VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1k/crypto/rc4/asm/rc4-x86_64.pl@ 90293

Last change on this file since 90293 was 90293, checked in by vboxsync, 4 years ago

openssl-1.1.1k: Applied and adjusted our OpenSSL changes to 1.1.1k. bugref:10072

  • Property svn:executable set to *
File size: 16.0 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# July 2004
18#
19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
20# "hand-coded assembler"] doesn't stand for the whole improvement
21# coefficient. It turned out that eliminating RC4_CHAR from config
22# line results in ~40% improvement (yes, even for C implementation).
23# Presumably it has everything to do with AMD cache architecture and
24# RAW or whatever penalties. Once again! The module *requires* config
25# line *without* RC4_CHAR! As for coding "secret," I bet on partial
26# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
27# I simply 'inc %r8b'. Even though optimization manual discourages
28# to operate on partial registers, it turned out to be the best bet.
29# At least for AMD... How IA32E would perform remains to be seen...
30
31# November 2004
32#
33# As was shown by Marc Bevand reordering of couple of load operations
34# results in even higher performance gain of 3.3x:-) At least on
35# Opteron... For reference, 1x in this case is RC4_CHAR C-code
36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
37# Latter means that if you want to *estimate* what to expect from
38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
39
40# November 2004
41#
42# Intel P4 EM64T core was found to run the AMD64 code really slow...
43# The only way to achieve comparable performance on P4 was to keep
44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
45# compose blended code, which would perform even within 30% marginal
46# on either AMD and Intel platforms, I implement both cases. See
47# rc4_skey.c for further details...
48
49# April 2005
50#
51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
52# those with add/sub results in 50% performance improvement of folded
53# loop...
54
55# May 2005
56#
57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
58# performance by >30% [unlike P4 32-bit case that is]. But this is
59# provided that loads are reordered even more aggressively! Both code
60# paths, AMD64 and EM64T, reorder loads in essentially same manner
61# as my IA-64 implementation. On Opteron this resulted in modest 5%
62# improvement [I had to test it], while final Intel P4 performance
63# achieves respectful 432MBps on 2.8GHz processor now. For reference.
64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
65# RC4_INT code-path. While if executed on Opteron, it's only 25%
66# slower than the RC4_INT one [meaning that if CPU µ-arch detection
67# is not implemented, then this final RC4_CHAR code-path should be
68# preferred, as it provides better *all-round* performance].
69
70# March 2007
71#
72# Intel Core2 was observed to perform poorly on both code paths:-( It
73# apparently suffers from some kind of partial register stall, which
74# occurs in 64-bit mode only [as virtually identical 32-bit loop was
75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
76# cloop1 boosts its performance by 80%! This loop appears to be optimal
77# fit for Core2 and therefore the code was modified to skip cloop8 on
78# this CPU.
79
80# May 2010
81#
82# Intel Westmere was observed to perform suboptimally. Adding yet
83# another movzb to cloop1 improved performance by almost 50%! Core2
84# performance is improved too, but nominally...
85
86# May 2011
87#
88# The only code path that was not modified is P4-specific one. Non-P4
89# Intel code path optimization is heavily based on submission by Maxim
90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
91# some of the ideas even in attempt to optimize the original RC4_INT
92# code path... Current performance in cycles per processed byte (less
93# is better) and improvement coefficients relative to previous
94# version of this module are:
95#
96# Opteron 5.3/+0%(*)
97# P4 6.5
98# Core2 6.2/+15%(**)
99# Westmere 4.2/+60%
100# Sandy Bridge 4.2/+120%
101# Atom 9.3/+80%
102# VIA Nano 6.4/+4%
103# Ivy Bridge 4.1/+30%
104# Bulldozer 4.5/+30%(*)
105#
106# (*) But corresponding loop has less instructions, which should have
107# positive effect on upcoming Bulldozer, which has one less ALU.
108# For reference, Intel code runs at 6.8 cpb rate on Opteron.
109# (**) Note that Core2 result is ~15% lower than corresponding result
110# for 32-bit code, meaning that it's possible to improve it,
111# but more than likely at the cost of the others (see rc4-586.pl
112# to get the idea)...
113
114$flavour = shift;
115$output = shift;
116if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
117
118$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
119
120$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
121( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
122( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
123die "can't locate x86_64-xlate.pl";
124
125open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
126*STDOUT=*OUT;
127
128$dat="%rdi"; # arg1
129$len="%rsi"; # arg2
130$inp="%rdx"; # arg3
131$out="%rcx"; # arg4
132
133{
134$code=<<___;
135.text
136.extern OPENSSL_ia32cap_P
137
138.globl RC4
139.type RC4,\@function,4
140.align 16
141RC4:
142.cfi_startproc
143 or $len,$len
144 jne .Lentry
145 ret
146.Lentry:
147 push %rbx
148.cfi_push %rbx
149 push %r12
150.cfi_push %r12
151 push %r13
152.cfi_push %r13
153.Lprologue:
154 mov $len,%r11
155 mov $inp,%r12
156 mov $out,%r13
157___
158my $len="%r11"; # reassign input arguments
159my $inp="%r12";
160my $out="%r13";
161
162my @XX=("%r10","%rsi");
163my @TX=("%rax","%rbx");
164my $YY="%rcx";
165my $TY="%rdx";
166
167$code.=<<___;
168 xor $XX[0],$XX[0]
169 xor $YY,$YY
170
171 lea 8($dat),$dat
172 mov -8($dat),$XX[0]#b
173 mov -4($dat),$YY#b
174 cmpl \$-1,256($dat)
175 je .LRC4_CHAR
176 mov OPENSSL_ia32cap_P(%rip),%r8d
177 xor $TX[1],$TX[1]
178 inc $XX[0]#b
179 sub $XX[0],$TX[1]
180 sub $inp,$out
181 movl ($dat,$XX[0],4),$TX[0]#d
182 test \$-16,$len
183 jz .Lloop1
184 bt \$30,%r8d # Intel CPU?
185 jc .Lintel
186 and \$7,$TX[1]
187 lea 1($XX[0]),$XX[1]
188 jz .Loop8
189 sub $TX[1],$len
190.Loop8_warmup:
191 add $TX[0]#b,$YY#b
192 movl ($dat,$YY,4),$TY#d
193 movl $TX[0]#d,($dat,$YY,4)
194 movl $TY#d,($dat,$XX[0],4)
195 add $TY#b,$TX[0]#b
196 inc $XX[0]#b
197 movl ($dat,$TX[0],4),$TY#d
198 movl ($dat,$XX[0],4),$TX[0]#d
199 xorb ($inp),$TY#b
200 movb $TY#b,($out,$inp)
201 lea 1($inp),$inp
202 dec $TX[1]
203 jnz .Loop8_warmup
204
205 lea 1($XX[0]),$XX[1]
206 jmp .Loop8
207.align 16
208.Loop8:
209___
210for ($i=0;$i<8;$i++) {
211$code.=<<___ if ($i==7);
212 add \$8,$XX[1]#b
213___
214$code.=<<___;
215 add $TX[0]#b,$YY#b
216 movl ($dat,$YY,4),$TY#d
217 movl $TX[0]#d,($dat,$YY,4)
218 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
219 ror \$8,%r8 # ror is redundant when $i=0
220 movl $TY#d,4*$i($dat,$XX[0],4)
221 add $TX[0]#b,$TY#b
222 movb ($dat,$TY,4),%r8b
223___
224push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
225}
226$code.=<<___;
227 add \$8,$XX[0]#b
228 ror \$8,%r8
229 sub \$8,$len
230
231 xor ($inp),%r8
232 mov %r8,($out,$inp)
233 lea 8($inp),$inp
234
235 test \$-8,$len
236 jnz .Loop8
237 cmp \$0,$len
238 jne .Lloop1
239 jmp .Lexit
240
241.align 16
242.Lintel:
243 test \$-32,$len
244 jz .Lloop1
245 and \$15,$TX[1]
246 jz .Loop16_is_hot
247 sub $TX[1],$len
248.Loop16_warmup:
249 add $TX[0]#b,$YY#b
250 movl ($dat,$YY,4),$TY#d
251 movl $TX[0]#d,($dat,$YY,4)
252 movl $TY#d,($dat,$XX[0],4)
253 add $TY#b,$TX[0]#b
254 inc $XX[0]#b
255 movl ($dat,$TX[0],4),$TY#d
256 movl ($dat,$XX[0],4),$TX[0]#d
257 xorb ($inp),$TY#b
258 movb $TY#b,($out,$inp)
259 lea 1($inp),$inp
260 dec $TX[1]
261 jnz .Loop16_warmup
262
263 mov $YY,$TX[1]
264 xor $YY,$YY
265 mov $TX[1]#b,$YY#b
266
267.Loop16_is_hot:
268 lea ($dat,$XX[0],4),$XX[1]
269___
270sub RC4_loop {
271 my $i=shift;
272 my $j=$i<0?0:$i;
273 my $xmm="%xmm".($j&1);
274
275 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
276 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
277 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
278 $code.=" movl ($dat,$YY,4),$TY#d\n";
279 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
280 $code.=" psllq \$8,%xmm1\n" if ($i==0);
281 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
282 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
283 $code.=" add $TY#b,$TX[0]#b\n";
284 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
285 $code.=" movz $TX[0]#b,$TX[0]#d\n";
286 $code.=" movl $TY#d,4*$j($XX[1])\n";
287 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
288 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
289 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
290 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
291 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
292 $code.=" lea 16($inp),$inp\n" if ($i==0);
293 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
294}
295 RC4_loop(-1);
296$code.=<<___;
297 jmp .Loop16_enter
298.align 16
299.Loop16:
300___
301
302for ($i=0;$i<16;$i++) {
303 $code.=".Loop16_enter:\n" if ($i==1);
304 RC4_loop($i);
305 push(@TX,shift(@TX)); # "rotate" registers
306}
307$code.=<<___;
308 mov $YY,$TX[1]
309 xor $YY,$YY # keyword to partial register
310 sub \$16,$len
311 mov $TX[1]#b,$YY#b
312 test \$-16,$len
313 jnz .Loop16
314
315 psllq \$8,%xmm1
316 pxor %xmm0,%xmm2
317 pxor %xmm1,%xmm2
318 movdqu %xmm2,($out,$inp)
319 lea 16($inp),$inp
320
321 cmp \$0,$len
322 jne .Lloop1
323 jmp .Lexit
324
325.align 16
326.Lloop1:
327 add $TX[0]#b,$YY#b
328 movl ($dat,$YY,4),$TY#d
329 movl $TX[0]#d,($dat,$YY,4)
330 movl $TY#d,($dat,$XX[0],4)
331 add $TY#b,$TX[0]#b
332 inc $XX[0]#b
333 movl ($dat,$TX[0],4),$TY#d
334 movl ($dat,$XX[0],4),$TX[0]#d
335 xorb ($inp),$TY#b
336 movb $TY#b,($out,$inp)
337 lea 1($inp),$inp
338 dec $len
339 jnz .Lloop1
340 jmp .Lexit
341
342.align 16
343.LRC4_CHAR:
344 add \$1,$XX[0]#b
345 movzb ($dat,$XX[0]),$TX[0]#d
346 test \$-8,$len
347 jz .Lcloop1
348 jmp .Lcloop8
349.align 16
350.Lcloop8:
351 mov ($inp),%r8d
352 mov 4($inp),%r9d
353___
354# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
355for ($i=0;$i<4;$i++) {
356$code.=<<___;
357 add $TX[0]#b,$YY#b
358 lea 1($XX[0]),$XX[1]
359 movzb ($dat,$YY),$TY#d
360 movzb $XX[1]#b,$XX[1]#d
361 movzb ($dat,$XX[1]),$TX[1]#d
362 movb $TX[0]#b,($dat,$YY)
363 cmp $XX[1],$YY
364 movb $TY#b,($dat,$XX[0])
365 jne .Lcmov$i # Intel cmov is sloooow...
366 mov $TX[0],$TX[1]
367.Lcmov$i:
368 add $TX[0]#b,$TY#b
369 xor ($dat,$TY),%r8b
370 ror \$8,%r8d
371___
372push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
373}
374for ($i=4;$i<8;$i++) {
375$code.=<<___;
376 add $TX[0]#b,$YY#b
377 lea 1($XX[0]),$XX[1]
378 movzb ($dat,$YY),$TY#d
379 movzb $XX[1]#b,$XX[1]#d
380 movzb ($dat,$XX[1]),$TX[1]#d
381 movb $TX[0]#b,($dat,$YY)
382 cmp $XX[1],$YY
383 movb $TY#b,($dat,$XX[0])
384 jne .Lcmov$i # Intel cmov is sloooow...
385 mov $TX[0],$TX[1]
386.Lcmov$i:
387 add $TX[0]#b,$TY#b
388 xor ($dat,$TY),%r9b
389 ror \$8,%r9d
390___
391push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
392}
393$code.=<<___;
394 lea -8($len),$len
395 mov %r8d,($out)
396 lea 8($inp),$inp
397 mov %r9d,4($out)
398 lea 8($out),$out
399
400 test \$-8,$len
401 jnz .Lcloop8
402 cmp \$0,$len
403 jne .Lcloop1
404 jmp .Lexit
405___
406$code.=<<___;
407.align 16
408.Lcloop1:
409 add $TX[0]#b,$YY#b
410 movzb $YY#b,$YY#d
411 movzb ($dat,$YY),$TY#d
412 movb $TX[0]#b,($dat,$YY)
413 movb $TY#b,($dat,$XX[0])
414 add $TX[0]#b,$TY#b
415 add \$1,$XX[0]#b
416 movzb $TY#b,$TY#d
417 movzb $XX[0]#b,$XX[0]#d
418 movzb ($dat,$TY),$TY#d
419 movzb ($dat,$XX[0]),$TX[0]#d
420 xorb ($inp),$TY#b
421 lea 1($inp),$inp
422 movb $TY#b,($out)
423 lea 1($out),$out
424 sub \$1,$len
425 jnz .Lcloop1
426 jmp .Lexit
427
428.align 16
429.Lexit:
430 sub \$1,$XX[0]#b
431 movl $XX[0]#d,-8($dat)
432 movl $YY#d,-4($dat)
433
434 mov (%rsp),%r13
435.cfi_restore %r13
436 mov 8(%rsp),%r12
437.cfi_restore %r12
438 mov 16(%rsp),%rbx
439.cfi_restore %rbx
440 add \$24,%rsp
441.cfi_adjust_cfa_offset -24
442.Lepilogue:
443 ret
444.cfi_endproc
445.size RC4,.-RC4
446___
447}
448
449$idx="%r8";
450$ido="%r9";
451
452$code.=<<___;
453.globl RC4_set_key
454.type RC4_set_key,\@function,3
455.align 16
456RC4_set_key:
457.cfi_startproc
458 lea 8($dat),$dat
459 lea ($inp,$len),$inp
460 neg $len
461 mov $len,%rcx
462 xor %eax,%eax
463 xor $ido,$ido
464 xor %r10,%r10
465 xor %r11,%r11
466
467 mov OPENSSL_ia32cap_P(%rip),$idx#d
468 bt \$20,$idx#d # RC4_CHAR?
469 jc .Lc1stloop
470 jmp .Lw1stloop
471
472.align 16
473.Lw1stloop:
474 mov %eax,($dat,%rax,4)
475 add \$1,%al
476 jnc .Lw1stloop
477
478 xor $ido,$ido
479 xor $idx,$idx
480.align 16
481.Lw2ndloop:
482 mov ($dat,$ido,4),%r10d
483 add ($inp,$len,1),$idx#b
484 add %r10b,$idx#b
485 add \$1,$len
486 mov ($dat,$idx,4),%r11d
487 cmovz %rcx,$len
488 mov %r10d,($dat,$idx,4)
489 mov %r11d,($dat,$ido,4)
490 add \$1,$ido#b
491 jnc .Lw2ndloop
492 jmp .Lexit_key
493
494.align 16
495.Lc1stloop:
496 mov %al,($dat,%rax)
497 add \$1,%al
498 jnc .Lc1stloop
499
500 xor $ido,$ido
501 xor $idx,$idx
502.align 16
503.Lc2ndloop:
504 mov ($dat,$ido),%r10b
505 add ($inp,$len),$idx#b
506 add %r10b,$idx#b
507 add \$1,$len
508 mov ($dat,$idx),%r11b
509 jnz .Lcnowrap
510 mov %rcx,$len
511.Lcnowrap:
512 mov %r10b,($dat,$idx)
513 mov %r11b,($dat,$ido)
514 add \$1,$ido#b
515 jnc .Lc2ndloop
516 movl \$-1,256($dat)
517
518.align 16
519.Lexit_key:
520 xor %eax,%eax
521 mov %eax,-8($dat)
522 mov %eax,-4($dat)
523 ret
524.cfi_endproc
525.size RC4_set_key,.-RC4_set_key
526
527.globl RC4_options
528.type RC4_options,\@abi-omnipotent
529.align 16
530RC4_options:
531.cfi_startproc
532 lea .Lopts(%rip),%rax
533 mov OPENSSL_ia32cap_P(%rip),%edx
534 bt \$20,%edx
535 jc .L8xchar
536 bt \$30,%edx
537 jnc .Ldone
538 add \$25,%rax
539 ret
540.L8xchar:
541 add \$12,%rax
542.Ldone:
543 ret
544.cfi_endproc
545.align 64
546.Lopts:
547.asciz "rc4(8x,int)"
548.asciz "rc4(8x,char)"
549.asciz "rc4(16x,int)"
550.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
551.align 64
552.size RC4_options,.-RC4_options
553___
554
555# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
556# CONTEXT *context,DISPATCHER_CONTEXT *disp)
557if ($win64) {
558$rec="%rcx";
559$frame="%rdx";
560$context="%r8";
561$disp="%r9";
562
563$code.=<<___;
564.extern __imp_RtlVirtualUnwind
565.type stream_se_handler,\@abi-omnipotent
566.align 16
567stream_se_handler:
568 push %rsi
569 push %rdi
570 push %rbx
571 push %rbp
572 push %r12
573 push %r13
574 push %r14
575 push %r15
576 pushfq
577 sub \$64,%rsp
578
579 mov 120($context),%rax # pull context->Rax
580 mov 248($context),%rbx # pull context->Rip
581
582 lea .Lprologue(%rip),%r10
583 cmp %r10,%rbx # context->Rip<prologue label
584 jb .Lin_prologue
585
586 mov 152($context),%rax # pull context->Rsp
587
588 lea .Lepilogue(%rip),%r10
589 cmp %r10,%rbx # context->Rip>=epilogue label
590 jae .Lin_prologue
591
592 lea 24(%rax),%rax
593
594 mov -8(%rax),%rbx
595 mov -16(%rax),%r12
596 mov -24(%rax),%r13
597 mov %rbx,144($context) # restore context->Rbx
598 mov %r12,216($context) # restore context->R12
599 mov %r13,224($context) # restore context->R13
600
601.Lin_prologue:
602 mov 8(%rax),%rdi
603 mov 16(%rax),%rsi
604 mov %rax,152($context) # restore context->Rsp
605 mov %rsi,168($context) # restore context->Rsi
606 mov %rdi,176($context) # restore context->Rdi
607
608 jmp .Lcommon_seh_exit
609.size stream_se_handler,.-stream_se_handler
610
611.type key_se_handler,\@abi-omnipotent
612.align 16
613key_se_handler:
614 push %rsi
615 push %rdi
616 push %rbx
617 push %rbp
618 push %r12
619 push %r13
620 push %r14
621 push %r15
622 pushfq
623 sub \$64,%rsp
624
625 mov 152($context),%rax # pull context->Rsp
626 mov 8(%rax),%rdi
627 mov 16(%rax),%rsi
628 mov %rsi,168($context) # restore context->Rsi
629 mov %rdi,176($context) # restore context->Rdi
630
631.Lcommon_seh_exit:
632
633 mov 40($disp),%rdi # disp->ContextRecord
634 mov $context,%rsi # context
635 mov \$154,%ecx # sizeof(CONTEXT)
636 .long 0xa548f3fc # cld; rep movsq
637
638 mov $disp,%rsi
639 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
640 mov 8(%rsi),%rdx # arg2, disp->ImageBase
641 mov 0(%rsi),%r8 # arg3, disp->ControlPc
642 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
643 mov 40(%rsi),%r10 # disp->ContextRecord
644 lea 56(%rsi),%r11 # &disp->HandlerData
645 lea 24(%rsi),%r12 # &disp->EstablisherFrame
646 mov %r10,32(%rsp) # arg5
647 mov %r11,40(%rsp) # arg6
648 mov %r12,48(%rsp) # arg7
649 mov %rcx,56(%rsp) # arg8, (NULL)
650 call *__imp_RtlVirtualUnwind(%rip)
651
652 mov \$1,%eax # ExceptionContinueSearch
653 add \$64,%rsp
654 popfq
655 pop %r15
656 pop %r14
657 pop %r13
658 pop %r12
659 pop %rbp
660 pop %rbx
661 pop %rdi
662 pop %rsi
663 ret
664.size key_se_handler,.-key_se_handler
665
666.section .pdata
667.align 4
668 .rva .LSEH_begin_RC4
669 .rva .LSEH_end_RC4
670 .rva .LSEH_info_RC4
671
672 .rva .LSEH_begin_RC4_set_key
673 .rva .LSEH_end_RC4_set_key
674 .rva .LSEH_info_RC4_set_key
675
676.section .xdata
677.align 8
678.LSEH_info_RC4:
679 .byte 9,0,0,0
680 .rva stream_se_handler
681.LSEH_info_RC4_set_key:
682 .byte 9,0,0,0
683 .rva key_se_handler
684___
685}
686
687sub reg_part {
688my ($reg,$conv)=@_;
689 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
690 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
691 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
692 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
693 return $reg;
694}
695
696$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
697$code =~ s/\`([^\`]*)\`/eval $1/gem;
698
699print $code;
700
701close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette