1 | /*
|
---|
2 | * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* Copyright 2011 Google Inc.
|
---|
11 | *
|
---|
12 | * Licensed under the Apache License, Version 2.0 (the "License");
|
---|
13 | *
|
---|
14 | * you may not use this file except in compliance with the License.
|
---|
15 | * You may obtain a copy of the License at
|
---|
16 | *
|
---|
17 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
18 | *
|
---|
19 | * Unless required by applicable law or agreed to in writing, software
|
---|
20 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
22 | * See the License for the specific language governing permissions and
|
---|
23 | * limitations under the License.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /*
|
---|
27 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication
|
---|
28 | *
|
---|
29 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
|
---|
30 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
|
---|
31 | * work which got its smarts from Daniel J. Bernstein's work on the same.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #include <openssl/opensslconf.h>
|
---|
35 | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
|
---|
36 | NON_EMPTY_TRANSLATION_UNIT
|
---|
37 | #else
|
---|
38 |
|
---|
39 | # include <stdint.h>
|
---|
40 | # include <string.h>
|
---|
41 | # include <openssl/err.h>
|
---|
42 | # include "ec_local.h"
|
---|
43 |
|
---|
44 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
|
---|
45 | /* even with gcc, the typedef won't work for 32-bit platforms */
|
---|
46 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit
|
---|
47 | * platforms */
|
---|
48 | typedef __int128_t int128_t;
|
---|
49 | # else
|
---|
50 | # error "Your compiler doesn't appear to support 128-bit integer types"
|
---|
51 | # endif
|
---|
52 |
|
---|
53 | typedef uint8_t u8;
|
---|
54 | typedef uint32_t u32;
|
---|
55 | typedef uint64_t u64;
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
|
---|
59 | * can serialise an element of this field into 32 bytes. We call this an
|
---|
60 | * felem_bytearray.
|
---|
61 | */
|
---|
62 |
|
---|
63 | typedef u8 felem_bytearray[32];
|
---|
64 |
|
---|
65 | /*
|
---|
66 | * These are the parameters of P256, taken from FIPS 186-3, page 86. These
|
---|
67 | * values are big-endian.
|
---|
68 | */
|
---|
69 | static const felem_bytearray nistp256_curve_params[5] = {
|
---|
70 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
|
---|
71 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
---|
72 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
---|
73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
|
---|
74 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
|
---|
75 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
---|
76 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
|
---|
77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc},
|
---|
78 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */
|
---|
79 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc,
|
---|
80 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
|
---|
81 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
|
---|
82 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
|
---|
83 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2,
|
---|
84 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
|
---|
85 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
|
---|
86 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
|
---|
87 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
|
---|
88 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
|
---|
89 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}
|
---|
90 | };
|
---|
91 |
|
---|
92 | /*-
|
---|
93 | * The representation of field elements.
|
---|
94 | * ------------------------------------
|
---|
95 | *
|
---|
96 | * We represent field elements with either four 128-bit values, eight 128-bit
|
---|
97 | * values, or four 64-bit values. The field element represented is:
|
---|
98 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p)
|
---|
99 | * or:
|
---|
100 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p)
|
---|
101 | *
|
---|
102 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
|
---|
103 | * apart, but are 128-bits wide, the most significant bits of each limb overlap
|
---|
104 | * with the least significant bits of the next.
|
---|
105 | *
|
---|
106 | * A field element with four limbs is an 'felem'. One with eight limbs is a
|
---|
107 | * 'longfelem'
|
---|
108 | *
|
---|
109 | * A field element with four, 64-bit values is called a 'smallfelem'. Small
|
---|
110 | * values are used as intermediate values before multiplication.
|
---|
111 | */
|
---|
112 |
|
---|
113 | # define NLIMBS 4
|
---|
114 |
|
---|
115 | typedef uint128_t limb;
|
---|
116 | typedef limb felem[NLIMBS];
|
---|
117 | typedef limb longfelem[NLIMBS * 2];
|
---|
118 | typedef u64 smallfelem[NLIMBS];
|
---|
119 |
|
---|
120 | /* This is the value of the prime as four 64-bit words, little-endian. */
|
---|
121 | static const u64 kPrime[4] =
|
---|
122 | { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul };
|
---|
123 | static const u64 bottom63bits = 0x7ffffffffffffffful;
|
---|
124 |
|
---|
125 | /*
|
---|
126 | * bin32_to_felem takes a little-endian byte array and converts it into felem
|
---|
127 | * form. This assumes that the CPU is little-endian.
|
---|
128 | */
|
---|
129 | static void bin32_to_felem(felem out, const u8 in[32])
|
---|
130 | {
|
---|
131 | out[0] = *((u64 *)&in[0]);
|
---|
132 | out[1] = *((u64 *)&in[8]);
|
---|
133 | out[2] = *((u64 *)&in[16]);
|
---|
134 | out[3] = *((u64 *)&in[24]);
|
---|
135 | }
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * smallfelem_to_bin32 takes a smallfelem and serialises into a little
|
---|
139 | * endian, 32 byte array. This assumes that the CPU is little-endian.
|
---|
140 | */
|
---|
141 | static void smallfelem_to_bin32(u8 out[32], const smallfelem in)
|
---|
142 | {
|
---|
143 | *((u64 *)&out[0]) = in[0];
|
---|
144 | *((u64 *)&out[8]) = in[1];
|
---|
145 | *((u64 *)&out[16]) = in[2];
|
---|
146 | *((u64 *)&out[24]) = in[3];
|
---|
147 | }
|
---|
148 |
|
---|
149 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
|
---|
150 | static int BN_to_felem(felem out, const BIGNUM *bn)
|
---|
151 | {
|
---|
152 | felem_bytearray b_out;
|
---|
153 | int num_bytes;
|
---|
154 |
|
---|
155 | if (BN_is_negative(bn)) {
|
---|
156 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
157 | return 0;
|
---|
158 | }
|
---|
159 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
---|
160 | if (num_bytes < 0) {
|
---|
161 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
162 | return 0;
|
---|
163 | }
|
---|
164 | bin32_to_felem(out, b_out);
|
---|
165 | return 1;
|
---|
166 | }
|
---|
167 |
|
---|
168 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
|
---|
169 | static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in)
|
---|
170 | {
|
---|
171 | felem_bytearray b_out;
|
---|
172 | smallfelem_to_bin32(b_out, in);
|
---|
173 | return BN_lebin2bn(b_out, sizeof(b_out), out);
|
---|
174 | }
|
---|
175 |
|
---|
176 | /*-
|
---|
177 | * Field operations
|
---|
178 | * ----------------
|
---|
179 | */
|
---|
180 |
|
---|
181 | static void smallfelem_one(smallfelem out)
|
---|
182 | {
|
---|
183 | out[0] = 1;
|
---|
184 | out[1] = 0;
|
---|
185 | out[2] = 0;
|
---|
186 | out[3] = 0;
|
---|
187 | }
|
---|
188 |
|
---|
189 | static void smallfelem_assign(smallfelem out, const smallfelem in)
|
---|
190 | {
|
---|
191 | out[0] = in[0];
|
---|
192 | out[1] = in[1];
|
---|
193 | out[2] = in[2];
|
---|
194 | out[3] = in[3];
|
---|
195 | }
|
---|
196 |
|
---|
197 | static void felem_assign(felem out, const felem in)
|
---|
198 | {
|
---|
199 | out[0] = in[0];
|
---|
200 | out[1] = in[1];
|
---|
201 | out[2] = in[2];
|
---|
202 | out[3] = in[3];
|
---|
203 | }
|
---|
204 |
|
---|
205 | /* felem_sum sets out = out + in. */
|
---|
206 | static void felem_sum(felem out, const felem in)
|
---|
207 | {
|
---|
208 | out[0] += in[0];
|
---|
209 | out[1] += in[1];
|
---|
210 | out[2] += in[2];
|
---|
211 | out[3] += in[3];
|
---|
212 | }
|
---|
213 |
|
---|
214 | /* felem_small_sum sets out = out + in. */
|
---|
215 | static void felem_small_sum(felem out, const smallfelem in)
|
---|
216 | {
|
---|
217 | out[0] += in[0];
|
---|
218 | out[1] += in[1];
|
---|
219 | out[2] += in[2];
|
---|
220 | out[3] += in[3];
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* felem_scalar sets out = out * scalar */
|
---|
224 | static void felem_scalar(felem out, const u64 scalar)
|
---|
225 | {
|
---|
226 | out[0] *= scalar;
|
---|
227 | out[1] *= scalar;
|
---|
228 | out[2] *= scalar;
|
---|
229 | out[3] *= scalar;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* longfelem_scalar sets out = out * scalar */
|
---|
233 | static void longfelem_scalar(longfelem out, const u64 scalar)
|
---|
234 | {
|
---|
235 | out[0] *= scalar;
|
---|
236 | out[1] *= scalar;
|
---|
237 | out[2] *= scalar;
|
---|
238 | out[3] *= scalar;
|
---|
239 | out[4] *= scalar;
|
---|
240 | out[5] *= scalar;
|
---|
241 | out[6] *= scalar;
|
---|
242 | out[7] *= scalar;
|
---|
243 | }
|
---|
244 |
|
---|
245 | # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
|
---|
246 | # define two105 (((limb)1) << 105)
|
---|
247 | # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
|
---|
248 |
|
---|
249 | /* zero105 is 0 mod p */
|
---|
250 | static const felem zero105 =
|
---|
251 | { two105m41m9, two105, two105m41p9, two105m41p9 };
|
---|
252 |
|
---|
253 | /*-
|
---|
254 | * smallfelem_neg sets |out| to |-small|
|
---|
255 | * On exit:
|
---|
256 | * out[i] < out[i] + 2^105
|
---|
257 | */
|
---|
258 | static void smallfelem_neg(felem out, const smallfelem small)
|
---|
259 | {
|
---|
260 | /* In order to prevent underflow, we subtract from 0 mod p. */
|
---|
261 | out[0] = zero105[0] - small[0];
|
---|
262 | out[1] = zero105[1] - small[1];
|
---|
263 | out[2] = zero105[2] - small[2];
|
---|
264 | out[3] = zero105[3] - small[3];
|
---|
265 | }
|
---|
266 |
|
---|
267 | /*-
|
---|
268 | * felem_diff subtracts |in| from |out|
|
---|
269 | * On entry:
|
---|
270 | * in[i] < 2^104
|
---|
271 | * On exit:
|
---|
272 | * out[i] < out[i] + 2^105
|
---|
273 | */
|
---|
274 | static void felem_diff(felem out, const felem in)
|
---|
275 | {
|
---|
276 | /*
|
---|
277 | * In order to prevent underflow, we add 0 mod p before subtracting.
|
---|
278 | */
|
---|
279 | out[0] += zero105[0];
|
---|
280 | out[1] += zero105[1];
|
---|
281 | out[2] += zero105[2];
|
---|
282 | out[3] += zero105[3];
|
---|
283 |
|
---|
284 | out[0] -= in[0];
|
---|
285 | out[1] -= in[1];
|
---|
286 | out[2] -= in[2];
|
---|
287 | out[3] -= in[3];
|
---|
288 | }
|
---|
289 |
|
---|
290 | # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
|
---|
291 | # define two107 (((limb)1) << 107)
|
---|
292 | # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
|
---|
293 |
|
---|
294 | /* zero107 is 0 mod p */
|
---|
295 | static const felem zero107 =
|
---|
296 | { two107m43m11, two107, two107m43p11, two107m43p11 };
|
---|
297 |
|
---|
298 | /*-
|
---|
299 | * An alternative felem_diff for larger inputs |in|
|
---|
300 | * felem_diff_zero107 subtracts |in| from |out|
|
---|
301 | * On entry:
|
---|
302 | * in[i] < 2^106
|
---|
303 | * On exit:
|
---|
304 | * out[i] < out[i] + 2^107
|
---|
305 | */
|
---|
306 | static void felem_diff_zero107(felem out, const felem in)
|
---|
307 | {
|
---|
308 | /*
|
---|
309 | * In order to prevent underflow, we add 0 mod p before subtracting.
|
---|
310 | */
|
---|
311 | out[0] += zero107[0];
|
---|
312 | out[1] += zero107[1];
|
---|
313 | out[2] += zero107[2];
|
---|
314 | out[3] += zero107[3];
|
---|
315 |
|
---|
316 | out[0] -= in[0];
|
---|
317 | out[1] -= in[1];
|
---|
318 | out[2] -= in[2];
|
---|
319 | out[3] -= in[3];
|
---|
320 | }
|
---|
321 |
|
---|
322 | /*-
|
---|
323 | * longfelem_diff subtracts |in| from |out|
|
---|
324 | * On entry:
|
---|
325 | * in[i] < 7*2^67
|
---|
326 | * On exit:
|
---|
327 | * out[i] < out[i] + 2^70 + 2^40
|
---|
328 | */
|
---|
329 | static void longfelem_diff(longfelem out, const longfelem in)
|
---|
330 | {
|
---|
331 | static const limb two70m8p6 =
|
---|
332 | (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6);
|
---|
333 | static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40);
|
---|
334 | static const limb two70 = (((limb) 1) << 70);
|
---|
335 | static const limb two70m40m38p6 =
|
---|
336 | (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) +
|
---|
337 | (((limb) 1) << 6);
|
---|
338 | static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6);
|
---|
339 |
|
---|
340 | /* add 0 mod p to avoid underflow */
|
---|
341 | out[0] += two70m8p6;
|
---|
342 | out[1] += two70p40;
|
---|
343 | out[2] += two70;
|
---|
344 | out[3] += two70m40m38p6;
|
---|
345 | out[4] += two70m6;
|
---|
346 | out[5] += two70m6;
|
---|
347 | out[6] += two70m6;
|
---|
348 | out[7] += two70m6;
|
---|
349 |
|
---|
350 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
|
---|
351 | out[0] -= in[0];
|
---|
352 | out[1] -= in[1];
|
---|
353 | out[2] -= in[2];
|
---|
354 | out[3] -= in[3];
|
---|
355 | out[4] -= in[4];
|
---|
356 | out[5] -= in[5];
|
---|
357 | out[6] -= in[6];
|
---|
358 | out[7] -= in[7];
|
---|
359 | }
|
---|
360 |
|
---|
361 | # define two64m0 (((limb)1) << 64) - 1
|
---|
362 | # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
|
---|
363 | # define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
|
---|
364 | # define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
|
---|
365 |
|
---|
366 | /* zero110 is 0 mod p */
|
---|
367 | static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 };
|
---|
368 |
|
---|
369 | /*-
|
---|
370 | * felem_shrink converts an felem into a smallfelem. The result isn't quite
|
---|
371 | * minimal as the value may be greater than p.
|
---|
372 | *
|
---|
373 | * On entry:
|
---|
374 | * in[i] < 2^109
|
---|
375 | * On exit:
|
---|
376 | * out[i] < 2^64
|
---|
377 | */
|
---|
378 | static void felem_shrink(smallfelem out, const felem in)
|
---|
379 | {
|
---|
380 | felem tmp;
|
---|
381 | u64 a, b, mask;
|
---|
382 | u64 high, low;
|
---|
383 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
|
---|
384 |
|
---|
385 | /* Carry 2->3 */
|
---|
386 | tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
|
---|
387 | /* tmp[3] < 2^110 */
|
---|
388 |
|
---|
389 | tmp[2] = zero110[2] + (u64)in[2];
|
---|
390 | tmp[0] = zero110[0] + in[0];
|
---|
391 | tmp[1] = zero110[1] + in[1];
|
---|
392 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
|
---|
393 |
|
---|
394 | /*
|
---|
395 | * We perform two partial reductions where we eliminate the high-word of
|
---|
396 | * tmp[3]. We don't update the other words till the end.
|
---|
397 | */
|
---|
398 | a = tmp[3] >> 64; /* a < 2^46 */
|
---|
399 | tmp[3] = (u64)tmp[3];
|
---|
400 | tmp[3] -= a;
|
---|
401 | tmp[3] += ((limb) a) << 32;
|
---|
402 | /* tmp[3] < 2^79 */
|
---|
403 |
|
---|
404 | b = a;
|
---|
405 | a = tmp[3] >> 64; /* a < 2^15 */
|
---|
406 | b += a; /* b < 2^46 + 2^15 < 2^47 */
|
---|
407 | tmp[3] = (u64)tmp[3];
|
---|
408 | tmp[3] -= a;
|
---|
409 | tmp[3] += ((limb) a) << 32;
|
---|
410 | /* tmp[3] < 2^64 + 2^47 */
|
---|
411 |
|
---|
412 | /*
|
---|
413 | * This adjusts the other two words to complete the two partial
|
---|
414 | * reductions.
|
---|
415 | */
|
---|
416 | tmp[0] += b;
|
---|
417 | tmp[1] -= (((limb) b) << 32);
|
---|
418 |
|
---|
419 | /*
|
---|
420 | * In order to make space in tmp[3] for the carry from 2 -> 3, we
|
---|
421 | * conditionally subtract kPrime if tmp[3] is large enough.
|
---|
422 | */
|
---|
423 | high = (u64)(tmp[3] >> 64);
|
---|
424 | /* As tmp[3] < 2^65, high is either 1 or 0 */
|
---|
425 | high = 0 - high;
|
---|
426 | /*-
|
---|
427 | * high is:
|
---|
428 | * all ones if the high word of tmp[3] is 1
|
---|
429 | * all zeros if the high word of tmp[3] if 0
|
---|
430 | */
|
---|
431 | low = (u64)tmp[3];
|
---|
432 | mask = 0 - (low >> 63);
|
---|
433 | /*-
|
---|
434 | * mask is:
|
---|
435 | * all ones if the MSB of low is 1
|
---|
436 | * all zeros if the MSB of low if 0
|
---|
437 | */
|
---|
438 | low &= bottom63bits;
|
---|
439 | low -= kPrime3Test;
|
---|
440 | /* if low was greater than kPrime3Test then the MSB is zero */
|
---|
441 | low = ~low;
|
---|
442 | low = 0 - (low >> 63);
|
---|
443 | /*-
|
---|
444 | * low is:
|
---|
445 | * all ones if low was > kPrime3Test
|
---|
446 | * all zeros if low was <= kPrime3Test
|
---|
447 | */
|
---|
448 | mask = (mask & low) | high;
|
---|
449 | tmp[0] -= mask & kPrime[0];
|
---|
450 | tmp[1] -= mask & kPrime[1];
|
---|
451 | /* kPrime[2] is zero, so omitted */
|
---|
452 | tmp[3] -= mask & kPrime[3];
|
---|
453 | /* tmp[3] < 2**64 - 2**32 + 1 */
|
---|
454 |
|
---|
455 | tmp[1] += ((u64)(tmp[0] >> 64));
|
---|
456 | tmp[0] = (u64)tmp[0];
|
---|
457 | tmp[2] += ((u64)(tmp[1] >> 64));
|
---|
458 | tmp[1] = (u64)tmp[1];
|
---|
459 | tmp[3] += ((u64)(tmp[2] >> 64));
|
---|
460 | tmp[2] = (u64)tmp[2];
|
---|
461 | /* tmp[i] < 2^64 */
|
---|
462 |
|
---|
463 | out[0] = tmp[0];
|
---|
464 | out[1] = tmp[1];
|
---|
465 | out[2] = tmp[2];
|
---|
466 | out[3] = tmp[3];
|
---|
467 | }
|
---|
468 |
|
---|
469 | /* smallfelem_expand converts a smallfelem to an felem */
|
---|
470 | static void smallfelem_expand(felem out, const smallfelem in)
|
---|
471 | {
|
---|
472 | out[0] = in[0];
|
---|
473 | out[1] = in[1];
|
---|
474 | out[2] = in[2];
|
---|
475 | out[3] = in[3];
|
---|
476 | }
|
---|
477 |
|
---|
478 | /*-
|
---|
479 | * smallfelem_square sets |out| = |small|^2
|
---|
480 | * On entry:
|
---|
481 | * small[i] < 2^64
|
---|
482 | * On exit:
|
---|
483 | * out[i] < 7 * 2^64 < 2^67
|
---|
484 | */
|
---|
485 | static void smallfelem_square(longfelem out, const smallfelem small)
|
---|
486 | {
|
---|
487 | limb a;
|
---|
488 | u64 high, low;
|
---|
489 |
|
---|
490 | a = ((uint128_t) small[0]) * small[0];
|
---|
491 | low = a;
|
---|
492 | high = a >> 64;
|
---|
493 | out[0] = low;
|
---|
494 | out[1] = high;
|
---|
495 |
|
---|
496 | a = ((uint128_t) small[0]) * small[1];
|
---|
497 | low = a;
|
---|
498 | high = a >> 64;
|
---|
499 | out[1] += low;
|
---|
500 | out[1] += low;
|
---|
501 | out[2] = high;
|
---|
502 |
|
---|
503 | a = ((uint128_t) small[0]) * small[2];
|
---|
504 | low = a;
|
---|
505 | high = a >> 64;
|
---|
506 | out[2] += low;
|
---|
507 | out[2] *= 2;
|
---|
508 | out[3] = high;
|
---|
509 |
|
---|
510 | a = ((uint128_t) small[0]) * small[3];
|
---|
511 | low = a;
|
---|
512 | high = a >> 64;
|
---|
513 | out[3] += low;
|
---|
514 | out[4] = high;
|
---|
515 |
|
---|
516 | a = ((uint128_t) small[1]) * small[2];
|
---|
517 | low = a;
|
---|
518 | high = a >> 64;
|
---|
519 | out[3] += low;
|
---|
520 | out[3] *= 2;
|
---|
521 | out[4] += high;
|
---|
522 |
|
---|
523 | a = ((uint128_t) small[1]) * small[1];
|
---|
524 | low = a;
|
---|
525 | high = a >> 64;
|
---|
526 | out[2] += low;
|
---|
527 | out[3] += high;
|
---|
528 |
|
---|
529 | a = ((uint128_t) small[1]) * small[3];
|
---|
530 | low = a;
|
---|
531 | high = a >> 64;
|
---|
532 | out[4] += low;
|
---|
533 | out[4] *= 2;
|
---|
534 | out[5] = high;
|
---|
535 |
|
---|
536 | a = ((uint128_t) small[2]) * small[3];
|
---|
537 | low = a;
|
---|
538 | high = a >> 64;
|
---|
539 | out[5] += low;
|
---|
540 | out[5] *= 2;
|
---|
541 | out[6] = high;
|
---|
542 | out[6] += high;
|
---|
543 |
|
---|
544 | a = ((uint128_t) small[2]) * small[2];
|
---|
545 | low = a;
|
---|
546 | high = a >> 64;
|
---|
547 | out[4] += low;
|
---|
548 | out[5] += high;
|
---|
549 |
|
---|
550 | a = ((uint128_t) small[3]) * small[3];
|
---|
551 | low = a;
|
---|
552 | high = a >> 64;
|
---|
553 | out[6] += low;
|
---|
554 | out[7] = high;
|
---|
555 | }
|
---|
556 |
|
---|
557 | /*-
|
---|
558 | * felem_square sets |out| = |in|^2
|
---|
559 | * On entry:
|
---|
560 | * in[i] < 2^109
|
---|
561 | * On exit:
|
---|
562 | * out[i] < 7 * 2^64 < 2^67
|
---|
563 | */
|
---|
564 | static void felem_square(longfelem out, const felem in)
|
---|
565 | {
|
---|
566 | u64 small[4];
|
---|
567 | felem_shrink(small, in);
|
---|
568 | smallfelem_square(out, small);
|
---|
569 | }
|
---|
570 |
|
---|
571 | /*-
|
---|
572 | * smallfelem_mul sets |out| = |small1| * |small2|
|
---|
573 | * On entry:
|
---|
574 | * small1[i] < 2^64
|
---|
575 | * small2[i] < 2^64
|
---|
576 | * On exit:
|
---|
577 | * out[i] < 7 * 2^64 < 2^67
|
---|
578 | */
|
---|
579 | static void smallfelem_mul(longfelem out, const smallfelem small1,
|
---|
580 | const smallfelem small2)
|
---|
581 | {
|
---|
582 | limb a;
|
---|
583 | u64 high, low;
|
---|
584 |
|
---|
585 | a = ((uint128_t) small1[0]) * small2[0];
|
---|
586 | low = a;
|
---|
587 | high = a >> 64;
|
---|
588 | out[0] = low;
|
---|
589 | out[1] = high;
|
---|
590 |
|
---|
591 | a = ((uint128_t) small1[0]) * small2[1];
|
---|
592 | low = a;
|
---|
593 | high = a >> 64;
|
---|
594 | out[1] += low;
|
---|
595 | out[2] = high;
|
---|
596 |
|
---|
597 | a = ((uint128_t) small1[1]) * small2[0];
|
---|
598 | low = a;
|
---|
599 | high = a >> 64;
|
---|
600 | out[1] += low;
|
---|
601 | out[2] += high;
|
---|
602 |
|
---|
603 | a = ((uint128_t) small1[0]) * small2[2];
|
---|
604 | low = a;
|
---|
605 | high = a >> 64;
|
---|
606 | out[2] += low;
|
---|
607 | out[3] = high;
|
---|
608 |
|
---|
609 | a = ((uint128_t) small1[1]) * small2[1];
|
---|
610 | low = a;
|
---|
611 | high = a >> 64;
|
---|
612 | out[2] += low;
|
---|
613 | out[3] += high;
|
---|
614 |
|
---|
615 | a = ((uint128_t) small1[2]) * small2[0];
|
---|
616 | low = a;
|
---|
617 | high = a >> 64;
|
---|
618 | out[2] += low;
|
---|
619 | out[3] += high;
|
---|
620 |
|
---|
621 | a = ((uint128_t) small1[0]) * small2[3];
|
---|
622 | low = a;
|
---|
623 | high = a >> 64;
|
---|
624 | out[3] += low;
|
---|
625 | out[4] = high;
|
---|
626 |
|
---|
627 | a = ((uint128_t) small1[1]) * small2[2];
|
---|
628 | low = a;
|
---|
629 | high = a >> 64;
|
---|
630 | out[3] += low;
|
---|
631 | out[4] += high;
|
---|
632 |
|
---|
633 | a = ((uint128_t) small1[2]) * small2[1];
|
---|
634 | low = a;
|
---|
635 | high = a >> 64;
|
---|
636 | out[3] += low;
|
---|
637 | out[4] += high;
|
---|
638 |
|
---|
639 | a = ((uint128_t) small1[3]) * small2[0];
|
---|
640 | low = a;
|
---|
641 | high = a >> 64;
|
---|
642 | out[3] += low;
|
---|
643 | out[4] += high;
|
---|
644 |
|
---|
645 | a = ((uint128_t) small1[1]) * small2[3];
|
---|
646 | low = a;
|
---|
647 | high = a >> 64;
|
---|
648 | out[4] += low;
|
---|
649 | out[5] = high;
|
---|
650 |
|
---|
651 | a = ((uint128_t) small1[2]) * small2[2];
|
---|
652 | low = a;
|
---|
653 | high = a >> 64;
|
---|
654 | out[4] += low;
|
---|
655 | out[5] += high;
|
---|
656 |
|
---|
657 | a = ((uint128_t) small1[3]) * small2[1];
|
---|
658 | low = a;
|
---|
659 | high = a >> 64;
|
---|
660 | out[4] += low;
|
---|
661 | out[5] += high;
|
---|
662 |
|
---|
663 | a = ((uint128_t) small1[2]) * small2[3];
|
---|
664 | low = a;
|
---|
665 | high = a >> 64;
|
---|
666 | out[5] += low;
|
---|
667 | out[6] = high;
|
---|
668 |
|
---|
669 | a = ((uint128_t) small1[3]) * small2[2];
|
---|
670 | low = a;
|
---|
671 | high = a >> 64;
|
---|
672 | out[5] += low;
|
---|
673 | out[6] += high;
|
---|
674 |
|
---|
675 | a = ((uint128_t) small1[3]) * small2[3];
|
---|
676 | low = a;
|
---|
677 | high = a >> 64;
|
---|
678 | out[6] += low;
|
---|
679 | out[7] = high;
|
---|
680 | }
|
---|
681 |
|
---|
682 | /*-
|
---|
683 | * felem_mul sets |out| = |in1| * |in2|
|
---|
684 | * On entry:
|
---|
685 | * in1[i] < 2^109
|
---|
686 | * in2[i] < 2^109
|
---|
687 | * On exit:
|
---|
688 | * out[i] < 7 * 2^64 < 2^67
|
---|
689 | */
|
---|
690 | static void felem_mul(longfelem out, const felem in1, const felem in2)
|
---|
691 | {
|
---|
692 | smallfelem small1, small2;
|
---|
693 | felem_shrink(small1, in1);
|
---|
694 | felem_shrink(small2, in2);
|
---|
695 | smallfelem_mul(out, small1, small2);
|
---|
696 | }
|
---|
697 |
|
---|
698 | /*-
|
---|
699 | * felem_small_mul sets |out| = |small1| * |in2|
|
---|
700 | * On entry:
|
---|
701 | * small1[i] < 2^64
|
---|
702 | * in2[i] < 2^109
|
---|
703 | * On exit:
|
---|
704 | * out[i] < 7 * 2^64 < 2^67
|
---|
705 | */
|
---|
706 | static void felem_small_mul(longfelem out, const smallfelem small1,
|
---|
707 | const felem in2)
|
---|
708 | {
|
---|
709 | smallfelem small2;
|
---|
710 | felem_shrink(small2, in2);
|
---|
711 | smallfelem_mul(out, small1, small2);
|
---|
712 | }
|
---|
713 |
|
---|
714 | # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
|
---|
715 | # define two100 (((limb)1) << 100)
|
---|
716 | # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
|
---|
717 | /* zero100 is 0 mod p */
|
---|
718 | static const felem zero100 =
|
---|
719 | { two100m36m4, two100, two100m36p4, two100m36p4 };
|
---|
720 |
|
---|
721 | /*-
|
---|
722 | * Internal function for the different flavours of felem_reduce.
|
---|
723 | * felem_reduce_ reduces the higher coefficients in[4]-in[7].
|
---|
724 | * On entry:
|
---|
725 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
|
---|
726 | * out[1] >= in[7] + 2^32*in[4]
|
---|
727 | * out[2] >= in[5] + 2^32*in[5]
|
---|
728 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
|
---|
729 | * On exit:
|
---|
730 | * out[0] <= out[0] + in[4] + 2^32*in[5]
|
---|
731 | * out[1] <= out[1] + in[5] + 2^33*in[6]
|
---|
732 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
|
---|
733 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7]
|
---|
734 | */
|
---|
735 | static void felem_reduce_(felem out, const longfelem in)
|
---|
736 | {
|
---|
737 | int128_t c;
|
---|
738 | /* combine common terms from below */
|
---|
739 | c = in[4] + (in[5] << 32);
|
---|
740 | out[0] += c;
|
---|
741 | out[3] -= c;
|
---|
742 |
|
---|
743 | c = in[5] - in[7];
|
---|
744 | out[1] += c;
|
---|
745 | out[2] -= c;
|
---|
746 |
|
---|
747 | /* the remaining terms */
|
---|
748 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
|
---|
749 | out[1] -= (in[4] << 32);
|
---|
750 | out[3] += (in[4] << 32);
|
---|
751 |
|
---|
752 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
|
---|
753 | out[2] -= (in[5] << 32);
|
---|
754 |
|
---|
755 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
|
---|
756 | out[0] -= in[6];
|
---|
757 | out[0] -= (in[6] << 32);
|
---|
758 | out[1] += (in[6] << 33);
|
---|
759 | out[2] += (in[6] * 2);
|
---|
760 | out[3] -= (in[6] << 32);
|
---|
761 |
|
---|
762 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
|
---|
763 | out[0] -= in[7];
|
---|
764 | out[0] -= (in[7] << 32);
|
---|
765 | out[2] += (in[7] << 33);
|
---|
766 | out[3] += (in[7] * 3);
|
---|
767 | }
|
---|
768 |
|
---|
769 | /*-
|
---|
770 | * felem_reduce converts a longfelem into an felem.
|
---|
771 | * To be called directly after felem_square or felem_mul.
|
---|
772 | * On entry:
|
---|
773 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
|
---|
774 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
|
---|
775 | * On exit:
|
---|
776 | * out[i] < 2^101
|
---|
777 | */
|
---|
778 | static void felem_reduce(felem out, const longfelem in)
|
---|
779 | {
|
---|
780 | out[0] = zero100[0] + in[0];
|
---|
781 | out[1] = zero100[1] + in[1];
|
---|
782 | out[2] = zero100[2] + in[2];
|
---|
783 | out[3] = zero100[3] + in[3];
|
---|
784 |
|
---|
785 | felem_reduce_(out, in);
|
---|
786 |
|
---|
787 | /*-
|
---|
788 | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
|
---|
789 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0
|
---|
790 | * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
|
---|
791 | * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
|
---|
792 | *
|
---|
793 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
|
---|
794 | * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
|
---|
795 | * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
|
---|
796 | * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101
|
---|
797 | */
|
---|
798 | }
|
---|
799 |
|
---|
800 | /*-
|
---|
801 | * felem_reduce_zero105 converts a larger longfelem into an felem.
|
---|
802 | * On entry:
|
---|
803 | * in[0] < 2^71
|
---|
804 | * On exit:
|
---|
805 | * out[i] < 2^106
|
---|
806 | */
|
---|
807 | static void felem_reduce_zero105(felem out, const longfelem in)
|
---|
808 | {
|
---|
809 | out[0] = zero105[0] + in[0];
|
---|
810 | out[1] = zero105[1] + in[1];
|
---|
811 | out[2] = zero105[2] + in[2];
|
---|
812 | out[3] = zero105[3] + in[3];
|
---|
813 |
|
---|
814 | felem_reduce_(out, in);
|
---|
815 |
|
---|
816 | /*-
|
---|
817 | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
|
---|
818 | * out[1] > 2^105 - 2^71 - 2^103 > 0
|
---|
819 | * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
|
---|
820 | * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
|
---|
821 | *
|
---|
822 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
|
---|
823 | * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
|
---|
824 | * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
|
---|
825 | * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106
|
---|
826 | */
|
---|
827 | }
|
---|
828 |
|
---|
829 | /*
|
---|
830 | * subtract_u64 sets *result = *result - v and *carry to one if the
|
---|
831 | * subtraction underflowed.
|
---|
832 | */
|
---|
833 | static void subtract_u64(u64 *result, u64 *carry, u64 v)
|
---|
834 | {
|
---|
835 | uint128_t r = *result;
|
---|
836 | r -= v;
|
---|
837 | *carry = (r >> 64) & 1;
|
---|
838 | *result = (u64)r;
|
---|
839 | }
|
---|
840 |
|
---|
841 | /*
|
---|
842 | * felem_contract converts |in| to its unique, minimal representation. On
|
---|
843 | * entry: in[i] < 2^109
|
---|
844 | */
|
---|
845 | static void felem_contract(smallfelem out, const felem in)
|
---|
846 | {
|
---|
847 | unsigned i;
|
---|
848 | u64 all_equal_so_far = 0, result = 0, carry;
|
---|
849 |
|
---|
850 | felem_shrink(out, in);
|
---|
851 | /* small is minimal except that the value might be > p */
|
---|
852 |
|
---|
853 | all_equal_so_far--;
|
---|
854 | /*
|
---|
855 | * We are doing a constant time test if out >= kPrime. We need to compare
|
---|
856 | * each u64, from most-significant to least significant. For each one, if
|
---|
857 | * all words so far have been equal (m is all ones) then a non-equal
|
---|
858 | * result is the answer. Otherwise we continue.
|
---|
859 | */
|
---|
860 | for (i = 3; i < 4; i--) {
|
---|
861 | u64 equal;
|
---|
862 | uint128_t a = ((uint128_t) kPrime[i]) - out[i];
|
---|
863 | /*
|
---|
864 | * if out[i] > kPrime[i] then a will underflow and the high 64-bits
|
---|
865 | * will all be set.
|
---|
866 | */
|
---|
867 | result |= all_equal_so_far & ((u64)(a >> 64));
|
---|
868 |
|
---|
869 | /*
|
---|
870 | * if kPrime[i] == out[i] then |equal| will be all zeros and the
|
---|
871 | * decrement will make it all ones.
|
---|
872 | */
|
---|
873 | equal = kPrime[i] ^ out[i];
|
---|
874 | equal--;
|
---|
875 | equal &= equal << 32;
|
---|
876 | equal &= equal << 16;
|
---|
877 | equal &= equal << 8;
|
---|
878 | equal &= equal << 4;
|
---|
879 | equal &= equal << 2;
|
---|
880 | equal &= equal << 1;
|
---|
881 | equal = 0 - (equal >> 63);
|
---|
882 |
|
---|
883 | all_equal_so_far &= equal;
|
---|
884 | }
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * if all_equal_so_far is still all ones then the two values are equal
|
---|
888 | * and so out >= kPrime is true.
|
---|
889 | */
|
---|
890 | result |= all_equal_so_far;
|
---|
891 |
|
---|
892 | /* if out >= kPrime then we subtract kPrime. */
|
---|
893 | subtract_u64(&out[0], &carry, result & kPrime[0]);
|
---|
894 | subtract_u64(&out[1], &carry, carry);
|
---|
895 | subtract_u64(&out[2], &carry, carry);
|
---|
896 | subtract_u64(&out[3], &carry, carry);
|
---|
897 |
|
---|
898 | subtract_u64(&out[1], &carry, result & kPrime[1]);
|
---|
899 | subtract_u64(&out[2], &carry, carry);
|
---|
900 | subtract_u64(&out[3], &carry, carry);
|
---|
901 |
|
---|
902 | subtract_u64(&out[2], &carry, result & kPrime[2]);
|
---|
903 | subtract_u64(&out[3], &carry, carry);
|
---|
904 |
|
---|
905 | subtract_u64(&out[3], &carry, result & kPrime[3]);
|
---|
906 | }
|
---|
907 |
|
---|
908 | static void smallfelem_square_contract(smallfelem out, const smallfelem in)
|
---|
909 | {
|
---|
910 | longfelem longtmp;
|
---|
911 | felem tmp;
|
---|
912 |
|
---|
913 | smallfelem_square(longtmp, in);
|
---|
914 | felem_reduce(tmp, longtmp);
|
---|
915 | felem_contract(out, tmp);
|
---|
916 | }
|
---|
917 |
|
---|
918 | static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
|
---|
919 | const smallfelem in2)
|
---|
920 | {
|
---|
921 | longfelem longtmp;
|
---|
922 | felem tmp;
|
---|
923 |
|
---|
924 | smallfelem_mul(longtmp, in1, in2);
|
---|
925 | felem_reduce(tmp, longtmp);
|
---|
926 | felem_contract(out, tmp);
|
---|
927 | }
|
---|
928 |
|
---|
929 | /*-
|
---|
930 | * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
|
---|
931 | * otherwise.
|
---|
932 | * On entry:
|
---|
933 | * small[i] < 2^64
|
---|
934 | */
|
---|
935 | static limb smallfelem_is_zero(const smallfelem small)
|
---|
936 | {
|
---|
937 | limb result;
|
---|
938 | u64 is_p;
|
---|
939 |
|
---|
940 | u64 is_zero = small[0] | small[1] | small[2] | small[3];
|
---|
941 | is_zero--;
|
---|
942 | is_zero &= is_zero << 32;
|
---|
943 | is_zero &= is_zero << 16;
|
---|
944 | is_zero &= is_zero << 8;
|
---|
945 | is_zero &= is_zero << 4;
|
---|
946 | is_zero &= is_zero << 2;
|
---|
947 | is_zero &= is_zero << 1;
|
---|
948 | is_zero = 0 - (is_zero >> 63);
|
---|
949 |
|
---|
950 | is_p = (small[0] ^ kPrime[0]) |
|
---|
951 | (small[1] ^ kPrime[1]) |
|
---|
952 | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
|
---|
953 | is_p--;
|
---|
954 | is_p &= is_p << 32;
|
---|
955 | is_p &= is_p << 16;
|
---|
956 | is_p &= is_p << 8;
|
---|
957 | is_p &= is_p << 4;
|
---|
958 | is_p &= is_p << 2;
|
---|
959 | is_p &= is_p << 1;
|
---|
960 | is_p = 0 - (is_p >> 63);
|
---|
961 |
|
---|
962 | is_zero |= is_p;
|
---|
963 |
|
---|
964 | result = is_zero;
|
---|
965 | result |= ((limb) is_zero) << 64;
|
---|
966 | return result;
|
---|
967 | }
|
---|
968 |
|
---|
969 | static int smallfelem_is_zero_int(const void *small)
|
---|
970 | {
|
---|
971 | return (int)(smallfelem_is_zero(small) & ((limb) 1));
|
---|
972 | }
|
---|
973 |
|
---|
974 | /*-
|
---|
975 | * felem_inv calculates |out| = |in|^{-1}
|
---|
976 | *
|
---|
977 | * Based on Fermat's Little Theorem:
|
---|
978 | * a^p = a (mod p)
|
---|
979 | * a^{p-1} = 1 (mod p)
|
---|
980 | * a^{p-2} = a^{-1} (mod p)
|
---|
981 | */
|
---|
982 | static void felem_inv(felem out, const felem in)
|
---|
983 | {
|
---|
984 | felem ftmp, ftmp2;
|
---|
985 | /* each e_I will hold |in|^{2^I - 1} */
|
---|
986 | felem e2, e4, e8, e16, e32, e64;
|
---|
987 | longfelem tmp;
|
---|
988 | unsigned i;
|
---|
989 |
|
---|
990 | felem_square(tmp, in);
|
---|
991 | felem_reduce(ftmp, tmp); /* 2^1 */
|
---|
992 | felem_mul(tmp, in, ftmp);
|
---|
993 | felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
|
---|
994 | felem_assign(e2, ftmp);
|
---|
995 | felem_square(tmp, ftmp);
|
---|
996 | felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
|
---|
997 | felem_square(tmp, ftmp);
|
---|
998 | felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
|
---|
999 | felem_mul(tmp, ftmp, e2);
|
---|
1000 | felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
|
---|
1001 | felem_assign(e4, ftmp);
|
---|
1002 | felem_square(tmp, ftmp);
|
---|
1003 | felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
|
---|
1004 | felem_square(tmp, ftmp);
|
---|
1005 | felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
|
---|
1006 | felem_square(tmp, ftmp);
|
---|
1007 | felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
|
---|
1008 | felem_square(tmp, ftmp);
|
---|
1009 | felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
|
---|
1010 | felem_mul(tmp, ftmp, e4);
|
---|
1011 | felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
|
---|
1012 | felem_assign(e8, ftmp);
|
---|
1013 | for (i = 0; i < 8; i++) {
|
---|
1014 | felem_square(tmp, ftmp);
|
---|
1015 | felem_reduce(ftmp, tmp);
|
---|
1016 | } /* 2^16 - 2^8 */
|
---|
1017 | felem_mul(tmp, ftmp, e8);
|
---|
1018 | felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
|
---|
1019 | felem_assign(e16, ftmp);
|
---|
1020 | for (i = 0; i < 16; i++) {
|
---|
1021 | felem_square(tmp, ftmp);
|
---|
1022 | felem_reduce(ftmp, tmp);
|
---|
1023 | } /* 2^32 - 2^16 */
|
---|
1024 | felem_mul(tmp, ftmp, e16);
|
---|
1025 | felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
|
---|
1026 | felem_assign(e32, ftmp);
|
---|
1027 | for (i = 0; i < 32; i++) {
|
---|
1028 | felem_square(tmp, ftmp);
|
---|
1029 | felem_reduce(ftmp, tmp);
|
---|
1030 | } /* 2^64 - 2^32 */
|
---|
1031 | felem_assign(e64, ftmp);
|
---|
1032 | felem_mul(tmp, ftmp, in);
|
---|
1033 | felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
|
---|
1034 | for (i = 0; i < 192; i++) {
|
---|
1035 | felem_square(tmp, ftmp);
|
---|
1036 | felem_reduce(ftmp, tmp);
|
---|
1037 | } /* 2^256 - 2^224 + 2^192 */
|
---|
1038 |
|
---|
1039 | felem_mul(tmp, e64, e32);
|
---|
1040 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
|
---|
1041 | for (i = 0; i < 16; i++) {
|
---|
1042 | felem_square(tmp, ftmp2);
|
---|
1043 | felem_reduce(ftmp2, tmp);
|
---|
1044 | } /* 2^80 - 2^16 */
|
---|
1045 | felem_mul(tmp, ftmp2, e16);
|
---|
1046 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
|
---|
1047 | for (i = 0; i < 8; i++) {
|
---|
1048 | felem_square(tmp, ftmp2);
|
---|
1049 | felem_reduce(ftmp2, tmp);
|
---|
1050 | } /* 2^88 - 2^8 */
|
---|
1051 | felem_mul(tmp, ftmp2, e8);
|
---|
1052 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
|
---|
1053 | for (i = 0; i < 4; i++) {
|
---|
1054 | felem_square(tmp, ftmp2);
|
---|
1055 | felem_reduce(ftmp2, tmp);
|
---|
1056 | } /* 2^92 - 2^4 */
|
---|
1057 | felem_mul(tmp, ftmp2, e4);
|
---|
1058 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
|
---|
1059 | felem_square(tmp, ftmp2);
|
---|
1060 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
|
---|
1061 | felem_square(tmp, ftmp2);
|
---|
1062 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
|
---|
1063 | felem_mul(tmp, ftmp2, e2);
|
---|
1064 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
|
---|
1065 | felem_square(tmp, ftmp2);
|
---|
1066 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
|
---|
1067 | felem_square(tmp, ftmp2);
|
---|
1068 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
|
---|
1069 | felem_mul(tmp, ftmp2, in);
|
---|
1070 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
|
---|
1071 |
|
---|
1072 | felem_mul(tmp, ftmp2, ftmp);
|
---|
1073 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | static void smallfelem_inv_contract(smallfelem out, const smallfelem in)
|
---|
1077 | {
|
---|
1078 | felem tmp;
|
---|
1079 |
|
---|
1080 | smallfelem_expand(tmp, in);
|
---|
1081 | felem_inv(tmp, tmp);
|
---|
1082 | felem_contract(out, tmp);
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | /*-
|
---|
1086 | * Group operations
|
---|
1087 | * ----------------
|
---|
1088 | *
|
---|
1089 | * Building on top of the field operations we have the operations on the
|
---|
1090 | * elliptic curve group itself. Points on the curve are represented in Jacobian
|
---|
1091 | * coordinates
|
---|
1092 | */
|
---|
1093 |
|
---|
1094 | /*-
|
---|
1095 | * point_double calculates 2*(x_in, y_in, z_in)
|
---|
1096 | *
|
---|
1097 | * The method is taken from:
|
---|
1098 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
---|
1099 | *
|
---|
1100 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
|
---|
1101 | * while x_out == y_in is not (maybe this works, but it's not tested).
|
---|
1102 | */
|
---|
1103 | static void
|
---|
1104 | point_double(felem x_out, felem y_out, felem z_out,
|
---|
1105 | const felem x_in, const felem y_in, const felem z_in)
|
---|
1106 | {
|
---|
1107 | longfelem tmp, tmp2;
|
---|
1108 | felem delta, gamma, beta, alpha, ftmp, ftmp2;
|
---|
1109 | smallfelem small1, small2;
|
---|
1110 |
|
---|
1111 | felem_assign(ftmp, x_in);
|
---|
1112 | /* ftmp[i] < 2^106 */
|
---|
1113 | felem_assign(ftmp2, x_in);
|
---|
1114 | /* ftmp2[i] < 2^106 */
|
---|
1115 |
|
---|
1116 | /* delta = z^2 */
|
---|
1117 | felem_square(tmp, z_in);
|
---|
1118 | felem_reduce(delta, tmp);
|
---|
1119 | /* delta[i] < 2^101 */
|
---|
1120 |
|
---|
1121 | /* gamma = y^2 */
|
---|
1122 | felem_square(tmp, y_in);
|
---|
1123 | felem_reduce(gamma, tmp);
|
---|
1124 | /* gamma[i] < 2^101 */
|
---|
1125 | felem_shrink(small1, gamma);
|
---|
1126 |
|
---|
1127 | /* beta = x*gamma */
|
---|
1128 | felem_small_mul(tmp, small1, x_in);
|
---|
1129 | felem_reduce(beta, tmp);
|
---|
1130 | /* beta[i] < 2^101 */
|
---|
1131 |
|
---|
1132 | /* alpha = 3*(x-delta)*(x+delta) */
|
---|
1133 | felem_diff(ftmp, delta);
|
---|
1134 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */
|
---|
1135 | felem_sum(ftmp2, delta);
|
---|
1136 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
|
---|
1137 | felem_scalar(ftmp2, 3);
|
---|
1138 | /* ftmp2[i] < 3 * 2^107 < 2^109 */
|
---|
1139 | felem_mul(tmp, ftmp, ftmp2);
|
---|
1140 | felem_reduce(alpha, tmp);
|
---|
1141 | /* alpha[i] < 2^101 */
|
---|
1142 | felem_shrink(small2, alpha);
|
---|
1143 |
|
---|
1144 | /* x' = alpha^2 - 8*beta */
|
---|
1145 | smallfelem_square(tmp, small2);
|
---|
1146 | felem_reduce(x_out, tmp);
|
---|
1147 | felem_assign(ftmp, beta);
|
---|
1148 | felem_scalar(ftmp, 8);
|
---|
1149 | /* ftmp[i] < 8 * 2^101 = 2^104 */
|
---|
1150 | felem_diff(x_out, ftmp);
|
---|
1151 | /* x_out[i] < 2^105 + 2^101 < 2^106 */
|
---|
1152 |
|
---|
1153 | /* z' = (y + z)^2 - gamma - delta */
|
---|
1154 | felem_sum(delta, gamma);
|
---|
1155 | /* delta[i] < 2^101 + 2^101 = 2^102 */
|
---|
1156 | felem_assign(ftmp, y_in);
|
---|
1157 | felem_sum(ftmp, z_in);
|
---|
1158 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */
|
---|
1159 | felem_square(tmp, ftmp);
|
---|
1160 | felem_reduce(z_out, tmp);
|
---|
1161 | felem_diff(z_out, delta);
|
---|
1162 | /* z_out[i] < 2^105 + 2^101 < 2^106 */
|
---|
1163 |
|
---|
1164 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */
|
---|
1165 | felem_scalar(beta, 4);
|
---|
1166 | /* beta[i] < 4 * 2^101 = 2^103 */
|
---|
1167 | felem_diff_zero107(beta, x_out);
|
---|
1168 | /* beta[i] < 2^107 + 2^103 < 2^108 */
|
---|
1169 | felem_small_mul(tmp, small2, beta);
|
---|
1170 | /* tmp[i] < 7 * 2^64 < 2^67 */
|
---|
1171 | smallfelem_square(tmp2, small1);
|
---|
1172 | /* tmp2[i] < 7 * 2^64 */
|
---|
1173 | longfelem_scalar(tmp2, 8);
|
---|
1174 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
|
---|
1175 | longfelem_diff(tmp, tmp2);
|
---|
1176 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
|
---|
1177 | felem_reduce_zero105(y_out, tmp);
|
---|
1178 | /* y_out[i] < 2^106 */
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 | /*
|
---|
1182 | * point_double_small is the same as point_double, except that it operates on
|
---|
1183 | * smallfelems
|
---|
1184 | */
|
---|
1185 | static void
|
---|
1186 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out,
|
---|
1187 | const smallfelem x_in, const smallfelem y_in,
|
---|
1188 | const smallfelem z_in)
|
---|
1189 | {
|
---|
1190 | felem felem_x_out, felem_y_out, felem_z_out;
|
---|
1191 | felem felem_x_in, felem_y_in, felem_z_in;
|
---|
1192 |
|
---|
1193 | smallfelem_expand(felem_x_in, x_in);
|
---|
1194 | smallfelem_expand(felem_y_in, y_in);
|
---|
1195 | smallfelem_expand(felem_z_in, z_in);
|
---|
1196 | point_double(felem_x_out, felem_y_out, felem_z_out,
|
---|
1197 | felem_x_in, felem_y_in, felem_z_in);
|
---|
1198 | felem_shrink(x_out, felem_x_out);
|
---|
1199 | felem_shrink(y_out, felem_y_out);
|
---|
1200 | felem_shrink(z_out, felem_z_out);
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | /* copy_conditional copies in to out iff mask is all ones. */
|
---|
1204 | static void copy_conditional(felem out, const felem in, limb mask)
|
---|
1205 | {
|
---|
1206 | unsigned i;
|
---|
1207 | for (i = 0; i < NLIMBS; ++i) {
|
---|
1208 | const limb tmp = mask & (in[i] ^ out[i]);
|
---|
1209 | out[i] ^= tmp;
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 |
|
---|
1213 | /* copy_small_conditional copies in to out iff mask is all ones. */
|
---|
1214 | static void copy_small_conditional(felem out, const smallfelem in, limb mask)
|
---|
1215 | {
|
---|
1216 | unsigned i;
|
---|
1217 | const u64 mask64 = mask;
|
---|
1218 | for (i = 0; i < NLIMBS; ++i) {
|
---|
1219 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask);
|
---|
1220 | }
|
---|
1221 | }
|
---|
1222 |
|
---|
1223 | /*-
|
---|
1224 | * point_add calculates (x1, y1, z1) + (x2, y2, z2)
|
---|
1225 | *
|
---|
1226 | * The method is taken from:
|
---|
1227 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
|
---|
1228 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
|
---|
1229 | *
|
---|
1230 | * This function includes a branch for checking whether the two input points
|
---|
1231 | * are equal, (while not equal to the point at infinity). This case never
|
---|
1232 | * happens during single point multiplication, so there is no timing leak for
|
---|
1233 | * ECDH or ECDSA signing.
|
---|
1234 | */
|
---|
1235 | static void point_add(felem x3, felem y3, felem z3,
|
---|
1236 | const felem x1, const felem y1, const felem z1,
|
---|
1237 | const int mixed, const smallfelem x2,
|
---|
1238 | const smallfelem y2, const smallfelem z2)
|
---|
1239 | {
|
---|
1240 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
|
---|
1241 | longfelem tmp, tmp2;
|
---|
1242 | smallfelem small1, small2, small3, small4, small5;
|
---|
1243 | limb x_equal, y_equal, z1_is_zero, z2_is_zero;
|
---|
1244 | limb points_equal;
|
---|
1245 |
|
---|
1246 | felem_shrink(small3, z1);
|
---|
1247 |
|
---|
1248 | z1_is_zero = smallfelem_is_zero(small3);
|
---|
1249 | z2_is_zero = smallfelem_is_zero(z2);
|
---|
1250 |
|
---|
1251 | /* ftmp = z1z1 = z1**2 */
|
---|
1252 | smallfelem_square(tmp, small3);
|
---|
1253 | felem_reduce(ftmp, tmp);
|
---|
1254 | /* ftmp[i] < 2^101 */
|
---|
1255 | felem_shrink(small1, ftmp);
|
---|
1256 |
|
---|
1257 | if (!mixed) {
|
---|
1258 | /* ftmp2 = z2z2 = z2**2 */
|
---|
1259 | smallfelem_square(tmp, z2);
|
---|
1260 | felem_reduce(ftmp2, tmp);
|
---|
1261 | /* ftmp2[i] < 2^101 */
|
---|
1262 | felem_shrink(small2, ftmp2);
|
---|
1263 |
|
---|
1264 | felem_shrink(small5, x1);
|
---|
1265 |
|
---|
1266 | /* u1 = ftmp3 = x1*z2z2 */
|
---|
1267 | smallfelem_mul(tmp, small5, small2);
|
---|
1268 | felem_reduce(ftmp3, tmp);
|
---|
1269 | /* ftmp3[i] < 2^101 */
|
---|
1270 |
|
---|
1271 | /* ftmp5 = z1 + z2 */
|
---|
1272 | felem_assign(ftmp5, z1);
|
---|
1273 | felem_small_sum(ftmp5, z2);
|
---|
1274 | /* ftmp5[i] < 2^107 */
|
---|
1275 |
|
---|
1276 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
|
---|
1277 | felem_square(tmp, ftmp5);
|
---|
1278 | felem_reduce(ftmp5, tmp);
|
---|
1279 | /* ftmp2 = z2z2 + z1z1 */
|
---|
1280 | felem_sum(ftmp2, ftmp);
|
---|
1281 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
|
---|
1282 | felem_diff(ftmp5, ftmp2);
|
---|
1283 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
|
---|
1284 |
|
---|
1285 | /* ftmp2 = z2 * z2z2 */
|
---|
1286 | smallfelem_mul(tmp, small2, z2);
|
---|
1287 | felem_reduce(ftmp2, tmp);
|
---|
1288 |
|
---|
1289 | /* s1 = ftmp2 = y1 * z2**3 */
|
---|
1290 | felem_mul(tmp, y1, ftmp2);
|
---|
1291 | felem_reduce(ftmp6, tmp);
|
---|
1292 | /* ftmp6[i] < 2^101 */
|
---|
1293 | } else {
|
---|
1294 | /*
|
---|
1295 | * We'll assume z2 = 1 (special case z2 = 0 is handled later)
|
---|
1296 | */
|
---|
1297 |
|
---|
1298 | /* u1 = ftmp3 = x1*z2z2 */
|
---|
1299 | felem_assign(ftmp3, x1);
|
---|
1300 | /* ftmp3[i] < 2^106 */
|
---|
1301 |
|
---|
1302 | /* ftmp5 = 2z1z2 */
|
---|
1303 | felem_assign(ftmp5, z1);
|
---|
1304 | felem_scalar(ftmp5, 2);
|
---|
1305 | /* ftmp5[i] < 2*2^106 = 2^107 */
|
---|
1306 |
|
---|
1307 | /* s1 = ftmp2 = y1 * z2**3 */
|
---|
1308 | felem_assign(ftmp6, y1);
|
---|
1309 | /* ftmp6[i] < 2^106 */
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 | /* u2 = x2*z1z1 */
|
---|
1313 | smallfelem_mul(tmp, x2, small1);
|
---|
1314 | felem_reduce(ftmp4, tmp);
|
---|
1315 |
|
---|
1316 | /* h = ftmp4 = u2 - u1 */
|
---|
1317 | felem_diff_zero107(ftmp4, ftmp3);
|
---|
1318 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
|
---|
1319 | felem_shrink(small4, ftmp4);
|
---|
1320 |
|
---|
1321 | x_equal = smallfelem_is_zero(small4);
|
---|
1322 |
|
---|
1323 | /* z_out = ftmp5 * h */
|
---|
1324 | felem_small_mul(tmp, small4, ftmp5);
|
---|
1325 | felem_reduce(z_out, tmp);
|
---|
1326 | /* z_out[i] < 2^101 */
|
---|
1327 |
|
---|
1328 | /* ftmp = z1 * z1z1 */
|
---|
1329 | smallfelem_mul(tmp, small1, small3);
|
---|
1330 | felem_reduce(ftmp, tmp);
|
---|
1331 |
|
---|
1332 | /* s2 = tmp = y2 * z1**3 */
|
---|
1333 | felem_small_mul(tmp, y2, ftmp);
|
---|
1334 | felem_reduce(ftmp5, tmp);
|
---|
1335 |
|
---|
1336 | /* r = ftmp5 = (s2 - s1)*2 */
|
---|
1337 | felem_diff_zero107(ftmp5, ftmp6);
|
---|
1338 | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
|
---|
1339 | felem_scalar(ftmp5, 2);
|
---|
1340 | /* ftmp5[i] < 2^109 */
|
---|
1341 | felem_shrink(small1, ftmp5);
|
---|
1342 | y_equal = smallfelem_is_zero(small1);
|
---|
1343 |
|
---|
1344 | /*
|
---|
1345 | * The formulae are incorrect if the points are equal, in affine coordinates
|
---|
1346 | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
---|
1347 | * happens.
|
---|
1348 | *
|
---|
1349 | * We use bitwise operations to avoid potential side-channels introduced by
|
---|
1350 | * the short-circuiting behaviour of boolean operators.
|
---|
1351 | *
|
---|
1352 | * The special case of either point being the point at infinity (z1 and/or
|
---|
1353 | * z2 are zero), is handled separately later on in this function, so we
|
---|
1354 | * avoid jumping to point_double here in those special cases.
|
---|
1355 | */
|
---|
1356 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
|
---|
1357 |
|
---|
1358 | if (points_equal) {
|
---|
1359 | /*
|
---|
1360 | * This is obviously not constant-time but, as mentioned before, this
|
---|
1361 | * case never happens during single point multiplication, so there is no
|
---|
1362 | * timing leak for ECDH or ECDSA signing.
|
---|
1363 | */
|
---|
1364 | point_double(x3, y3, z3, x1, y1, z1);
|
---|
1365 | return;
|
---|
1366 | }
|
---|
1367 |
|
---|
1368 | /* I = ftmp = (2h)**2 */
|
---|
1369 | felem_assign(ftmp, ftmp4);
|
---|
1370 | felem_scalar(ftmp, 2);
|
---|
1371 | /* ftmp[i] < 2*2^108 = 2^109 */
|
---|
1372 | felem_square(tmp, ftmp);
|
---|
1373 | felem_reduce(ftmp, tmp);
|
---|
1374 |
|
---|
1375 | /* J = ftmp2 = h * I */
|
---|
1376 | felem_mul(tmp, ftmp4, ftmp);
|
---|
1377 | felem_reduce(ftmp2, tmp);
|
---|
1378 |
|
---|
1379 | /* V = ftmp4 = U1 * I */
|
---|
1380 | felem_mul(tmp, ftmp3, ftmp);
|
---|
1381 | felem_reduce(ftmp4, tmp);
|
---|
1382 |
|
---|
1383 | /* x_out = r**2 - J - 2V */
|
---|
1384 | smallfelem_square(tmp, small1);
|
---|
1385 | felem_reduce(x_out, tmp);
|
---|
1386 | felem_assign(ftmp3, ftmp4);
|
---|
1387 | felem_scalar(ftmp4, 2);
|
---|
1388 | felem_sum(ftmp4, ftmp2);
|
---|
1389 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
|
---|
1390 | felem_diff(x_out, ftmp4);
|
---|
1391 | /* x_out[i] < 2^105 + 2^101 */
|
---|
1392 |
|
---|
1393 | /* y_out = r(V-x_out) - 2 * s1 * J */
|
---|
1394 | felem_diff_zero107(ftmp3, x_out);
|
---|
1395 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
|
---|
1396 | felem_small_mul(tmp, small1, ftmp3);
|
---|
1397 | felem_mul(tmp2, ftmp6, ftmp2);
|
---|
1398 | longfelem_scalar(tmp2, 2);
|
---|
1399 | /* tmp2[i] < 2*2^67 = 2^68 */
|
---|
1400 | longfelem_diff(tmp, tmp2);
|
---|
1401 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
|
---|
1402 | felem_reduce_zero105(y_out, tmp);
|
---|
1403 | /* y_out[i] < 2^106 */
|
---|
1404 |
|
---|
1405 | copy_small_conditional(x_out, x2, z1_is_zero);
|
---|
1406 | copy_conditional(x_out, x1, z2_is_zero);
|
---|
1407 | copy_small_conditional(y_out, y2, z1_is_zero);
|
---|
1408 | copy_conditional(y_out, y1, z2_is_zero);
|
---|
1409 | copy_small_conditional(z_out, z2, z1_is_zero);
|
---|
1410 | copy_conditional(z_out, z1, z2_is_zero);
|
---|
1411 | felem_assign(x3, x_out);
|
---|
1412 | felem_assign(y3, y_out);
|
---|
1413 | felem_assign(z3, z_out);
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | /*
|
---|
1417 | * point_add_small is the same as point_add, except that it operates on
|
---|
1418 | * smallfelems
|
---|
1419 | */
|
---|
1420 | static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
|
---|
1421 | smallfelem x1, smallfelem y1, smallfelem z1,
|
---|
1422 | smallfelem x2, smallfelem y2, smallfelem z2)
|
---|
1423 | {
|
---|
1424 | felem felem_x3, felem_y3, felem_z3;
|
---|
1425 | felem felem_x1, felem_y1, felem_z1;
|
---|
1426 | smallfelem_expand(felem_x1, x1);
|
---|
1427 | smallfelem_expand(felem_y1, y1);
|
---|
1428 | smallfelem_expand(felem_z1, z1);
|
---|
1429 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0,
|
---|
1430 | x2, y2, z2);
|
---|
1431 | felem_shrink(x3, felem_x3);
|
---|
1432 | felem_shrink(y3, felem_y3);
|
---|
1433 | felem_shrink(z3, felem_z3);
|
---|
1434 | }
|
---|
1435 |
|
---|
1436 | /*-
|
---|
1437 | * Base point pre computation
|
---|
1438 | * --------------------------
|
---|
1439 | *
|
---|
1440 | * Two different sorts of precomputed tables are used in the following code.
|
---|
1441 | * Each contain various points on the curve, where each point is three field
|
---|
1442 | * elements (x, y, z).
|
---|
1443 | *
|
---|
1444 | * For the base point table, z is usually 1 (0 for the point at infinity).
|
---|
1445 | * This table has 2 * 16 elements, starting with the following:
|
---|
1446 | * index | bits | point
|
---|
1447 | * ------+---------+------------------------------
|
---|
1448 | * 0 | 0 0 0 0 | 0G
|
---|
1449 | * 1 | 0 0 0 1 | 1G
|
---|
1450 | * 2 | 0 0 1 0 | 2^64G
|
---|
1451 | * 3 | 0 0 1 1 | (2^64 + 1)G
|
---|
1452 | * 4 | 0 1 0 0 | 2^128G
|
---|
1453 | * 5 | 0 1 0 1 | (2^128 + 1)G
|
---|
1454 | * 6 | 0 1 1 0 | (2^128 + 2^64)G
|
---|
1455 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
|
---|
1456 | * 8 | 1 0 0 0 | 2^192G
|
---|
1457 | * 9 | 1 0 0 1 | (2^192 + 1)G
|
---|
1458 | * 10 | 1 0 1 0 | (2^192 + 2^64)G
|
---|
1459 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
|
---|
1460 | * 12 | 1 1 0 0 | (2^192 + 2^128)G
|
---|
1461 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
|
---|
1462 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
|
---|
1463 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
|
---|
1464 | * followed by a copy of this with each element multiplied by 2^32.
|
---|
1465 | *
|
---|
1466 | * The reason for this is so that we can clock bits into four different
|
---|
1467 | * locations when doing simple scalar multiplies against the base point,
|
---|
1468 | * and then another four locations using the second 16 elements.
|
---|
1469 | *
|
---|
1470 | * Tables for other points have table[i] = iG for i in 0 .. 16. */
|
---|
1471 |
|
---|
1472 | /* gmul is the table of precomputed base points */
|
---|
1473 | static const smallfelem gmul[2][16][3] = {
|
---|
1474 | {{{0, 0, 0, 0},
|
---|
1475 | {0, 0, 0, 0},
|
---|
1476 | {0, 0, 0, 0}},
|
---|
1477 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
|
---|
1478 | 0x6b17d1f2e12c4247},
|
---|
1479 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
|
---|
1480 | 0x4fe342e2fe1a7f9b},
|
---|
1481 | {1, 0, 0, 0}},
|
---|
1482 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
|
---|
1483 | 0x0fa822bc2811aaa5},
|
---|
1484 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
|
---|
1485 | 0xbff44ae8f5dba80d},
|
---|
1486 | {1, 0, 0, 0}},
|
---|
1487 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
|
---|
1488 | 0x300a4bbc89d6726f},
|
---|
1489 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
|
---|
1490 | 0x72aac7e0d09b4644},
|
---|
1491 | {1, 0, 0, 0}},
|
---|
1492 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
|
---|
1493 | 0x447d739beedb5e67},
|
---|
1494 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
|
---|
1495 | 0x2d4825ab834131ee},
|
---|
1496 | {1, 0, 0, 0}},
|
---|
1497 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
|
---|
1498 | 0xef9519328a9c72ff},
|
---|
1499 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
|
---|
1500 | 0x611e9fc37dbb2c9b},
|
---|
1501 | {1, 0, 0, 0}},
|
---|
1502 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
|
---|
1503 | 0x550663797b51f5d8},
|
---|
1504 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
|
---|
1505 | 0x157164848aecb851},
|
---|
1506 | {1, 0, 0, 0}},
|
---|
1507 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
|
---|
1508 | 0xeb5d7745b21141ea},
|
---|
1509 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
|
---|
1510 | 0xeafd72ebdbecc17b},
|
---|
1511 | {1, 0, 0, 0}},
|
---|
1512 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
|
---|
1513 | 0xa6d39677a7849276},
|
---|
1514 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
|
---|
1515 | 0x674f84749b0b8816},
|
---|
1516 | {1, 0, 0, 0}},
|
---|
1517 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
|
---|
1518 | 0x4e769e7672c9ddad},
|
---|
1519 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
|
---|
1520 | 0x42b99082de830663},
|
---|
1521 | {1, 0, 0, 0}},
|
---|
1522 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
|
---|
1523 | 0x78878ef61c6ce04d},
|
---|
1524 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
|
---|
1525 | 0xb6cb3f5d7b72c321},
|
---|
1526 | {1, 0, 0, 0}},
|
---|
1527 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
|
---|
1528 | 0x0c88bc4d716b1287},
|
---|
1529 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
|
---|
1530 | 0xdd5ddea3f3901dc6},
|
---|
1531 | {1, 0, 0, 0}},
|
---|
1532 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
|
---|
1533 | 0x68f344af6b317466},
|
---|
1534 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
|
---|
1535 | 0x31b9c405f8540a20},
|
---|
1536 | {1, 0, 0, 0}},
|
---|
1537 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
|
---|
1538 | 0x4052bf4b6f461db9},
|
---|
1539 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
|
---|
1540 | 0xfecf4d5190b0fc61},
|
---|
1541 | {1, 0, 0, 0}},
|
---|
1542 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
|
---|
1543 | 0x1eddbae2c802e41a},
|
---|
1544 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
|
---|
1545 | 0x43104d86560ebcfc},
|
---|
1546 | {1, 0, 0, 0}},
|
---|
1547 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
|
---|
1548 | 0xb48e26b484f7a21c},
|
---|
1549 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
|
---|
1550 | 0xfac015404d4d3dab},
|
---|
1551 | {1, 0, 0, 0}}},
|
---|
1552 | {{{0, 0, 0, 0},
|
---|
1553 | {0, 0, 0, 0},
|
---|
1554 | {0, 0, 0, 0}},
|
---|
1555 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
|
---|
1556 | 0x7fe36b40af22af89},
|
---|
1557 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
|
---|
1558 | 0xe697d45825b63624},
|
---|
1559 | {1, 0, 0, 0}},
|
---|
1560 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
|
---|
1561 | 0x4a5b506612a677a6},
|
---|
1562 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
|
---|
1563 | 0xeb13461ceac089f1},
|
---|
1564 | {1, 0, 0, 0}},
|
---|
1565 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
|
---|
1566 | 0x0781b8291c6a220a},
|
---|
1567 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
|
---|
1568 | 0x690cde8df0151593},
|
---|
1569 | {1, 0, 0, 0}},
|
---|
1570 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
|
---|
1571 | 0x8a535f566ec73617},
|
---|
1572 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
|
---|
1573 | 0x0455c08468b08bd7},
|
---|
1574 | {1, 0, 0, 0}},
|
---|
1575 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
|
---|
1576 | 0x06bada7ab77f8276},
|
---|
1577 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
|
---|
1578 | 0x5b476dfd0e6cb18a},
|
---|
1579 | {1, 0, 0, 0}},
|
---|
1580 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
|
---|
1581 | 0x3e29864e8a2ec908},
|
---|
1582 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
|
---|
1583 | 0x239b90ea3dc31e7e},
|
---|
1584 | {1, 0, 0, 0}},
|
---|
1585 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
|
---|
1586 | 0x820f4dd949f72ff7},
|
---|
1587 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
|
---|
1588 | 0x140406ec783a05ec},
|
---|
1589 | {1, 0, 0, 0}},
|
---|
1590 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
|
---|
1591 | 0x68f6b8542783dfee},
|
---|
1592 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
|
---|
1593 | 0xcbe1feba92e40ce6},
|
---|
1594 | {1, 0, 0, 0}},
|
---|
1595 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
|
---|
1596 | 0xd0b2f94d2f420109},
|
---|
1597 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
|
---|
1598 | 0x971459828b0719e5},
|
---|
1599 | {1, 0, 0, 0}},
|
---|
1600 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
|
---|
1601 | 0x961610004a866aba},
|
---|
1602 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
|
---|
1603 | 0x7acb9fadcee75e44},
|
---|
1604 | {1, 0, 0, 0}},
|
---|
1605 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
|
---|
1606 | 0x24eb9acca333bf5b},
|
---|
1607 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
|
---|
1608 | 0x69f891c5acd079cc},
|
---|
1609 | {1, 0, 0, 0}},
|
---|
1610 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
|
---|
1611 | 0xe51f547c5972a107},
|
---|
1612 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
|
---|
1613 | 0x1c309a2b25bb1387},
|
---|
1614 | {1, 0, 0, 0}},
|
---|
1615 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
|
---|
1616 | 0x20b87b8aa2c4e503},
|
---|
1617 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
|
---|
1618 | 0xf5c6fa49919776be},
|
---|
1619 | {1, 0, 0, 0}},
|
---|
1620 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
|
---|
1621 | 0x1ed7d1b9332010b9},
|
---|
1622 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
|
---|
1623 | 0x3a2b03f03217257a},
|
---|
1624 | {1, 0, 0, 0}},
|
---|
1625 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
|
---|
1626 | 0x15fee545c78dd9f6},
|
---|
1627 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
|
---|
1628 | 0x4ab5b6b2b8753f81},
|
---|
1629 | {1, 0, 0, 0}}}
|
---|
1630 | };
|
---|
1631 |
|
---|
1632 | /*
|
---|
1633 | * select_point selects the |idx|th point from a precomputation table and
|
---|
1634 | * copies it to out.
|
---|
1635 | */
|
---|
1636 | static void select_point(const u64 idx, unsigned int size,
|
---|
1637 | const smallfelem pre_comp[16][3], smallfelem out[3])
|
---|
1638 | {
|
---|
1639 | unsigned i, j;
|
---|
1640 | u64 *outlimbs = &out[0][0];
|
---|
1641 |
|
---|
1642 | memset(out, 0, sizeof(*out) * 3);
|
---|
1643 |
|
---|
1644 | for (i = 0; i < size; i++) {
|
---|
1645 | const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
|
---|
1646 | u64 mask = i ^ idx;
|
---|
1647 | mask |= mask >> 4;
|
---|
1648 | mask |= mask >> 2;
|
---|
1649 | mask |= mask >> 1;
|
---|
1650 | mask &= 1;
|
---|
1651 | mask--;
|
---|
1652 | for (j = 0; j < NLIMBS * 3; j++)
|
---|
1653 | outlimbs[j] |= inlimbs[j] & mask;
|
---|
1654 | }
|
---|
1655 | }
|
---|
1656 |
|
---|
1657 | /* get_bit returns the |i|th bit in |in| */
|
---|
1658 | static char get_bit(const felem_bytearray in, int i)
|
---|
1659 | {
|
---|
1660 | if ((i < 0) || (i >= 256))
|
---|
1661 | return 0;
|
---|
1662 | return (in[i >> 3] >> (i & 7)) & 1;
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | /*
|
---|
1666 | * Interleaved point multiplication using precomputed point multiples: The
|
---|
1667 | * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
|
---|
1668 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
|
---|
1669 | * generator, using certain (large) precomputed multiples in g_pre_comp.
|
---|
1670 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out
|
---|
1671 | */
|
---|
1672 | static void batch_mul(felem x_out, felem y_out, felem z_out,
|
---|
1673 | const felem_bytearray scalars[],
|
---|
1674 | const unsigned num_points, const u8 *g_scalar,
|
---|
1675 | const int mixed, const smallfelem pre_comp[][17][3],
|
---|
1676 | const smallfelem g_pre_comp[2][16][3])
|
---|
1677 | {
|
---|
1678 | int i, skip;
|
---|
1679 | unsigned num, gen_mul = (g_scalar != NULL);
|
---|
1680 | felem nq[3], ftmp;
|
---|
1681 | smallfelem tmp[3];
|
---|
1682 | u64 bits;
|
---|
1683 | u8 sign, digit;
|
---|
1684 |
|
---|
1685 | /* set nq to the point at infinity */
|
---|
1686 | memset(nq, 0, sizeof(nq));
|
---|
1687 |
|
---|
1688 | /*
|
---|
1689 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples
|
---|
1690 | * of the generator (two in each of the last 32 rounds) and additions of
|
---|
1691 | * other points multiples (every 5th round).
|
---|
1692 | */
|
---|
1693 | skip = 1; /* save two point operations in the first
|
---|
1694 | * round */
|
---|
1695 | for (i = (num_points ? 255 : 31); i >= 0; --i) {
|
---|
1696 | /* double */
|
---|
1697 | if (!skip)
|
---|
1698 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
|
---|
1699 |
|
---|
1700 | /* add multiples of the generator */
|
---|
1701 | if (gen_mul && (i <= 31)) {
|
---|
1702 | /* first, look 32 bits upwards */
|
---|
1703 | bits = get_bit(g_scalar, i + 224) << 3;
|
---|
1704 | bits |= get_bit(g_scalar, i + 160) << 2;
|
---|
1705 | bits |= get_bit(g_scalar, i + 96) << 1;
|
---|
1706 | bits |= get_bit(g_scalar, i + 32);
|
---|
1707 | /* select the point to add, in constant time */
|
---|
1708 | select_point(bits, 16, g_pre_comp[1], tmp);
|
---|
1709 |
|
---|
1710 | if (!skip) {
|
---|
1711 | /* Arg 1 below is for "mixed" */
|
---|
1712 | point_add(nq[0], nq[1], nq[2],
|
---|
1713 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
|
---|
1714 | } else {
|
---|
1715 | smallfelem_expand(nq[0], tmp[0]);
|
---|
1716 | smallfelem_expand(nq[1], tmp[1]);
|
---|
1717 | smallfelem_expand(nq[2], tmp[2]);
|
---|
1718 | skip = 0;
|
---|
1719 | }
|
---|
1720 |
|
---|
1721 | /* second, look at the current position */
|
---|
1722 | bits = get_bit(g_scalar, i + 192) << 3;
|
---|
1723 | bits |= get_bit(g_scalar, i + 128) << 2;
|
---|
1724 | bits |= get_bit(g_scalar, i + 64) << 1;
|
---|
1725 | bits |= get_bit(g_scalar, i);
|
---|
1726 | /* select the point to add, in constant time */
|
---|
1727 | select_point(bits, 16, g_pre_comp[0], tmp);
|
---|
1728 | /* Arg 1 below is for "mixed" */
|
---|
1729 | point_add(nq[0], nq[1], nq[2],
|
---|
1730 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
|
---|
1731 | }
|
---|
1732 |
|
---|
1733 | /* do other additions every 5 doublings */
|
---|
1734 | if (num_points && (i % 5 == 0)) {
|
---|
1735 | /* loop over all scalars */
|
---|
1736 | for (num = 0; num < num_points; ++num) {
|
---|
1737 | bits = get_bit(scalars[num], i + 4) << 5;
|
---|
1738 | bits |= get_bit(scalars[num], i + 3) << 4;
|
---|
1739 | bits |= get_bit(scalars[num], i + 2) << 3;
|
---|
1740 | bits |= get_bit(scalars[num], i + 1) << 2;
|
---|
1741 | bits |= get_bit(scalars[num], i) << 1;
|
---|
1742 | bits |= get_bit(scalars[num], i - 1);
|
---|
1743 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
|
---|
1744 |
|
---|
1745 | /*
|
---|
1746 | * select the point to add or subtract, in constant time
|
---|
1747 | */
|
---|
1748 | select_point(digit, 17, pre_comp[num], tmp);
|
---|
1749 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
|
---|
1750 | * point */
|
---|
1751 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1));
|
---|
1752 | felem_contract(tmp[1], ftmp);
|
---|
1753 |
|
---|
1754 | if (!skip) {
|
---|
1755 | point_add(nq[0], nq[1], nq[2],
|
---|
1756 | nq[0], nq[1], nq[2],
|
---|
1757 | mixed, tmp[0], tmp[1], tmp[2]);
|
---|
1758 | } else {
|
---|
1759 | smallfelem_expand(nq[0], tmp[0]);
|
---|
1760 | smallfelem_expand(nq[1], tmp[1]);
|
---|
1761 | smallfelem_expand(nq[2], tmp[2]);
|
---|
1762 | skip = 0;
|
---|
1763 | }
|
---|
1764 | }
|
---|
1765 | }
|
---|
1766 | }
|
---|
1767 | felem_assign(x_out, nq[0]);
|
---|
1768 | felem_assign(y_out, nq[1]);
|
---|
1769 | felem_assign(z_out, nq[2]);
|
---|
1770 | }
|
---|
1771 |
|
---|
1772 | /* Precomputation for the group generator. */
|
---|
1773 | struct nistp256_pre_comp_st {
|
---|
1774 | smallfelem g_pre_comp[2][16][3];
|
---|
1775 | CRYPTO_REF_COUNT references;
|
---|
1776 | CRYPTO_RWLOCK *lock;
|
---|
1777 | };
|
---|
1778 |
|
---|
1779 | const EC_METHOD *EC_GFp_nistp256_method(void)
|
---|
1780 | {
|
---|
1781 | static const EC_METHOD ret = {
|
---|
1782 | EC_FLAGS_DEFAULT_OCT,
|
---|
1783 | NID_X9_62_prime_field,
|
---|
1784 | ec_GFp_nistp256_group_init,
|
---|
1785 | ec_GFp_simple_group_finish,
|
---|
1786 | ec_GFp_simple_group_clear_finish,
|
---|
1787 | ec_GFp_nist_group_copy,
|
---|
1788 | ec_GFp_nistp256_group_set_curve,
|
---|
1789 | ec_GFp_simple_group_get_curve,
|
---|
1790 | ec_GFp_simple_group_get_degree,
|
---|
1791 | ec_group_simple_order_bits,
|
---|
1792 | ec_GFp_simple_group_check_discriminant,
|
---|
1793 | ec_GFp_simple_point_init,
|
---|
1794 | ec_GFp_simple_point_finish,
|
---|
1795 | ec_GFp_simple_point_clear_finish,
|
---|
1796 | ec_GFp_simple_point_copy,
|
---|
1797 | ec_GFp_simple_point_set_to_infinity,
|
---|
1798 | ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
---|
1799 | ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
---|
1800 | ec_GFp_simple_point_set_affine_coordinates,
|
---|
1801 | ec_GFp_nistp256_point_get_affine_coordinates,
|
---|
1802 | 0 /* point_set_compressed_coordinates */ ,
|
---|
1803 | 0 /* point2oct */ ,
|
---|
1804 | 0 /* oct2point */ ,
|
---|
1805 | ec_GFp_simple_add,
|
---|
1806 | ec_GFp_simple_dbl,
|
---|
1807 | ec_GFp_simple_invert,
|
---|
1808 | ec_GFp_simple_is_at_infinity,
|
---|
1809 | ec_GFp_simple_is_on_curve,
|
---|
1810 | ec_GFp_simple_cmp,
|
---|
1811 | ec_GFp_simple_make_affine,
|
---|
1812 | ec_GFp_simple_points_make_affine,
|
---|
1813 | ec_GFp_nistp256_points_mul,
|
---|
1814 | ec_GFp_nistp256_precompute_mult,
|
---|
1815 | ec_GFp_nistp256_have_precompute_mult,
|
---|
1816 | ec_GFp_nist_field_mul,
|
---|
1817 | ec_GFp_nist_field_sqr,
|
---|
1818 | 0 /* field_div */ ,
|
---|
1819 | ec_GFp_simple_field_inv,
|
---|
1820 | 0 /* field_encode */ ,
|
---|
1821 | 0 /* field_decode */ ,
|
---|
1822 | 0, /* field_set_to_one */
|
---|
1823 | ec_key_simple_priv2oct,
|
---|
1824 | ec_key_simple_oct2priv,
|
---|
1825 | 0, /* set private */
|
---|
1826 | ec_key_simple_generate_key,
|
---|
1827 | ec_key_simple_check_key,
|
---|
1828 | ec_key_simple_generate_public_key,
|
---|
1829 | 0, /* keycopy */
|
---|
1830 | 0, /* keyfinish */
|
---|
1831 | ecdh_simple_compute_key,
|
---|
1832 | 0, /* field_inverse_mod_ord */
|
---|
1833 | 0, /* blind_coordinates */
|
---|
1834 | 0, /* ladder_pre */
|
---|
1835 | 0, /* ladder_step */
|
---|
1836 | 0 /* ladder_post */
|
---|
1837 | };
|
---|
1838 |
|
---|
1839 | return &ret;
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 | /******************************************************************************/
|
---|
1843 | /*
|
---|
1844 | * FUNCTIONS TO MANAGE PRECOMPUTATION
|
---|
1845 | */
|
---|
1846 |
|
---|
1847 | static NISTP256_PRE_COMP *nistp256_pre_comp_new(void)
|
---|
1848 | {
|
---|
1849 | NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
1850 |
|
---|
1851 | if (ret == NULL) {
|
---|
1852 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
|
---|
1853 | return ret;
|
---|
1854 | }
|
---|
1855 |
|
---|
1856 | ret->references = 1;
|
---|
1857 |
|
---|
1858 | ret->lock = CRYPTO_THREAD_lock_new();
|
---|
1859 | if (ret->lock == NULL) {
|
---|
1860 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
|
---|
1861 | OPENSSL_free(ret);
|
---|
1862 | return NULL;
|
---|
1863 | }
|
---|
1864 | return ret;
|
---|
1865 | }
|
---|
1866 |
|
---|
1867 | NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p)
|
---|
1868 | {
|
---|
1869 | int i;
|
---|
1870 | if (p != NULL)
|
---|
1871 | CRYPTO_UP_REF(&p->references, &i, p->lock);
|
---|
1872 | return p;
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre)
|
---|
1876 | {
|
---|
1877 | int i;
|
---|
1878 |
|
---|
1879 | if (pre == NULL)
|
---|
1880 | return;
|
---|
1881 |
|
---|
1882 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
|
---|
1883 | REF_PRINT_COUNT("EC_nistp256", x);
|
---|
1884 | if (i > 0)
|
---|
1885 | return;
|
---|
1886 | REF_ASSERT_ISNT(i < 0);
|
---|
1887 |
|
---|
1888 | CRYPTO_THREAD_lock_free(pre->lock);
|
---|
1889 | OPENSSL_free(pre);
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | /******************************************************************************/
|
---|
1893 | /*
|
---|
1894 | * OPENSSL EC_METHOD FUNCTIONS
|
---|
1895 | */
|
---|
1896 |
|
---|
1897 | int ec_GFp_nistp256_group_init(EC_GROUP *group)
|
---|
1898 | {
|
---|
1899 | int ret;
|
---|
1900 | ret = ec_GFp_simple_group_init(group);
|
---|
1901 | group->a_is_minus3 = 1;
|
---|
1902 | return ret;
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
---|
1906 | const BIGNUM *a, const BIGNUM *b,
|
---|
1907 | BN_CTX *ctx)
|
---|
1908 | {
|
---|
1909 | int ret = 0;
|
---|
1910 | BN_CTX *new_ctx = NULL;
|
---|
1911 | BIGNUM *curve_p, *curve_a, *curve_b;
|
---|
1912 |
|
---|
1913 | if (ctx == NULL)
|
---|
1914 | if ((ctx = new_ctx = BN_CTX_new()) == NULL)
|
---|
1915 | return 0;
|
---|
1916 | BN_CTX_start(ctx);
|
---|
1917 | curve_p = BN_CTX_get(ctx);
|
---|
1918 | curve_a = BN_CTX_get(ctx);
|
---|
1919 | curve_b = BN_CTX_get(ctx);
|
---|
1920 | if (curve_b == NULL)
|
---|
1921 | goto err;
|
---|
1922 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
|
---|
1923 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
|
---|
1924 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
|
---|
1925 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
|
---|
1926 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE,
|
---|
1927 | EC_R_WRONG_CURVE_PARAMETERS);
|
---|
1928 | goto err;
|
---|
1929 | }
|
---|
1930 | group->field_mod_func = BN_nist_mod_256;
|
---|
1931 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
---|
1932 | err:
|
---|
1933 | BN_CTX_end(ctx);
|
---|
1934 | BN_CTX_free(new_ctx);
|
---|
1935 | return ret;
|
---|
1936 | }
|
---|
1937 |
|
---|
1938 | /*
|
---|
1939 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
|
---|
1940 | * (X/Z^2, Y/Z^3)
|
---|
1941 | */
|
---|
1942 | int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
1943 | const EC_POINT *point,
|
---|
1944 | BIGNUM *x, BIGNUM *y,
|
---|
1945 | BN_CTX *ctx)
|
---|
1946 | {
|
---|
1947 | felem z1, z2, x_in, y_in;
|
---|
1948 | smallfelem x_out, y_out;
|
---|
1949 | longfelem tmp;
|
---|
1950 |
|
---|
1951 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
1952 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
|
---|
1953 | EC_R_POINT_AT_INFINITY);
|
---|
1954 | return 0;
|
---|
1955 | }
|
---|
1956 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
|
---|
1957 | (!BN_to_felem(z1, point->Z)))
|
---|
1958 | return 0;
|
---|
1959 | felem_inv(z2, z1);
|
---|
1960 | felem_square(tmp, z2);
|
---|
1961 | felem_reduce(z1, tmp);
|
---|
1962 | felem_mul(tmp, x_in, z1);
|
---|
1963 | felem_reduce(x_in, tmp);
|
---|
1964 | felem_contract(x_out, x_in);
|
---|
1965 | if (x != NULL) {
|
---|
1966 | if (!smallfelem_to_BN(x, x_out)) {
|
---|
1967 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
|
---|
1968 | ERR_R_BN_LIB);
|
---|
1969 | return 0;
|
---|
1970 | }
|
---|
1971 | }
|
---|
1972 | felem_mul(tmp, z1, z2);
|
---|
1973 | felem_reduce(z1, tmp);
|
---|
1974 | felem_mul(tmp, y_in, z1);
|
---|
1975 | felem_reduce(y_in, tmp);
|
---|
1976 | felem_contract(y_out, y_in);
|
---|
1977 | if (y != NULL) {
|
---|
1978 | if (!smallfelem_to_BN(y, y_out)) {
|
---|
1979 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES,
|
---|
1980 | ERR_R_BN_LIB);
|
---|
1981 | return 0;
|
---|
1982 | }
|
---|
1983 | }
|
---|
1984 | return 1;
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
|
---|
1988 | static void make_points_affine(size_t num, smallfelem points[][3],
|
---|
1989 | smallfelem tmp_smallfelems[])
|
---|
1990 | {
|
---|
1991 | /*
|
---|
1992 | * Runs in constant time, unless an input is the point at infinity (which
|
---|
1993 | * normally shouldn't happen).
|
---|
1994 | */
|
---|
1995 | ec_GFp_nistp_points_make_affine_internal(num,
|
---|
1996 | points,
|
---|
1997 | sizeof(smallfelem),
|
---|
1998 | tmp_smallfelems,
|
---|
1999 | (void (*)(void *))smallfelem_one,
|
---|
2000 | smallfelem_is_zero_int,
|
---|
2001 | (void (*)(void *, const void *))
|
---|
2002 | smallfelem_assign,
|
---|
2003 | (void (*)(void *, const void *))
|
---|
2004 | smallfelem_square_contract,
|
---|
2005 | (void (*)
|
---|
2006 | (void *, const void *,
|
---|
2007 | const void *))
|
---|
2008 | smallfelem_mul_contract,
|
---|
2009 | (void (*)(void *, const void *))
|
---|
2010 | smallfelem_inv_contract,
|
---|
2011 | /* nothing to contract */
|
---|
2012 | (void (*)(void *, const void *))
|
---|
2013 | smallfelem_assign);
|
---|
2014 | }
|
---|
2015 |
|
---|
2016 | /*
|
---|
2017 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
|
---|
2018 | * values Result is stored in r (r can equal one of the inputs).
|
---|
2019 | */
|
---|
2020 | int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
|
---|
2021 | const BIGNUM *scalar, size_t num,
|
---|
2022 | const EC_POINT *points[],
|
---|
2023 | const BIGNUM *scalars[], BN_CTX *ctx)
|
---|
2024 | {
|
---|
2025 | int ret = 0;
|
---|
2026 | int j;
|
---|
2027 | int mixed = 0;
|
---|
2028 | BIGNUM *x, *y, *z, *tmp_scalar;
|
---|
2029 | felem_bytearray g_secret;
|
---|
2030 | felem_bytearray *secrets = NULL;
|
---|
2031 | smallfelem (*pre_comp)[17][3] = NULL;
|
---|
2032 | smallfelem *tmp_smallfelems = NULL;
|
---|
2033 | unsigned i;
|
---|
2034 | int num_bytes;
|
---|
2035 | int have_pre_comp = 0;
|
---|
2036 | size_t num_points = num;
|
---|
2037 | smallfelem x_in, y_in, z_in;
|
---|
2038 | felem x_out, y_out, z_out;
|
---|
2039 | NISTP256_PRE_COMP *pre = NULL;
|
---|
2040 | const smallfelem(*g_pre_comp)[16][3] = NULL;
|
---|
2041 | EC_POINT *generator = NULL;
|
---|
2042 | const EC_POINT *p = NULL;
|
---|
2043 | const BIGNUM *p_scalar = NULL;
|
---|
2044 |
|
---|
2045 | BN_CTX_start(ctx);
|
---|
2046 | x = BN_CTX_get(ctx);
|
---|
2047 | y = BN_CTX_get(ctx);
|
---|
2048 | z = BN_CTX_get(ctx);
|
---|
2049 | tmp_scalar = BN_CTX_get(ctx);
|
---|
2050 | if (tmp_scalar == NULL)
|
---|
2051 | goto err;
|
---|
2052 |
|
---|
2053 | if (scalar != NULL) {
|
---|
2054 | pre = group->pre_comp.nistp256;
|
---|
2055 | if (pre)
|
---|
2056 | /* we have precomputation, try to use it */
|
---|
2057 | g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp;
|
---|
2058 | else
|
---|
2059 | /* try to use the standard precomputation */
|
---|
2060 | g_pre_comp = &gmul[0];
|
---|
2061 | generator = EC_POINT_new(group);
|
---|
2062 | if (generator == NULL)
|
---|
2063 | goto err;
|
---|
2064 | /* get the generator from precomputation */
|
---|
2065 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) ||
|
---|
2066 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) ||
|
---|
2067 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) {
|
---|
2068 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
---|
2069 | goto err;
|
---|
2070 | }
|
---|
2071 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
|
---|
2072 | generator, x, y, z,
|
---|
2073 | ctx))
|
---|
2074 | goto err;
|
---|
2075 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
|
---|
2076 | /* precomputation matches generator */
|
---|
2077 | have_pre_comp = 1;
|
---|
2078 | else
|
---|
2079 | /*
|
---|
2080 | * we don't have valid precomputation: treat the generator as a
|
---|
2081 | * random point
|
---|
2082 | */
|
---|
2083 | num_points++;
|
---|
2084 | }
|
---|
2085 | if (num_points > 0) {
|
---|
2086 | if (num_points >= 3) {
|
---|
2087 | /*
|
---|
2088 | * unless we precompute multiples for just one or two points,
|
---|
2089 | * converting those into affine form is time well spent
|
---|
2090 | */
|
---|
2091 | mixed = 1;
|
---|
2092 | }
|
---|
2093 | secrets = OPENSSL_malloc(sizeof(*secrets) * num_points);
|
---|
2094 | pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points);
|
---|
2095 | if (mixed)
|
---|
2096 | tmp_smallfelems =
|
---|
2097 | OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1));
|
---|
2098 | if ((secrets == NULL) || (pre_comp == NULL)
|
---|
2099 | || (mixed && (tmp_smallfelems == NULL))) {
|
---|
2100 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE);
|
---|
2101 | goto err;
|
---|
2102 | }
|
---|
2103 |
|
---|
2104 | /*
|
---|
2105 | * we treat NULL scalars as 0, and NULL points as points at infinity,
|
---|
2106 | * i.e., they contribute nothing to the linear combination
|
---|
2107 | */
|
---|
2108 | memset(secrets, 0, sizeof(*secrets) * num_points);
|
---|
2109 | memset(pre_comp, 0, sizeof(*pre_comp) * num_points);
|
---|
2110 | for (i = 0; i < num_points; ++i) {
|
---|
2111 | if (i == num) {
|
---|
2112 | /*
|
---|
2113 | * we didn't have a valid precomputation, so we pick the
|
---|
2114 | * generator
|
---|
2115 | */
|
---|
2116 | p = EC_GROUP_get0_generator(group);
|
---|
2117 | p_scalar = scalar;
|
---|
2118 | } else {
|
---|
2119 | /* the i^th point */
|
---|
2120 | p = points[i];
|
---|
2121 | p_scalar = scalars[i];
|
---|
2122 | }
|
---|
2123 | if ((p_scalar != NULL) && (p != NULL)) {
|
---|
2124 | /* reduce scalar to 0 <= scalar < 2^256 */
|
---|
2125 | if ((BN_num_bits(p_scalar) > 256)
|
---|
2126 | || (BN_is_negative(p_scalar))) {
|
---|
2127 | /*
|
---|
2128 | * this is an unusual input, and we don't guarantee
|
---|
2129 | * constant-timeness
|
---|
2130 | */
|
---|
2131 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
|
---|
2132 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
---|
2133 | goto err;
|
---|
2134 | }
|
---|
2135 | num_bytes = BN_bn2lebinpad(tmp_scalar,
|
---|
2136 | secrets[i], sizeof(secrets[i]));
|
---|
2137 | } else {
|
---|
2138 | num_bytes = BN_bn2lebinpad(p_scalar,
|
---|
2139 | secrets[i], sizeof(secrets[i]));
|
---|
2140 | }
|
---|
2141 | if (num_bytes < 0) {
|
---|
2142 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
---|
2143 | goto err;
|
---|
2144 | }
|
---|
2145 | /* precompute multiples */
|
---|
2146 | if ((!BN_to_felem(x_out, p->X)) ||
|
---|
2147 | (!BN_to_felem(y_out, p->Y)) ||
|
---|
2148 | (!BN_to_felem(z_out, p->Z)))
|
---|
2149 | goto err;
|
---|
2150 | felem_shrink(pre_comp[i][1][0], x_out);
|
---|
2151 | felem_shrink(pre_comp[i][1][1], y_out);
|
---|
2152 | felem_shrink(pre_comp[i][1][2], z_out);
|
---|
2153 | for (j = 2; j <= 16; ++j) {
|
---|
2154 | if (j & 1) {
|
---|
2155 | point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
|
---|
2156 | pre_comp[i][j][2], pre_comp[i][1][0],
|
---|
2157 | pre_comp[i][1][1], pre_comp[i][1][2],
|
---|
2158 | pre_comp[i][j - 1][0],
|
---|
2159 | pre_comp[i][j - 1][1],
|
---|
2160 | pre_comp[i][j - 1][2]);
|
---|
2161 | } else {
|
---|
2162 | point_double_small(pre_comp[i][j][0],
|
---|
2163 | pre_comp[i][j][1],
|
---|
2164 | pre_comp[i][j][2],
|
---|
2165 | pre_comp[i][j / 2][0],
|
---|
2166 | pre_comp[i][j / 2][1],
|
---|
2167 | pre_comp[i][j / 2][2]);
|
---|
2168 | }
|
---|
2169 | }
|
---|
2170 | }
|
---|
2171 | }
|
---|
2172 | if (mixed)
|
---|
2173 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
|
---|
2174 | }
|
---|
2175 |
|
---|
2176 | /* the scalar for the generator */
|
---|
2177 | if ((scalar != NULL) && (have_pre_comp)) {
|
---|
2178 | memset(g_secret, 0, sizeof(g_secret));
|
---|
2179 | /* reduce scalar to 0 <= scalar < 2^256 */
|
---|
2180 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) {
|
---|
2181 | /*
|
---|
2182 | * this is an unusual input, and we don't guarantee
|
---|
2183 | * constant-timeness
|
---|
2184 | */
|
---|
2185 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
|
---|
2186 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
---|
2187 | goto err;
|
---|
2188 | }
|
---|
2189 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
---|
2190 | } else {
|
---|
2191 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
---|
2192 | }
|
---|
2193 | /* do the multiplication with generator precomputation */
|
---|
2194 | batch_mul(x_out, y_out, z_out,
|
---|
2195 | (const felem_bytearray(*))secrets, num_points,
|
---|
2196 | g_secret,
|
---|
2197 | mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp);
|
---|
2198 | } else {
|
---|
2199 | /* do the multiplication without generator precomputation */
|
---|
2200 | batch_mul(x_out, y_out, z_out,
|
---|
2201 | (const felem_bytearray(*))secrets, num_points,
|
---|
2202 | NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL);
|
---|
2203 | }
|
---|
2204 | /* reduce the output to its unique minimal representation */
|
---|
2205 | felem_contract(x_in, x_out);
|
---|
2206 | felem_contract(y_in, y_out);
|
---|
2207 | felem_contract(z_in, z_out);
|
---|
2208 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) ||
|
---|
2209 | (!smallfelem_to_BN(z, z_in))) {
|
---|
2210 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB);
|
---|
2211 | goto err;
|
---|
2212 | }
|
---|
2213 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
|
---|
2214 |
|
---|
2215 | err:
|
---|
2216 | BN_CTX_end(ctx);
|
---|
2217 | EC_POINT_free(generator);
|
---|
2218 | OPENSSL_free(secrets);
|
---|
2219 | OPENSSL_free(pre_comp);
|
---|
2220 | OPENSSL_free(tmp_smallfelems);
|
---|
2221 | return ret;
|
---|
2222 | }
|
---|
2223 |
|
---|
2224 | int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
---|
2225 | {
|
---|
2226 | int ret = 0;
|
---|
2227 | NISTP256_PRE_COMP *pre = NULL;
|
---|
2228 | int i, j;
|
---|
2229 | BN_CTX *new_ctx = NULL;
|
---|
2230 | BIGNUM *x, *y;
|
---|
2231 | EC_POINT *generator = NULL;
|
---|
2232 | smallfelem tmp_smallfelems[32];
|
---|
2233 | felem x_tmp, y_tmp, z_tmp;
|
---|
2234 |
|
---|
2235 | /* throw away old precomputation */
|
---|
2236 | EC_pre_comp_free(group);
|
---|
2237 | if (ctx == NULL)
|
---|
2238 | if ((ctx = new_ctx = BN_CTX_new()) == NULL)
|
---|
2239 | return 0;
|
---|
2240 | BN_CTX_start(ctx);
|
---|
2241 | x = BN_CTX_get(ctx);
|
---|
2242 | y = BN_CTX_get(ctx);
|
---|
2243 | if (y == NULL)
|
---|
2244 | goto err;
|
---|
2245 | /* get the generator */
|
---|
2246 | if (group->generator == NULL)
|
---|
2247 | goto err;
|
---|
2248 | generator = EC_POINT_new(group);
|
---|
2249 | if (generator == NULL)
|
---|
2250 | goto err;
|
---|
2251 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x);
|
---|
2252 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y);
|
---|
2253 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
|
---|
2254 | goto err;
|
---|
2255 | if ((pre = nistp256_pre_comp_new()) == NULL)
|
---|
2256 | goto err;
|
---|
2257 | /*
|
---|
2258 | * if the generator is the standard one, use built-in precomputation
|
---|
2259 | */
|
---|
2260 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
|
---|
2261 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
|
---|
2262 | goto done;
|
---|
2263 | }
|
---|
2264 | if ((!BN_to_felem(x_tmp, group->generator->X)) ||
|
---|
2265 | (!BN_to_felem(y_tmp, group->generator->Y)) ||
|
---|
2266 | (!BN_to_felem(z_tmp, group->generator->Z)))
|
---|
2267 | goto err;
|
---|
2268 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp);
|
---|
2269 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp);
|
---|
2270 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp);
|
---|
2271 | /*
|
---|
2272 | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G,
|
---|
2273 | * 2^160*G, 2^224*G for the second one
|
---|
2274 | */
|
---|
2275 | for (i = 1; i <= 8; i <<= 1) {
|
---|
2276 | point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
|
---|
2277 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
|
---|
2278 | pre->g_pre_comp[0][i][1],
|
---|
2279 | pre->g_pre_comp[0][i][2]);
|
---|
2280 | for (j = 0; j < 31; ++j) {
|
---|
2281 | point_double_small(pre->g_pre_comp[1][i][0],
|
---|
2282 | pre->g_pre_comp[1][i][1],
|
---|
2283 | pre->g_pre_comp[1][i][2],
|
---|
2284 | pre->g_pre_comp[1][i][0],
|
---|
2285 | pre->g_pre_comp[1][i][1],
|
---|
2286 | pre->g_pre_comp[1][i][2]);
|
---|
2287 | }
|
---|
2288 | if (i == 8)
|
---|
2289 | break;
|
---|
2290 | point_double_small(pre->g_pre_comp[0][2 * i][0],
|
---|
2291 | pre->g_pre_comp[0][2 * i][1],
|
---|
2292 | pre->g_pre_comp[0][2 * i][2],
|
---|
2293 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
|
---|
2294 | pre->g_pre_comp[1][i][2]);
|
---|
2295 | for (j = 0; j < 31; ++j) {
|
---|
2296 | point_double_small(pre->g_pre_comp[0][2 * i][0],
|
---|
2297 | pre->g_pre_comp[0][2 * i][1],
|
---|
2298 | pre->g_pre_comp[0][2 * i][2],
|
---|
2299 | pre->g_pre_comp[0][2 * i][0],
|
---|
2300 | pre->g_pre_comp[0][2 * i][1],
|
---|
2301 | pre->g_pre_comp[0][2 * i][2]);
|
---|
2302 | }
|
---|
2303 | }
|
---|
2304 | for (i = 0; i < 2; i++) {
|
---|
2305 | /* g_pre_comp[i][0] is the point at infinity */
|
---|
2306 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
|
---|
2307 | /* the remaining multiples */
|
---|
2308 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */
|
---|
2309 | point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
|
---|
2310 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
|
---|
2311 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
|
---|
2312 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
2313 | pre->g_pre_comp[i][2][2]);
|
---|
2314 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */
|
---|
2315 | point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
|
---|
2316 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
|
---|
2317 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
|
---|
2318 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
2319 | pre->g_pre_comp[i][2][2]);
|
---|
2320 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */
|
---|
2321 | point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
|
---|
2322 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
|
---|
2323 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
|
---|
2324 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
|
---|
2325 | pre->g_pre_comp[i][4][2]);
|
---|
2326 | /*
|
---|
2327 | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G
|
---|
2328 | */
|
---|
2329 | point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
|
---|
2330 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
|
---|
2331 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
|
---|
2332 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
2333 | pre->g_pre_comp[i][2][2]);
|
---|
2334 | for (j = 1; j < 8; ++j) {
|
---|
2335 | /* odd multiples: add G resp. 2^32*G */
|
---|
2336 | point_add_small(pre->g_pre_comp[i][2 * j + 1][0],
|
---|
2337 | pre->g_pre_comp[i][2 * j + 1][1],
|
---|
2338 | pre->g_pre_comp[i][2 * j + 1][2],
|
---|
2339 | pre->g_pre_comp[i][2 * j][0],
|
---|
2340 | pre->g_pre_comp[i][2 * j][1],
|
---|
2341 | pre->g_pre_comp[i][2 * j][2],
|
---|
2342 | pre->g_pre_comp[i][1][0],
|
---|
2343 | pre->g_pre_comp[i][1][1],
|
---|
2344 | pre->g_pre_comp[i][1][2]);
|
---|
2345 | }
|
---|
2346 | }
|
---|
2347 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems);
|
---|
2348 |
|
---|
2349 | done:
|
---|
2350 | SETPRECOMP(group, nistp256, pre);
|
---|
2351 | pre = NULL;
|
---|
2352 | ret = 1;
|
---|
2353 |
|
---|
2354 | err:
|
---|
2355 | BN_CTX_end(ctx);
|
---|
2356 | EC_POINT_free(generator);
|
---|
2357 | BN_CTX_free(new_ctx);
|
---|
2358 | EC_nistp256_pre_comp_free(pre);
|
---|
2359 | return ret;
|
---|
2360 | }
|
---|
2361 |
|
---|
2362 | int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group)
|
---|
2363 | {
|
---|
2364 | return HAVEPRECOMP(group, nistp256);
|
---|
2365 | }
|
---|
2366 | #endif
|
---|