero), is handled separately later on in this function, so we
1354 * avoid jumping to point_double here in those special cases.
1355 */
1356 points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
1357
1358 if (points_equal) {
1359 /*
1360 * This is obviously not constant-time but, as mentioned before, this
1361 * case never happens during single point multiplication, so there is no
1362 * timing leak for ECDH or ECDSA signing.
1363 */
1364 point_double(x3, y3, z3, x1, y1, z1);
1365 return;
1366 }
1367
1368 /* I = ftmp = (2h)**2 */
1369 felem_assign(ftmp, ftmp4);
1370 felem_scalar(ftmp, 2);
1371 /* ftmp[i] < 2*2^108 = 2^109 */
1372 felem_square(tmp, ftmp);
1373 felem_reduce(ftmp, tmp);
1374
1375 /* J = ftmp2 = h * I */
1376 felem_mul(tmp, ftmp4, ftmp);
1377 felem_reduce(ftmp2, tmp);
1378
1379 /* V = ftmp4 = U1 * I */
1380 felem_mul(tmp, ftmp3, ftmp);
1381 felem_reduce(ftmp4, tmp);
1382
1383 /* x_out = r**2 - J - 2V */
1384 smallfelem_square(tmp, small1);
1385 felem_reduce(x_out, tmp);
1386 felem_assign(ftmp3, ftmp4);
1387 felem_scalar(ftmp4, 2);
1388 felem_sum(ftmp4, ftmp2);
1389 /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
1390 felem_diff(x_out, ftmp4);
1391 /* x_out[i] < 2^105 + 2^101 */
1392
1393 /* y_out = r(V-x_out) - 2 * s1 * J */
1394 felem_diff_zero107(ftmp3, x_out);
1395 /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
1396 felem_small_mul(tmp, small1, ftmp3);
1397 felem_mul(tmp2, ftmp6, ftmp2);
1398 longfelem_scalar(tmp2, 2);
1399 /* tmp2[i] < 2*2^67 = 2^68 */
1400 longfelem_diff(tmp, tmp2);
1401 /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
1402 felem_reduce_zero105(y_out, tmp);
1403 /* y_out[i] < 2^106 */
1404
1405 copy_small_conditional(x_out, x2, z1_is_zero);
1406 copy_conditional(x_out, x1, z2_is_zero);
1407 copy_small_conditional(y_out, y2, z1_is_zero);
1408 copy_conditional(y_out, y1, z2_is_zero);
1409 copy_small_conditional(z_out, z2, z1_is_zero);
1410 copy_conditional(z_out, z1, z2_is_zero);
1411 felem_assign(x3, x_out);
1412 felem_assign(y3, y_out);
1413 felem_assign(z3, z_out);
1414}
1415
1416/*
1417 * point_add_small is the same as point_add, except that it operates on
1418 * smallfelems
1419 */
1420static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
1421 smallfelem x1, smallfelem y1, smallfelem z1,
1422 smallfelem x2, smallfelem y2, smallfelem z2)
1423{
1424 felem felem_x3, felem_y3, felem_z3;
1425 felem felem_x1, felem_y1, felem_z1;
1426 smallfelem_expand(felem_x1, x1);
1427 smallfelem_expand(felem_y1, y1);
1428 smallfelem_expand(felem_z1, z1);
1429 point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
1430 x2, y2, z2);
1431 felem_shrink(x3, felem_x3);
1432 felem_shrink(y3, felem_y3);
1433 felem_shrink(z3, felem_z3);
1434}
1435
1436/*-
1437 * Base point pre computation
1438 * --------------------------
1439 *
1440 * Two different sorts of precomputed tables are used in the following code.
1441 * Each contain various points on the curve, where each point is three field
1442 * elements (x, y, z).
1443 *
1444 * For the base point table, z is usually 1 (0 for the point at infinity).
1445 * This table has 2 * 16 elements, starting with the following:
1446 * index | bits | point
1447 * ------+---------+------------------------------
1448 * 0 | 0 0 0 0 | 0G
1449 * 1 | 0 0 0 1 | 1G
1450 * 2 | 0 0 1 0 | 2^64G
1451 * 3 | 0 0 1 1 | (2^64 + 1)G
1452 * 4 | 0 1 0 0 | 2^128G
1453 * 5 | 0 1 0 1 | (2^128 + 1)G
1454 * 6 | 0 1 1 0 | (2^128 + 2^64)G
1455 * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
1456 * 8 | 1 0 0 0 | 2^192G
1457 * 9 | 1 0 0 1 | (2^192 + 1)G
1458 * 10 | 1 0 1 0 | (2^192 + 2^64)G
1459 * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
1460 * 12 | 1 1 0 0 | (2^192 + 2^128)G
1461 * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
1462 * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
1463 * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
1464 * followed by a copy of this with each element multiplied by 2^32.
1465 *
1466 * The reason for this is so that we can clock bits into four different
1467 * locations when doing simple scalar multiplies against the base point,
1468 * and then another four locations using the second 16 elements.
1469 *
1470 * Tables for other points have table[i] = iG for i in 0 .. 16. */
1471
1472/* gmul is the table of precomputed base points */
1473static const smallfelem gmul[2][16][3] = {
1474 {{{0, 0, 0, 0},
1475 {0, 0, 0, 0},
1476 {0, 0, 0, 0}},
1477 {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
1478 0x6b17d1f2e12c4247},
1479 {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
1480 0x4fe342e2fe1a7f9b},
1481 {1, 0, 0, 0}},
1482 {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
1483 0x0fa822bc2811aaa5},
1484 {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
1485 0xbff44ae8f5dba80d},
1486 {1, 0, 0, 0}},
1487 {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
1488 0x300a4bbc89d6726f},
1489 {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
1490 0x72aac7e0d09b4644},
1491 {1, 0, 0, 0}},
1492 {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
1493 0x447d739beedb5e67},
1494 {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
1495 0x2d4825ab834131ee},
1496 {1, 0, 0, 0}},
1497 {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
1498 0xef9519328a9c72ff},
1499 {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
1500 0x611e9fc37dbb2c9b},
1501 {1, 0, 0, 0}},
1502 {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
1503 0x550663797b51f5d8},
1504 {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
1505 0x157164848aecb851},
1506 {1, 0, 0, 0}},
1507 {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
1508 0xeb5d7745b21141ea},
1509 {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
1510 0xeafd72ebdbecc17b},
1511 {1, 0, 0, 0}},
1512 {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
1513 0xa6d39677a7849276},
1514 {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
1515 0x674f84749b0b8816},
1516 {1, 0, 0, 0}},
1517 {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
1518 0x4e769e7672c9ddad},
1519 {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
1520 0x42b99082de830663},
1521 {1, 0, 0, 0}},
1522 {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
1523 0x78878ef61c6ce04d},
1524 {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
1525 0xb6cb3f5d7b72c321},
1526 {1, 0, 0, 0}},
1527 {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
1528 0x0c88bc4d716b1287},
1529 {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
1530 0xdd5ddea3f3901dc6},
1531 {1, 0, 0, 0}},
1532 {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
1533 0x68f344af6b317466},
1534 {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
1535 0x31b9c405f8540a20},
1536 {1, 0, 0, 0}},
1537 {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
1538 0x4052bf4b6f461db9},
1539 {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
1540 0xfecf4d5190b0fc61},
1541 {1, 0, 0, 0}},
1542 {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
1543 0x1eddbae2c802e41a},
1544 {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
1545 0x43104d86560ebcfc},
1546 {1, 0, 0, 0}},
1547 {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
1548 0xb48e26b484f7a21c},
1549 {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
1550 0xfac015404d4d3dab},
1551 {1, 0, 0, 0}}},
1552 {{{0, 0, 0, 0},
1553 {0, 0, 0, 0},
1554 {0, 0, 0, 0}},
1555 {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
1556 0x7fe36b40af22af89},
1557 {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
1558 0xe697d45825b63624},
1559 {1, 0, 0, 0}},
1560 {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
1561 0x4a5b506612a677a6},
1562 {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
1563 0xeb13461ceac089f1},
1564 {1, 0, 0, 0}},
1565 {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
1566 0x0781b8291c6a220a},
1567 {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
1568 0x690cde8df0151593},
1569 {1, 0, 0, 0}},
1570 {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
1571 0x8a535f566ec73617},
1572 {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
1573 0x0455c08468b08bd7},
1574 {1, 0, 0, 0}},
1575 {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
1576 0x06bada7ab77f8276},
1577 {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
1578 0x5b476dfd0e6cb18a},
1579 {1, 0, 0, 0}},
1580 {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
1581 0x3e29864e8a2ec908},
1582 {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
1583 0x239b90ea3dc31e7e},
1584 {1, 0, 0, 0}},
1585 {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
1586 0x820f4dd949f72ff7},
1587 {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
1588 0x140406ec783a05ec},
1589 {1, 0, 0, 0}},
1590 {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
1591 0x68f6b8542783dfee},
1592 {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
1593 0xcbe1feba92e40ce6},
1594 {1, 0, 0, 0}},
1595 {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
1596 0xd0b2f94d2f420109},
1597 {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
1598 0x971459828b0719e5},
1599 {1, 0, 0, 0}},
1600 {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
1601 0x961610004a866aba},
1602 {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
1603 0x7acb9fadcee75e44},
1604 {1, 0, 0, 0}},
1605 {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
1606 0x24eb9acca333bf5b},
1607 {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
1608 0x69f891c5acd079cc},
1609 {1, 0, 0, 0}},
1610 {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
1611 0xe51f547c5972a107},
1612 {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
1613 0x1c309a2b25bb1387},
1614 {1, 0, 0, 0}},
1615 {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
1616 0x20b87b8aa2c4e503},
1617 {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
1618 0xf5c6fa49919776be},
1619 {1, 0, 0, 0}},
1620 {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
1621 0x1ed7d1b9332010b9},
1622 {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
1623 0x3a2b03f03217257a},
1624 {1, 0, 0, 0}},
1625 {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
1626 0x15fee545c78dd9f6},
1627 {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
1628 0x4ab5b6b2b8753f81},
1629 {1, 0, 0, 0}}}
1630};
1631
1632/*
1633 * select_point selects the |idx|th point from a precomputation table and
1634 * copies it to out.
1635 */
1636static void select_point(const u64 idx, unsigned int size,
1637 const smallfelem pre_comp[16][3], smallfelem out[3])
1638{
1639 unsigned i, j;
1640 u64 *outlimbs = &out[0][0];
1641
1642 memset(out, 0, sizeof(*out) * 3);
1643
1644 for (i = 0; i < size; i++) {
1645 const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
1646 u64 mask = i ^ idx;
1647 mask |= mask >> 4;
1648 mask |= mask >> 2;
1649 mask |= mask >> 1;
1650 mask &= 1;
1651 mask--;
1652 for (j = 0; j < NLIMBS * 3; j++)
1653 outlimbs[j] |= inlimbs[j] & mask;
1654 }
1655}
1656
1657/* get_bit returns the |i|th bit in |in| */
1658static char get_bit(const felem_bytearray in, int i)
1659{
1660 if ((i < 0) || (i >= 256))
1661 return 0;
1662 return (in[i >> 3] >> (i & 7)) & 1;
1663}
1664
1665/*
1666 * Interleaved point multiplication using precomputed point multiples: The
1667 * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
1668 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1669 * generator, using certain (large) precomputed multiples in g_pre_comp.
1670 * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1671 */
1672static void batch_mul(felem x_out, felem y_out, felem z_out,
1673 const felem_bytearray scalars[],
1674 const unsigned num_points, const u8 *g_scalar,
1675 const int mixed, const smallfelem pre_comp[][17][3],
1676 const smallfelem g_pre_comp[2][16][3])
1677{
1678 int i, skip;
1679 unsigned num, gen_mul = (g_scalar != NULL);
1680 felem nq[3], ftmp;
1681 smallfelem tmp[3];
1682 u64 bits;
1683 u8 sign, digit;
1684
1685 /* set nq to the point at infinity */
1686 memset(nq, 0, sizeof(nq));
1687
1688 /*
1689 * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1690 * of the generator (two in each of the last 32 rounds) and additions of
1691 * other points multiples (every 5th round).
1692 */
1693 skip = 1; /* save two point operations in the first
1694 * round */
1695 for (i = (num_points ? 255 : 31); i >= 0; --i) {
1696 /* double */
1697 if (!skip)
1698 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1699
1700 /* add multiples of the generator */
1701 if (gen_mul && (i <= 31)) {
1702 /* first, look 32 bits upwards */
1703 bits = get_bit(g_scalar, i + 224) << 3;
1704 bits |= get_bit(g_scalar, i + 160) << 2;
1705 bits |= get_bit(g_scalar, i + 96) << 1;
1706 bits |= get_bit(g_scalar, i + 32);
1707 /* select the point to add, in constant time */
1708 select_point(bits, 16, g_pre_comp[1], tmp);
1709
1710 if (!skip) {
1711 /* Arg 1 below is for "mixed" */
1712 point_add(nq[0], nq[1], nq[2],
1713 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1714 } else {
1715 smallfelem_expand(nq[0], tmp[0]);
1716 smallfelem_expand(nq[1], tmp[1]);
1717 smallfelem_expand(nq[2], tmp[2]);
1718 skip = 0;
1719 }
1720
1721 /* second, look at the current position */
1722 bits = get_bit(g_scalar, i + 192) << 3;
1723 bits |= get_bit(g_scalar, i + 128) << 2;
1724 bits |= get_bit(g_scalar, i + 64) << 1;
1725 bits |= get_bit(g_scalar, i);
1726 /* select the point to add, in constant time */
1727 select_point(bits, 16, g_pre_comp[0], tmp);
1728 /* Arg 1 below is for "mixed" */
1729 point_add(nq[0], nq[1], nq[2],
1730 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1731 }
1732
1733 /* do other additions every 5 doublings */
1734 if (num_points && (i % 5 == 0)) {
1735 /* loop over all scalars */
1736 for (num = 0; num < num_points; ++num) {
1737 bits = get_bit(scalars[num], i + 4) << 5;
1738 bits |= get_bit(scalars[num], i + 3) << 4;
1739 bits |= get_bit(scalars[num], i + 2) << 3;
1740 bits |= get_bit(scalars[num], i + 1) << 2;
1741 bits |= get_bit(scalars[num], i) << 1;
1742 bits |= get_bit(scalars[num], i - 1);
1743 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1744
1745 /*
1746 * select the point to add or subtract, in constant time
1747 */
1748 select_point(digit, 17, pre_comp[num], tmp);
1749 smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
1750 * point */
1751 copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
1752 felem_contract(tmp[1], ftmp);
1753
1754 if (!skip) {
1755 point_add(nq[0], nq[1], nq[2],
1756 nq[0], nq[1], nq[2],
1757 mixed, tmp[0], tmp[1], tmp[2]);
1758 } else {
1759 smallfelem_expand(nq[0], tmp[0]);
1760 smallfelem_expand(nq[1], tmp[1]);
1761 smallfelem_expand(nq[2], tmp[2]);
1762 skip = 0;
1763 }
1764 }
1765 }
1766 }
1767 felem_assign(x_out, nq[0]);
1768 felem_assign(y_out, nq[1]);
1769 felem_assign(z_out, nq[2]);
1770}
1771
1772/* Precomputation for the group generator. */
1773struct nistp256_pre_comp_st {
1774 smallfelem g_pre_comp[2][16][3];
1775 CRYPTO_REF_COUNT references;
1776 CRYPTO_RWLOCK *lock;
1777};
1778
1779const EC_METHOD *EC_GFp_nistp256_method(void)
1780{
1781 static const EC_METHOD ret = {
1782 EC_FLAGS_DEFAULT_OCT,
1783 NID_X9_62_prime_field,
1784 ec_GFp_nistp256_group_init,
1785 ec_GFp_simple_group_finish,
1786 ec_GFp_simple_group_clear_finish,
1787 ec_GFp_nist_group_copy,
1788 ec_GFp_nistp256_group_set_curve,
1789 ec_GFp_simple_group_get_curve,
1790 ec_GFp_simple_group_get_degree,
1791 ec_group_simple_order_bits,
1792 ec_GFp_simple_group_check_discriminant,
1793 ec_GFp_simple_point_init,
1794 ec_GFp_simple_point_finish,
1795 ec_GFp_simple_point_clear_finish,
1796 ec_GFp_simple_point_copy,
1797 ec_GFp_simple_point_set_to_infinity,
1798 ec_GFp_simple_set_Jprojective_coordinates_GFp,
1799 ec_GFp_simple_get_Jprojective_coordinates_GFp,
1800 ec_GFp_simple_point_set_affine_coordinates,
1801 ec_GFp_nistp256_point_get_affine_coordinates,
1802 0 /* point_set_compressed_coordinates */ ,
1803 0 /* point2oct */ ,
1804 0 /* oct2point */ ,
1805 ec_GFp_simple_add,
1806 ec_GFp_simple_dbl,
1807 ec_GFp_simple_invert,
1808 ec_GFp_simple_is_at_infinity,
1809 ec_GFp_simple_is_on_curve,
1810 ec_GFp_simple_cmp,
1811 ec_GFp_simple_make_affine,
1812 ec_GFp_simple_points_make_affine,
1813 ec_GFp_nistp256_points_mul,
1814 ec_GFp_nistp256_precompute_mult,
1815 ec_GFp_nistp256_have_precompute_mult,
1816 ec_GFp_nist_field_mul,
1817 ec_GFp_nist_field_sqr,
1818 0 /* field_div */ ,
1819 ec_GFp_simple_field_inv,
1820 0 /* field_encode */ ,
1821 0 /* field_decode */ ,
1822 0, /* field_set_to_one */
1823 ec_key_simple_priv2oct,
1824 ec_key_simple_oct2priv,
1825 0, /* set private */
1826 ec_key_simple_generate_key,
1827 ec_key_simple_check_key,
1828 ec_key_simple_generate_public_key,
1829 0, /* keycopy */
1830 0, /* keyfinish */
1831 ecdh_simple_compute_key,
1832 0, /* field_inverse_mod_ord */
1833 0, /* blind_coordinates */
1834 0, /* ladder_pre */
1835 0, /* ladder_step */
1836 0 /* ladder_post */
1837 };
1838
1839 return &ret;
1840}
1841
1842/******************************************************************************/
1843/*
1844 * FUNCTIONS TO MANAGE PRECOMPUTATION
1845 */
1846
1847static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
1848{
1849 NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1850
1851 if (ret == NULL) {
1852 ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1853 return ret;
1854 }
1855
1856 ret->references = 1;
1857
1858 ret->lock = CRYPTO_THREAD_lock_new();
1859 if (ret->lock == NULL) {
1860 ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1861 OPENSSL_free(ret);
1862 return NULL;
1863 }
1864 return ret;
1865}
1866
1867NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
1868{
1869 int i;
1870 if (p != NULL)
1871 CRYPTO_UP_REF(&p->references, &i, p->lock);
1872 return p;
1873}
1874
1875void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
1876{
1877 int i;
1878
1879 if (pre == NULL)
1880 return;
1881
1882 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
1883 REF_PRINT_COUNT("EC_nistp256", x);
1884 if (i > 0)
1885 return;
1886 REF_ASSERT_ISNT(i < 0);
1887
1888 CRYPTO_THREAD_lock_free(pre->lock);
1889 OPENSSL_free(pre);
1890}
1891
1892/******************************************************************************/
1893/*
1894 * OPENSSL EC_METHOD FUNCTIONS
1895 */
1896
1897int ec_GFp_nistp256_group_init(EC_GROUP *group)
1898{
1899 int ret;
1900 ret = ec_GFp_simple_group_init(group);
1901 group->a_is_minus3 = 1;
1902 return ret;
1903}
1904
1905int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1906 const BIGNUM *a, const BIGNUM *b,
1907 BN_CTX *ctx)
1908{
1909 int ret = 0;
1910 BN_CTX *new_ctx = NULL;
1911 BIGNUM *curve_p, *curve_a, *curve_b;
1912
1913 if (ctx == NULL)
1914 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1915 return 0;
1916 BN_CTX_start(ctx);
1917 curve_p = BN_CTX_get(ctx);
1918 curve_a = BN_CTX_get(ctx);
1919 curve_b = BN_CTX_get(ctx);
1920 if (curve_b == NULL)
1921 goto err;
1922 BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
1923 BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
1924 BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
1925 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1926 ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
1927 EC_R_WRONG_CURVE_PARAMETERS);
1928 goto err;
1929 }
1930 group->field_mod_func = BN_nist_mod_256;
1931 ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1932 err:
1933 BN_CTX_end(ctx);
1934 BN_CTX_free(new_ctx);
1935 return ret;
1936}
1937
1938/*
1939 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1940 * (X/Z^2, Y/Z^3)
1941 */
1942int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
1943 const EC_POINT *point,
1944 BIGNUM *x, BIGNUM *y,
1945 BN_CTX *ctx)
1946{
1947 felem z1, z2, x_in, y_in;
1948 smallfelem x_out, y_out;
1949 longfelem tmp;
1950
1951 if (EC_POINT_is_at_infinity(group, point)) {
1952 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1953 EC_R_POINT_AT_INFINITY);
1954 return 0;
1955 }
1956 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1957 (!BN_to_felem(z1, point->Z)))
1958 return 0;
1959 felem_inv(z2, z1);
1960 felem_square(tmp, z2);
1961 felem_reduce(z1, tmp);
1962 felem_mul(tmp, x_in, z1);
1963 felem_reduce(x_in, tmp);
1964 felem_contract(x_out, x_in);
1965 if (x != NULL) {
1966 if (!smallfelem_to_BN(x, x_out)) {
1967 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1968 ERR_R_BN_LIB);
1969 return 0;
1970 }
1971 }
1972 felem_mul(tmp, z1, z2);
1973 felem_reduce(z1, tmp);
1974 felem_mul(tmp, y_in, z1);
1975 felem_reduce(y_in, tmp);
1976 felem_contract(y_out, y_in);
1977 if (y != NULL) {
1978 if (!smallfelem_to_BN(y, y_out)) {
1979 ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
1980 ERR_R_BN_LIB);
1981 return 0;
1982 }
1983 }
1984 return 1;
1985}
1986
1987/* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
1988static void make_points_affine(size_t num, smallfelem points[][3],
1989 smallfelem tmp_smallfelems[])
1990{
1991 /*
1992 * Runs in constant time, unless an input is the point at infinity (which
1993 * normally shouldn't happen).
1994 */
1995 ec_GFp_nistp_points_make_affine_internal(num,
1996 points,
1997 sizeof(smallfelem),
1998 tmp_smallfelems,
1999 (void (*)(void *))smallfelem_one,
2000 smallfelem_is_zero_int,
2001 (void (*)(void *, const void *))
2002 smallfelem_assign,
2003 (void (*)(void *, const void *))
2004 smallfelem_square_contract,
2005 (void (*)
2006 (void *, const void *,
2007 const void *))
2008 smallfelem_mul_contract,
2009 (void (*)(void *, const void *))
2010 smallfelem_inv_contract,
2011 /* nothing to contract */
2012 (void (*)(void *, const void *))
2013 smallfelem_assign);
2014}
2015
2016/*
2017 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
2018 * values Result is stored in r (r can equal one of the inputs).
2019 */
2020int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
2021 const BIGNUM *scalar, size_t num,
2022 const EC_POINT *points[],
2023 const BIGNUM *scalars[], BN_CTX *ctx)
2024{
2025 int ret = 0;
2026 int j;
2027 int mixed = 0;
2028 BIGNUM *x, *y, *z, *tmp_scalar;
2029 felem_bytearray g_secret;
2030 felem_bytearray *secrets = NULL;
2031 smallfelem (*pre_comp)[17][3] = NULL;
2032 smallfelem *tmp_smallfelems = NULL;
2033 unsigned i;
2034 int num_bytes;
2035 int have_pre_comp = 0;
2036 size_t num_points = num;
2037 smallfelem x_in, y_in, z_in;
2038 felem x_out, y_out, z_out;
2039 NISTP256_PRE_COMP *pre = NULL;
2040 const smallfelem(*g_pre_comp)[16][3] = NULL;
2041 EC_POINT *generator = NULL;
2042 const EC_POINT *p = NULL;
2043 const BIGNUM *p_scalar = NULL;
2044
2045 BN_CTX_start(ctx);
2046 x = BN_CTX_get(ctx);
2047 y = BN_CTX_get(ctx);
2048 z = BN_CTX_get(ctx);
2049 tmp_scalar = BN_CTX_get(ctx);
2050 if (tmp_scalar == NULL)
2051 goto err;
2052
2053 if (scalar != NULL) {
2054 pre = group->pre_comp.nistp256;
2055 if (pre)
2056 /* we have precomputation, try to use it */
2057 g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
2058 else
2059 /* try to use the standard precomputation */
2060 g_pre_comp = &gmul[0];
2061 generator = EC_POINT_new(group);
2062 if (generator == NULL)
2063 goto err;
2064 /* get the generator from precomputation */
2065 if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
2066 !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
2067 !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
2068 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2069 goto err;
2070 }
2071 if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
2072 generator, x, y, z,
2073 ctx))
2074 goto err;
2075 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
2076 /* precomputation matches generator */
2077 have_pre_comp = 1;
2078 else
2079 /*
2080 * we don't have valid precomputation: treat the generator as a
2081 * random point
2082 */
2083 num_points++;
2084 }
2085 if (num_points > 0) {
2086 if (num_points >= 3) {
2087 /*
2088 * unless we precompute multiples for just one or two points,
2089 * converting those into affine form is time well spent
2090 */
2091 mixed = 1;
2092 }
2093 secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
2094 pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
2095 if (mixed)
2096 tmp_smallfelems =
2097 OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
2098 if ((secrets == NULL) || (pre_comp == NULL)
2099 || (mixed && (tmp_smallfelems == NULL))) {
2100 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
2101 goto err;
2102 }
2103
2104 /*
2105 * we treat NULL scalars as 0, and NULL points as points at infinity,
2106 * i.e., they contribute nothing to the linear combination
2107 */
2108 memset(secrets, 0, sizeof(*secrets) * num_points);
2109 memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
2110 for (i = 0; i < num_points; ++i) {
2111 if (i == num) {
2112 /*
2113 * we didn't have a valid precomputation, so we pick the
2114 * generator
2115 */
2116 p = EC_GROUP_get0_generator(group);
2117 p_scalar = scalar;
2118 } else {
2119 /* the i^th point */
2120 p = points[i];
2121 p_scalar = scalars[i];
2122 }
2123 if ((p_scalar != NULL) && (p != NULL)) {
2124 /* reduce scalar to 0 <= scalar < 2^256 */
2125 if ((BN_num_bits(p_scalar) > 256)
2126 || (BN_is_negative(p_scalar))) {
2127 /*
2128 * this is an unusual input, and we don't guarantee
2129 * constant-timeness
2130 */
2131 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
2132 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2133 goto err;
2134 }
2135 num_bytes = BN_bn2lebinpad(tmp_scalar,
2136 secrets[i], sizeof(secrets[i]));
2137 } else {
2138 num_bytes = BN_bn2lebinpad(p_scalar,
2139 secrets[i], sizeof(secrets[i]));
2140 }
2141 if (num_bytes < 0) {
2142 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2143 goto err;
2144 }
2145 /* precompute multiples */
2146 if ((!BN_to_felem(x_out, p->X)) ||
2147 (!BN_to_felem(y_out, p->Y)) ||
2148 (!BN_to_felem(z_out, p->Z)))
2149 goto err;
2150 felem_shrink(pre_comp[i][1][0], x_out);
2151 felem_shrink(pre_comp[i][1][1], y_out);
2152 felem_shrink(pre_comp[i][1][2], z_out);
2153 for (j = 2; j <= 16; ++j) {
2154 if (j & 1) {
2155 point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
2156 pre_comp[i][j][2], pre_comp[i][1][0],
2157 pre_comp[i][1][1], pre_comp[i][1][2],
2158 pre_comp[i][j - 1][0],
2159 pre_comp[i][j - 1][1],
2160 pre_comp[i][j - 1][2]);
2161 } else {
2162 point_double_small(pre_comp[i][j][0],
2163 pre_comp[i][j][1],
2164 pre_comp[i][j][2],
2165 pre_comp[i][j / 2][0],
2166 pre_comp[i][j / 2][1],
2167 pre_comp[i][j / 2][2]);
2168 }
2169 }
2170 }
2171 }
2172 if (mixed)
2173 make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
2174 }
2175
2176 /* the scalar for the generator */
2177 if ((scalar != NULL) && (have_pre_comp)) {
2178 memset(g_secret, 0, sizeof(g_secret));
2179 /* reduce scalar to 0 <= scalar < 2^256 */
2180 if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
2181 /*
2182 * this is an unusual input, and we don't guarantee
2183 * constant-timeness
2184 */
2185 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2186 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2187 goto err;
2188 }
2189 num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
2190 } else {
2191 num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
2192 }
2193 /* do the multiplication with generator precomputation */
2194 batch_mul(x_out, y_out, z_out,
2195 (const felem_bytearray(*))secrets, num_points,
2196 g_secret,
2197 mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
2198 } else {
2199 /* do the multiplication without generator precomputation */
2200 batch_mul(x_out, y_out, z_out,
2201 (const felem_bytearray(*))secrets, num_points,
2202 NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
2203 }
2204 /* reduce the output to its unique minimal representation */
2205 felem_contract(x_in, x_out);
2206 felem_contract(y_in, y_out);
2207 felem_contract(z_in, z_out);
2208 if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
2209 (!smallfelem_to_BN(z, z_in))) {
2210 ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
2211 goto err;
2212 }
2213 ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2214
2215 err:
2216 BN_CTX_end(ctx);
2217 EC_POINT_free(generator);
2218 OPENSSL_free(secrets);
2219 OPENSSL_free(pre_comp);
2220 OPENSSL_free(tmp_smallfelems);
2221 return ret;
2222}
2223
2224int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2225{
2226 int ret = 0;
2227 NISTP256_PRE_COMP *pre = NULL;
2228 int i, j;
2229 BN_CTX *new_ctx = NULL;
2230 BIGNUM *x, *y;
2231 EC_POINT *generator = NULL;
2232 smallfelem tmp_smallfelems[32];
2233 felem x_tmp, y_tmp, z_tmp;
2234
2235 /* throw away old precomputation */
2236 EC_pre_comp_free(group);
2237 if (ctx == NULL)
2238 if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2239 return 0;
2240 BN_CTX_start(ctx);
2241 x = BN_CTX_get(ctx);
2242 y = BN_CTX_get(ctx);
2243 if (y == NULL)
2244 goto err;
2245 /* get the generator */
2246 if (group->generator == NULL)
2247 goto err;
2248 generator = EC_POINT_new(group);
2249 if (generator == NULL)
2250 goto err;
2251 BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
2252 BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
2253 if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2254 goto err;
2255 if ((pre = nistp256_pre_comp_new()) == NULL)
2256 goto err;
2257 /*
2258 * if the generator is the standard one, use built-in precomputation
2259 */
2260 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2261 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2262 goto done;
2263 }
2264 if ((!BN_to_felem(x_tmp, group->generator->X)) ||
2265 (!BN_to_felem(y_tmp, group->generator->Y)) ||
2266 (!BN_to_felem(z_tmp, group->generator->Z)))
2267 goto err;
2268 felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
2269 felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
2270 felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
2271 /*
2272 * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
2273 * 2^160*G, 2^224*G for the second one
2274 */
2275 for (i = 1; i <= 8; i <<= 1) {
2276 point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2277 pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
2278 pre->g_pre_comp[0][i][1],
2279 pre->g_pre_comp[0][i][2]);
2280 for (j = 0; j < 31; ++j) {
2281 point_double_small(pre->g_pre_comp[1][i][0],
2282 pre->g_pre_comp[1][i][1],
2283 pre->g_pre_comp[1][i][2],
2284 pre->g_pre_comp[1][i][0],
2285 pre->g_pre_comp[1][i][1],
2286 pre->g_pre_comp[1][i][2]);
2287 }
2288 if (i == 8)
2289 break;
2290 point_double_small(pre->g_pre_comp[0][2 * i][0],
2291 pre->g_pre_comp[0][2 * i][1],
2292 pre->g_pre_comp[0][2 * i][2],
2293 pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
2294 pre->g_pre_comp[1][i][2]);
2295 for (j = 0; j < 31; ++j) {
2296 point_double_small(pre->g_pre_comp[0][2 * i][0],
2297 pre->g_pre_comp[0][2 * i][1],
2298 pre->g_pre_comp[0][2 * i][2],
2299 pre->g_pre_comp[0][2 * i][0],
2300 pre->g_pre_comp[0][2 * i][1],
2301 pre->g_pre_comp[0][2 * i][2]);
2302 }
2303 }
2304 for (i = 0; i < 2; i++) {
2305 /* g_pre_comp[i][0] is the point at infinity */
2306 memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
2307 /* the remaining multiples */
2308 /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
2309 point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
2310 pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
2311 pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
2312 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2313 pre->g_pre_comp[i][2][2]);
2314 /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
2315 point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
2316 pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
2317 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2318 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2319 pre->g_pre_comp[i][2][2]);
2320 /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
2321 point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
2322 pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
2323 pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
2324 pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
2325 pre->g_pre_comp[i][4][2]);
2326 /*
2327 * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
2328 */
2329 point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
2330 pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
2331 pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
2332 pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
2333 pre->g_pre_comp[i][2][2]);
2334 for (j = 1; j < 8; ++j) {
2335 /* odd multiples: add G resp. 2^32*G */
2336 point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
2337 pre->g_pre_comp[i][2 * j + 1][1],
2338 pre->g_pre_comp[i][2 * j + 1][2],
2339 pre->g_pre_comp[i][2 * j][0],
2340 pre->g_pre_comp[i][2 * j][1],
2341 pre->g_pre_comp[i][2 * j][2],
2342 pre->g_pre_comp[i][1][0],
2343 pre->g_pre_comp[i][1][1],
2344 pre->g_pre_comp[i][1][2]);
2345 }
2346 }
2347 make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
2348
2349 done:
2350 SETPRECOMP(group, nistp256, pre);
2351 pre = NULL;
2352 ret = 1;
2353
2354 err:
2355 BN_CTX_end(ctx);
2356 EC_POINT_free(generator);
2357 BN_CTX_free(new_ctx);
2358 EC_nistp256_pre_comp_free(pre);
2359 return ret;
2360}
2361
2362int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
2363{
2364 return HAVEPRECOMP(group, nistp256);
2365}
2366#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette