1 | =pod
|
---|
2 |
|
---|
3 | =head1 NAME
|
---|
4 |
|
---|
5 | EC_GROUP_get0_order, EC_GROUP_order_bits, EC_GROUP_get0_cofactor,
|
---|
6 | EC_GROUP_copy, EC_GROUP_dup, EC_GROUP_method_of, EC_GROUP_set_generator,
|
---|
7 | EC_GROUP_get0_generator, EC_GROUP_get_order, EC_GROUP_get_cofactor,
|
---|
8 | EC_GROUP_set_curve_name, EC_GROUP_get_curve_name, EC_GROUP_set_asn1_flag,
|
---|
9 | EC_GROUP_get_asn1_flag, EC_GROUP_set_point_conversion_form,
|
---|
10 | EC_GROUP_get_point_conversion_form, EC_GROUP_get0_seed,
|
---|
11 | EC_GROUP_get_seed_len, EC_GROUP_set_seed, EC_GROUP_get_degree,
|
---|
12 | EC_GROUP_check, EC_GROUP_check_discriminant, EC_GROUP_cmp,
|
---|
13 | EC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis,
|
---|
14 | EC_GROUP_get_pentanomial_basis
|
---|
15 | - Functions for manipulating EC_GROUP objects
|
---|
16 |
|
---|
17 | =head1 SYNOPSIS
|
---|
18 |
|
---|
19 | #include <openssl/ec.h>
|
---|
20 |
|
---|
21 | int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src);
|
---|
22 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *src);
|
---|
23 |
|
---|
24 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group);
|
---|
25 |
|
---|
26 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
---|
27 | const BIGNUM *order, const BIGNUM *cofactor);
|
---|
28 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group);
|
---|
29 |
|
---|
30 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx);
|
---|
31 | const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group);
|
---|
32 | int EC_GROUP_order_bits(const EC_GROUP *group);
|
---|
33 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx);
|
---|
34 | const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group);
|
---|
35 |
|
---|
36 | void EC_GROUP_set_curve_name(EC_GROUP *group, int nid);
|
---|
37 | int EC_GROUP_get_curve_name(const EC_GROUP *group);
|
---|
38 |
|
---|
39 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag);
|
---|
40 | int EC_GROUP_get_asn1_flag(const EC_GROUP *group);
|
---|
41 |
|
---|
42 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form);
|
---|
43 | point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *group);
|
---|
44 |
|
---|
45 | unsigned char *EC_GROUP_get0_seed(const EC_GROUP *x);
|
---|
46 | size_t EC_GROUP_get_seed_len(const EC_GROUP *);
|
---|
47 | size_t EC_GROUP_set_seed(EC_GROUP *, const unsigned char *, size_t len);
|
---|
48 |
|
---|
49 | int EC_GROUP_get_degree(const EC_GROUP *group);
|
---|
50 |
|
---|
51 | int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx);
|
---|
52 |
|
---|
53 | int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx);
|
---|
54 |
|
---|
55 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx);
|
---|
56 |
|
---|
57 | int EC_GROUP_get_basis_type(const EC_GROUP *);
|
---|
58 | int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k);
|
---|
59 | int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1,
|
---|
60 | unsigned int *k2, unsigned int *k3);
|
---|
61 |
|
---|
62 | =head1 DESCRIPTION
|
---|
63 |
|
---|
64 | EC_GROUP_copy() copies the curve B<src> into B<dst>. Both B<src> and B<dst> must use the same EC_METHOD.
|
---|
65 |
|
---|
66 | EC_GROUP_dup() creates a new EC_GROUP object and copies the content from B<src> to the newly created
|
---|
67 | EC_GROUP object.
|
---|
68 |
|
---|
69 | EC_GROUP_method_of() obtains the EC_METHOD of B<group>.
|
---|
70 |
|
---|
71 | EC_GROUP_set_generator() sets curve parameters that must be agreed by all participants using the curve. These
|
---|
72 | parameters include the B<generator>, the B<order> and the B<cofactor>. The B<generator> is a well defined point on the
|
---|
73 | curve chosen for cryptographic operations. Integers used for point multiplications will be between 0 and
|
---|
74 | n-1 where n is the B<order>. The B<order> multiplied by the B<cofactor> gives the number of points on the curve.
|
---|
75 |
|
---|
76 | EC_GROUP_get0_generator() returns the generator for the identified B<group>.
|
---|
77 |
|
---|
78 | EC_GROUP_get_order() retrieves the order of B<group> and copies its value into
|
---|
79 | B<order>. It fails in case B<group> is not fully initialized (i.e., its order
|
---|
80 | is not set or set to zero).
|
---|
81 |
|
---|
82 | EC_GROUP_get_cofactor() retrieves the cofactor of B<group> and copies its value
|
---|
83 | into B<cofactor>. It fails in case B<group> is not fully initialized or if the
|
---|
84 | cofactor is not set (or set to zero).
|
---|
85 |
|
---|
86 | The functions EC_GROUP_set_curve_name() and EC_GROUP_get_curve_name(), set and get the NID for the curve respectively
|
---|
87 | (see L<EC_GROUP_new(3)>). If a curve does not have a NID associated with it, then EC_GROUP_get_curve_name
|
---|
88 | will return NID_undef.
|
---|
89 |
|
---|
90 | The asn1_flag value is used to determine whether the curve encoding uses
|
---|
91 | explicit parameters or a named curve using an ASN1 OID: many applications only
|
---|
92 | support the latter form. If asn1_flag is B<OPENSSL_EC_NAMED_CURVE> then the
|
---|
93 | named curve form is used and the parameters must have a corresponding
|
---|
94 | named curve NID set. If asn1_flags is B<OPENSSL_EC_EXPLICIT_CURVE> the
|
---|
95 | parameters are explicitly encoded. The functions EC_GROUP_get_asn1_flag() and
|
---|
96 | EC_GROUP_set_asn1_flag() get and set the status of the asn1_flag for the curve.
|
---|
97 | Note: B<OPENSSL_EC_EXPLICIT_CURVE> was added in OpenSSL 1.1.0, for
|
---|
98 | previous versions of OpenSSL the value 0 must be used instead. Before OpenSSL
|
---|
99 | 1.1.0 the default form was to use explicit parameters (meaning that
|
---|
100 | applications would have to explicitly set the named curve form) in OpenSSL
|
---|
101 | 1.1.0 and later the named curve form is the default.
|
---|
102 |
|
---|
103 | The point_conversion_form for a curve controls how EC_POINT data is encoded as ASN1 as defined in X9.62 (ECDSA).
|
---|
104 | point_conversion_form_t is an enum defined as follows:
|
---|
105 |
|
---|
106 | typedef enum {
|
---|
107 | /** the point is encoded as z||x, where the octet z specifies
|
---|
108 | * which solution of the quadratic equation y is */
|
---|
109 | POINT_CONVERSION_COMPRESSED = 2,
|
---|
110 | /** the point is encoded as z||x||y, where z is the octet 0x04 */
|
---|
111 | POINT_CONVERSION_UNCOMPRESSED = 4,
|
---|
112 | /** the point is encoded as z||x||y, where the octet z specifies
|
---|
113 | * which solution of the quadratic equation y is */
|
---|
114 | POINT_CONVERSION_HYBRID = 6
|
---|
115 | } point_conversion_form_t;
|
---|
116 |
|
---|
117 | For POINT_CONVERSION_UNCOMPRESSED the point is encoded as an octet signifying the UNCOMPRESSED form has been used followed by
|
---|
118 | the octets for x, followed by the octets for y.
|
---|
119 |
|
---|
120 | For any given x co-ordinate for a point on a curve it is possible to derive two possible y values. For
|
---|
121 | POINT_CONVERSION_COMPRESSED the point is encoded as an octet signifying that the COMPRESSED form has been used AND which of
|
---|
122 | the two possible solutions for y has been used, followed by the octets for x.
|
---|
123 |
|
---|
124 | For POINT_CONVERSION_HYBRID the point is encoded as an octet signifying the HYBRID form has been used AND which of the two
|
---|
125 | possible solutions for y has been used, followed by the octets for x, followed by the octets for y.
|
---|
126 |
|
---|
127 | The functions EC_GROUP_set_point_conversion_form() and EC_GROUP_get_point_conversion_form(), set and get the point_conversion_form
|
---|
128 | for the curve respectively.
|
---|
129 |
|
---|
130 | ANSI X9.62 (ECDSA standard) defines a method of generating the curve parameter b from a random number. This provides advantages
|
---|
131 | in that a parameter obtained in this way is highly unlikely to be susceptible to special purpose attacks, or have any trapdoors in it.
|
---|
132 | If the seed is present for a curve then the b parameter was generated in a verifiable fashion using that seed. The OpenSSL EC library
|
---|
133 | does not use this seed value but does enable you to inspect it using EC_GROUP_get0_seed(). This returns a pointer to a memory block
|
---|
134 | containing the seed that was used. The length of the memory block can be obtained using EC_GROUP_get_seed_len(). A number of the
|
---|
135 | built-in curves within the library provide seed values that can be obtained. It is also possible to set a custom seed using
|
---|
136 | EC_GROUP_set_seed() and passing a pointer to a memory block, along with the length of the seed. Again, the EC library will not use
|
---|
137 | this seed value, although it will be preserved in any ASN1 based communications.
|
---|
138 |
|
---|
139 | EC_GROUP_get_degree() gets the degree of the field. For Fp fields this will be the number of bits in p. For F2^m fields this will be
|
---|
140 | the value m.
|
---|
141 |
|
---|
142 | The function EC_GROUP_check_discriminant() calculates the discriminant for the curve and verifies that it is valid.
|
---|
143 | For a curve defined over Fp the discriminant is given by the formula 4*a^3 + 27*b^2 whilst for F2^m curves the discriminant is
|
---|
144 | simply b. In either case for the curve to be valid the discriminant must be non zero.
|
---|
145 |
|
---|
146 | The function EC_GROUP_check() performs a number of checks on a curve to verify that it is valid. Checks performed include
|
---|
147 | verifying that the discriminant is non zero; that a generator has been defined; that the generator is on the curve and has
|
---|
148 | the correct order.
|
---|
149 |
|
---|
150 | EC_GROUP_cmp() compares B<a> and B<b> to determine whether they represent the same curve or not.
|
---|
151 |
|
---|
152 | The functions EC_GROUP_get_basis_type(), EC_GROUP_get_trinomial_basis() and EC_GROUP_get_pentanomial_basis() should only be called for curves
|
---|
153 | defined over an F2^m field. Addition and multiplication operations within an F2^m field are performed using an irreducible polynomial
|
---|
154 | function f(x). This function is either a trinomial of the form:
|
---|
155 |
|
---|
156 | f(x) = x^m + x^k + 1 with m > k >= 1
|
---|
157 |
|
---|
158 | or a pentanomial of the form:
|
---|
159 |
|
---|
160 | f(x) = x^m + x^k3 + x^k2 + x^k1 + 1 with m > k3 > k2 > k1 >= 1
|
---|
161 |
|
---|
162 | The function EC_GROUP_get_basis_type() returns a NID identifying whether a trinomial or pentanomial is in use for the field. The
|
---|
163 | function EC_GROUP_get_trinomial_basis() must only be called where f(x) is of the trinomial form, and returns the value of B<k>. Similarly
|
---|
164 | the function EC_GROUP_get_pentanomial_basis() must only be called where f(x) is of the pentanomial form, and returns the values of B<k1>,
|
---|
165 | B<k2> and B<k3> respectively.
|
---|
166 |
|
---|
167 | =head1 RETURN VALUES
|
---|
168 |
|
---|
169 | The following functions return 1 on success or 0 on error: EC_GROUP_copy(), EC_GROUP_set_generator(), EC_GROUP_check(),
|
---|
170 | EC_GROUP_check_discriminant(), EC_GROUP_get_trinomial_basis() and EC_GROUP_get_pentanomial_basis().
|
---|
171 |
|
---|
172 | EC_GROUP_dup() returns a pointer to the duplicated curve, or NULL on error.
|
---|
173 |
|
---|
174 | EC_GROUP_method_of() returns the EC_METHOD implementation in use for the given curve or NULL on error.
|
---|
175 |
|
---|
176 | EC_GROUP_get0_generator() returns the generator for the given curve or NULL on error.
|
---|
177 |
|
---|
178 | EC_GROUP_get_order() returns 0 if the order is not set (or set to zero) for
|
---|
179 | B<group> or if copying into B<order> fails, 1 otherwise.
|
---|
180 |
|
---|
181 | EC_GROUP_get_cofactor() returns 0 if the cofactor is not set (or is set to zero) for B<group> or if copying into B<cofactor> fails, 1 otherwise.
|
---|
182 |
|
---|
183 | EC_GROUP_get_curve_name() returns the curve name (NID) for B<group> or will return NID_undef if no curve name is associated.
|
---|
184 |
|
---|
185 | EC_GROUP_get_asn1_flag() returns the ASN1 flag for the specified B<group> .
|
---|
186 |
|
---|
187 | EC_GROUP_get_point_conversion_form() returns the point_conversion_form for B<group>.
|
---|
188 |
|
---|
189 | EC_GROUP_get_degree() returns the degree for B<group> or 0 if the operation is not supported by the underlying group implementation.
|
---|
190 |
|
---|
191 | EC_GROUP_get0_order() returns an internal pointer to the group order.
|
---|
192 | EC_GROUP_order_bits() returns the number of bits in the group order.
|
---|
193 | EC_GROUP_get0_cofactor() returns an internal pointer to the group cofactor.
|
---|
194 |
|
---|
195 | EC_GROUP_get0_seed() returns a pointer to the seed that was used to generate the parameter b, or NULL if the seed is not
|
---|
196 | specified. EC_GROUP_get_seed_len() returns the length of the seed or 0 if the seed is not specified.
|
---|
197 |
|
---|
198 | EC_GROUP_set_seed() returns the length of the seed that has been set. If the supplied seed is NULL, or the supplied seed length is
|
---|
199 | 0, the return value will be 1. On error 0 is returned.
|
---|
200 |
|
---|
201 | EC_GROUP_cmp() returns 0 if the curves are equal, 1 if they are not equal, or -1 on error.
|
---|
202 |
|
---|
203 | EC_GROUP_get_basis_type() returns the values NID_X9_62_tpBasis or NID_X9_62_ppBasis (as defined in <openssl/obj_mac.h>) for a
|
---|
204 | trinomial or pentanomial respectively. Alternatively in the event of an error a 0 is returned.
|
---|
205 |
|
---|
206 | =head1 SEE ALSO
|
---|
207 |
|
---|
208 | L<crypto(7)>, L<EC_GROUP_new(3)>,
|
---|
209 | L<EC_POINT_new(3)>, L<EC_POINT_add(3)>, L<EC_KEY_new(3)>,
|
---|
210 | L<EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)>
|
---|
211 |
|
---|
212 | =head1 COPYRIGHT
|
---|
213 |
|
---|
214 | Copyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved.
|
---|
215 |
|
---|
216 | Licensed under the OpenSSL license (the "License"). You may not use
|
---|
217 | this file except in compliance with the License. You can obtain a copy
|
---|
218 | in the file LICENSE in the source distribution or at
|
---|
219 | L<https://www.openssl.org/source/license.html>.
|
---|
220 |
|
---|
221 | =cut
|
---|