VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/bn/asm/ia64.S@ 91772

Last change on this file since 91772 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

File size: 44.6 KB
Line 
1.explicit
2.text
3.ident "ia64.S, Version 2.1"
4.ident "IA-64 ISA artwork by Andy Polyakov <[email protected]>"
5
6// Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
7//
8// Licensed under the OpenSSL license (the "License"). You may not use
9// this file except in compliance with the License. You can obtain a copy
10// in the file LICENSE in the source distribution or at
11// https://www.openssl.org/source/license.html
12
13//
14// ====================================================================
15// Written by Andy Polyakov <[email protected]> for the OpenSSL
16// project.
17//
18// Rights for redistribution and usage in source and binary forms are
19// granted according to the OpenSSL license. Warranty of any kind is
20// disclaimed.
21// ====================================================================
22//
23// Version 2.x is Itanium2 re-tune. Few words about how Itanium2 is
24// different from Itanium to this module viewpoint. Most notably, is it
25// "wider" than Itanium? Can you experience loop scalability as
26// discussed in commentary sections? Not really:-( Itanium2 has 6
27// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
28// spin twice as fast, as I need 8 IALU ports. Amount of floating point
29// ports is the same, i.e. 2, while I need 4. In other words, to this
30// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
31// essentially different in respect to this module, and a re-tune was
32// required. Well, because some instruction latencies has changed. Most
33// noticeably those intensively used:
34//
35// Itanium Itanium2
36// ldf8 9 6 L2 hit
37// ld8 2 1 L1 hit
38// getf 2 5
39// xma[->getf] 7[+1] 4[+0]
40// add[->st8] 1[+1] 1[+0]
41//
42// What does it mean? You might ratiocinate that the original code
43// should run just faster... Because sum of latencies is smaller...
44// Wrong! Note that getf latency increased. This means that if a loop is
45// scheduled for lower latency (as they were), then it will suffer from
46// stall condition and the code will therefore turn anti-scalable, e.g.
47// original bn_mul_words spun at 5*n or 2.5 times slower than expected
48// on Itanium2! What to do? Reschedule loops for Itanium2? But then
49// Itanium would exhibit anti-scalability. So I've chosen to reschedule
50// for worst latency for every instruction aiming for best *all-round*
51// performance.
52
53// Q. How much faster does it get?
54// A. Here is the output from 'openssl speed rsa dsa' for vanilla
55// 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat
56// Linux 7.1 2.96-81):
57//
58// sign verify sign/s verify/s
59// rsa 512 bits 0.0036s 0.0003s 275.3 2999.2
60// rsa 1024 bits 0.0203s 0.0011s 49.3 894.1
61// rsa 2048 bits 0.1331s 0.0040s 7.5 250.9
62// rsa 4096 bits 0.9270s 0.0147s 1.1 68.1
63// sign verify sign/s verify/s
64// dsa 512 bits 0.0035s 0.0043s 288.3 234.8
65// dsa 1024 bits 0.0111s 0.0135s 90.0 74.2
66//
67// And here is similar output but for this assembler
68// implementation:-)
69//
70// sign verify sign/s verify/s
71// rsa 512 bits 0.0021s 0.0001s 549.4 9638.5
72// rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1
73// rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3
74// rsa 4096 bits 0.1295s 0.0018s 7.7 561.5
75// sign verify sign/s verify/s
76// dsa 512 bits 0.0012s 0.0013s 891.9 756.6
77// dsa 1024 bits 0.0023s 0.0028s 440.4 376.2
78//
79// Yes, you may argue that it's not fair comparison as it's
80// possible to craft the C implementation with BN_UMULT_HIGH
81// inline assembler macro. But of course! Here is the output
82// with the macro:
83//
84// sign verify sign/s verify/s
85// rsa 512 bits 0.0020s 0.0002s 495.0 6561.0
86// rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7
87// rsa 2048 bits 0.0519s 0.0015s 19.3 667.3
88// rsa 4096 bits 0.3464s 0.0053s 2.9 187.7
89// sign verify sign/s verify/s
90// dsa 512 bits 0.0016s 0.0020s 613.1 510.5
91// dsa 1024 bits 0.0045s 0.0054s 221.0 183.9
92//
93// My code is still way faster, huh:-) And I believe that even
94// higher performance can be achieved. Note that as keys get
95// longer, performance gain is larger. Why? According to the
96// profiler there is another player in the field, namely
97// BN_from_montgomery consuming larger and larger portion of CPU
98// time as keysize decreases. I therefore consider putting effort
99// to assembler implementation of the following routine:
100//
101// void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0)
102// {
103// int i,j;
104// BN_ULONG v;
105//
106// for (i=0; i<nl; i++)
107// {
108// v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2);
109// nrp++;
110// rp++;
111// if (((nrp[-1]+=v)&BN_MASK2) < v)
112// for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ;
113// }
114// }
115//
116// It might as well be beneficial to implement even combaX
117// variants, as it appears as it can literally unleash the
118// performance (see comment section to bn_mul_comba8 below).
119//
120// And finally for your reference the output for 0.9.6a compiled
121// with SGIcc version 0.01.0-12 (keep in mind that for the moment
122// of this writing it's not possible to convince SGIcc to use
123// BN_UMULT_HIGH inline assembler macro, yet the code is fast,
124// i.e. for a compiler generated one:-):
125//
126// sign verify sign/s verify/s
127// rsa 512 bits 0.0022s 0.0002s 452.7 5894.3
128// rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9
129// rsa 2048 bits 0.0578s 0.0017s 17.3 600.2
130// rsa 4096 bits 0.3838s 0.0061s 2.6 164.5
131// sign verify sign/s verify/s
132// dsa 512 bits 0.0018s 0.0022s 547.3 459.6
133// dsa 1024 bits 0.0051s 0.0062s 196.6 161.3
134//
135// Oh! Benchmarks were performed on 733MHz Lion-class Itanium
136// system running Redhat Linux 7.1 (very special thanks to Ray
137// McCaffity of Williams Communications for providing an account).
138//
139// Q. What's the heck with 'rum 1<<5' at the end of every function?
140// A. Well, by clearing the "upper FP registers written" bit of the
141// User Mask I want to excuse the kernel from preserving upper
142// (f32-f128) FP register bank over process context switch, thus
143// minimizing bus bandwidth consumption during the switch (i.e.
144// after PKI operation completes and the program is off doing
145// something else like bulk symmetric encryption). Having said
146// this, I also want to point out that it might be good idea
147// to compile the whole toolkit (as well as majority of the
148// programs for that matter) with -mfixed-range=f32-f127 command
149// line option. No, it doesn't prevent the compiler from writing
150// to upper bank, but at least discourages to do so. If you don't
151// like the idea you have the option to compile the module with
152// -Drum=nop.m in command line.
153//
154
155#if defined(_HPUX_SOURCE) && !defined(_LP64)
156#define ADDP addp4
157#else
158#define ADDP add
159#endif
160#ifdef __VMS
161.alias abort, "decc$abort"
162#endif
163
164#if 1
165//
166// bn_[add|sub]_words routines.
167//
168// Loops are spinning in 2*(n+5) ticks on Itanium (provided that the
169// data reside in L1 cache, i.e. 2 ticks away). It's possible to
170// compress the epilogue and get down to 2*n+6, but at the cost of
171// scalability (the neat feature of this implementation is that it
172// shall automagically spin in n+5 on "wider" IA-64 implementations:-)
173// I consider that the epilogue is short enough as it is to trade tiny
174// performance loss on Itanium for scalability.
175//
176// BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
177//
178.global bn_add_words#
179.proc bn_add_words#
180.align 64
181.skip 32 // makes the loop body aligned at 64-byte boundary
182bn_add_words:
183 .prologue
184 .save ar.pfs,r2
185{ .mii; alloc r2=ar.pfs,4,12,0,16
186 cmp4.le p6,p0=r35,r0 };;
187{ .mfb; mov r8=r0 // return value
188(p6) br.ret.spnt.many b0 };;
189
190{ .mib; sub r10=r35,r0,1
191 .save ar.lc,r3
192 mov r3=ar.lc
193 brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16
194 }
195{ .mib; ADDP r14=0,r32 // rp
196 .save pr,r9
197 mov r9=pr };;
198 .body
199{ .mii; ADDP r15=0,r33 // ap
200 mov ar.lc=r10
201 mov ar.ec=6 }
202{ .mib; ADDP r16=0,r34 // bp
203 mov pr.rot=1<<16 };;
204
205.L_bn_add_words_ctop:
206{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
207 (p18) add r39=r37,r34
208 (p19) cmp.ltu.unc p56,p0=r40,r38 }
209{ .mfb; (p0) nop.m 0x0
210 (p0) nop.f 0x0
211 (p0) nop.b 0x0 }
212{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
213 (p58) cmp.eq.or p57,p0=-1,r41 // (p20)
214 (p58) add r41=1,r41 } // (p20)
215{ .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r
216 (p0) nop.f 0x0
217 br.ctop.sptk .L_bn_add_words_ctop };;
218.L_bn_add_words_cend:
219
220{ .mii;
221(p59) add r8=1,r8 // return value
222 mov pr=r9,0x1ffff
223 mov ar.lc=r3 }
224{ .mbb; nop.b 0x0
225 br.ret.sptk.many b0 };;
226.endp bn_add_words#
227
228//
229// BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num)
230//
231.global bn_sub_words#
232.proc bn_sub_words#
233.align 64
234.skip 32 // makes the loop body aligned at 64-byte boundary
235bn_sub_words:
236 .prologue
237 .save ar.pfs,r2
238{ .mii; alloc r2=ar.pfs,4,12,0,16
239 cmp4.le p6,p0=r35,r0 };;
240{ .mfb; mov r8=r0 // return value
241(p6) br.ret.spnt.many b0 };;
242
243{ .mib; sub r10=r35,r0,1
244 .save ar.lc,r3
245 mov r3=ar.lc
246 brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16
247 }
248{ .mib; ADDP r14=0,r32 // rp
249 .save pr,r9
250 mov r9=pr };;
251 .body
252{ .mii; ADDP r15=0,r33 // ap
253 mov ar.lc=r10
254 mov ar.ec=6 }
255{ .mib; ADDP r16=0,r34 // bp
256 mov pr.rot=1<<16 };;
257
258.L_bn_sub_words_ctop:
259{ .mii; (p16) ld8 r32=[r16],8 // b=*(bp++)
260 (p18) sub r39=r37,r34
261 (p19) cmp.gtu.unc p56,p0=r40,r38 }
262{ .mfb; (p0) nop.m 0x0
263 (p0) nop.f 0x0
264 (p0) nop.b 0x0 }
265{ .mii; (p16) ld8 r35=[r15],8 // a=*(ap++)
266 (p58) cmp.eq.or p57,p0=0,r41 // (p20)
267 (p58) add r41=-1,r41 } // (p20)
268{ .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r
269 (p0) nop.b 0x0
270 br.ctop.sptk .L_bn_sub_words_ctop };;
271.L_bn_sub_words_cend:
272
273{ .mii;
274(p59) add r8=1,r8 // return value
275 mov pr=r9,0x1ffff
276 mov ar.lc=r3 }
277{ .mbb; nop.b 0x0
278 br.ret.sptk.many b0 };;
279.endp bn_sub_words#
280#endif
281
282#if 0
283#define XMA_TEMPTATION
284#endif
285
286#if 1
287//
288// BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
289//
290.global bn_mul_words#
291.proc bn_mul_words#
292.align 64
293.skip 32 // makes the loop body aligned at 64-byte boundary
294bn_mul_words:
295 .prologue
296 .save ar.pfs,r2
297#ifdef XMA_TEMPTATION
298{ .mfi; alloc r2=ar.pfs,4,0,0,0 };;
299#else
300{ .mfi; alloc r2=ar.pfs,4,12,0,16 };;
301#endif
302{ .mib; mov r8=r0 // return value
303 cmp4.le p6,p0=r34,r0
304(p6) br.ret.spnt.many b0 };;
305
306{ .mii; sub r10=r34,r0,1
307 .save ar.lc,r3
308 mov r3=ar.lc
309 .save pr,r9
310 mov r9=pr };;
311
312 .body
313{ .mib; setf.sig f8=r35 // w
314 mov pr.rot=0x800001<<16
315 // ------^----- serves as (p50) at first (p27)
316 brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
317 }
318
319#ifndef XMA_TEMPTATION
320
321{ .mmi; ADDP r14=0,r32 // rp
322 ADDP r15=0,r33 // ap
323 mov ar.lc=r10 }
324{ .mmi; mov r40=0 // serves as r35 at first (p27)
325 mov ar.ec=13 };;
326
327// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
328// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
329// bypass L1 cache and L2 latency is actually best-case scenario for
330// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
331// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
332// would give us ~5% in *overall* performance improvement on "wider"
333// IA-64, but would hurt Itanium for about same because of longer
334// epilogue. As it's a matter of few percents in either case I've
335// chosen to trade the scalability for development time (you can see
336// this very instruction sequence in bn_mul_add_words loop which in
337// turn is scalable).
338.L_bn_mul_words_ctop:
339{ .mfi; (p25) getf.sig r36=f52 // low
340 (p21) xmpy.lu f48=f37,f8
341 (p28) cmp.ltu p54,p50=r41,r39 }
342{ .mfi; (p16) ldf8 f32=[r15],8
343 (p21) xmpy.hu f40=f37,f8
344 (p0) nop.i 0x0 };;
345{ .mii; (p25) getf.sig r32=f44 // high
346 .pred.rel "mutex",p50,p54
347 (p50) add r40=r38,r35 // (p27)
348 (p54) add r40=r38,r35,1 } // (p27)
349{ .mfb; (p28) st8 [r14]=r41,8
350 (p0) nop.f 0x0
351 br.ctop.sptk .L_bn_mul_words_ctop };;
352.L_bn_mul_words_cend:
353
354{ .mii; nop.m 0x0
355.pred.rel "mutex",p51,p55
356(p51) add r8=r36,r0
357(p55) add r8=r36,r0,1 }
358{ .mfb; nop.m 0x0
359 nop.f 0x0
360 nop.b 0x0 }
361
362#else // XMA_TEMPTATION
363
364 setf.sig f37=r0 // serves as carry at (p18) tick
365 mov ar.lc=r10
366 mov ar.ec=5;;
367
368// Most of you examining this code very likely wonder why in the name
369// of Intel the following loop is commented out? Indeed, it looks so
370// neat that you find it hard to believe that it's something wrong
371// with it, right? The catch is that every iteration depends on the
372// result from previous one and the latter isn't available instantly.
373// The loop therefore spins at the latency of xma minus 1, or in other
374// words at 6*(n+4) ticks:-( Compare to the "production" loop above
375// that runs in 2*(n+11) where the low latency problem is worked around
376// by moving the dependency to one-tick latent integer ALU. Note that
377// "distance" between ldf8 and xma is not latency of ldf8, but the
378// *difference* between xma and ldf8 latencies.
379.L_bn_mul_words_ctop:
380{ .mfi; (p16) ldf8 f32=[r33],8
381 (p18) xma.hu f38=f34,f8,f39 }
382{ .mfb; (p20) stf8 [r32]=f37,8
383 (p18) xma.lu f35=f34,f8,f39
384 br.ctop.sptk .L_bn_mul_words_ctop };;
385.L_bn_mul_words_cend:
386
387 getf.sig r8=f41 // the return value
388
389#endif // XMA_TEMPTATION
390
391{ .mii; nop.m 0x0
392 mov pr=r9,0x1ffff
393 mov ar.lc=r3 }
394{ .mfb; rum 1<<5 // clear um.mfh
395 nop.f 0x0
396 br.ret.sptk.many b0 };;
397.endp bn_mul_words#
398#endif
399
400#if 1
401//
402// BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w)
403//
404.global bn_mul_add_words#
405.proc bn_mul_add_words#
406.align 64
407.skip 48 // makes the loop body aligned at 64-byte boundary
408bn_mul_add_words:
409 .prologue
410 .save ar.pfs,r2
411{ .mmi; alloc r2=ar.pfs,4,4,0,8
412 cmp4.le p6,p0=r34,r0
413 .save ar.lc,r3
414 mov r3=ar.lc };;
415{ .mib; mov r8=r0 // return value
416 sub r10=r34,r0,1
417(p6) br.ret.spnt.many b0 };;
418
419{ .mib; setf.sig f8=r35 // w
420 .save pr,r9
421 mov r9=pr
422 brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
423 }
424 .body
425{ .mmi; ADDP r14=0,r32 // rp
426 ADDP r15=0,r33 // ap
427 mov ar.lc=r10 }
428{ .mii; ADDP r16=0,r32 // rp copy
429 mov pr.rot=0x2001<<16
430 // ------^----- serves as (p40) at first (p27)
431 mov ar.ec=11 };;
432
433// This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on
434// Itanium 2. Yes, unlike previous versions it scales:-) Previous
435// version was performing *all* additions in IALU and was starving
436// for those even on Itanium 2. In this version one addition is
437// moved to FPU and is folded with multiplication. This is at cost
438// of propagating the result from previous call to this subroutine
439// to L2 cache... In other words negligible even for shorter keys.
440// *Overall* performance improvement [over previous version] varies
441// from 11 to 22 percent depending on key length.
442.L_bn_mul_add_words_ctop:
443.pred.rel "mutex",p40,p42
444{ .mfi; (p23) getf.sig r36=f45 // low
445 (p20) xma.lu f42=f36,f8,f50 // low
446 (p40) add r39=r39,r35 } // (p27)
447{ .mfi; (p16) ldf8 f32=[r15],8 // *(ap++)
448 (p20) xma.hu f36=f36,f8,f50 // high
449 (p42) add r39=r39,r35,1 };; // (p27)
450{ .mmi; (p24) getf.sig r32=f40 // high
451 (p16) ldf8 f46=[r16],8 // *(rp1++)
452 (p40) cmp.ltu p41,p39=r39,r35 } // (p27)
453{ .mib; (p26) st8 [r14]=r39,8 // *(rp2++)
454 (p42) cmp.leu p41,p39=r39,r35 // (p27)
455 br.ctop.sptk .L_bn_mul_add_words_ctop};;
456.L_bn_mul_add_words_cend:
457
458{ .mmi; .pred.rel "mutex",p40,p42
459(p40) add r8=r35,r0
460(p42) add r8=r35,r0,1
461 mov pr=r9,0x1ffff }
462{ .mib; rum 1<<5 // clear um.mfh
463 mov ar.lc=r3
464 br.ret.sptk.many b0 };;
465.endp bn_mul_add_words#
466#endif
467
468#if 1
469//
470// void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num)
471//
472.global bn_sqr_words#
473.proc bn_sqr_words#
474.align 64
475.skip 32 // makes the loop body aligned at 64-byte boundary
476bn_sqr_words:
477 .prologue
478 .save ar.pfs,r2
479{ .mii; alloc r2=ar.pfs,3,0,0,0
480 sxt4 r34=r34 };;
481{ .mii; cmp.le p6,p0=r34,r0
482 mov r8=r0 } // return value
483{ .mfb; ADDP r32=0,r32
484 nop.f 0x0
485(p6) br.ret.spnt.many b0 };;
486
487{ .mii; sub r10=r34,r0,1
488 .save ar.lc,r3
489 mov r3=ar.lc
490 .save pr,r9
491 mov r9=pr };;
492
493 .body
494{ .mib; ADDP r33=0,r33
495 mov pr.rot=1<<16
496 brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16
497 }
498{ .mii; add r34=8,r32
499 mov ar.lc=r10
500 mov ar.ec=18 };;
501
502// 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's
503// possible to compress the epilogue (I'm getting tired to write this
504// comment over and over) and get down to 2*n+16 at the cost of
505// scalability. The decision will very likely be reconsidered after the
506// benchmark program is profiled. I.e. if performance gain on Itanium
507// will appear larger than loss on "wider" IA-64, then the loop should
508// be explicitly split and the epilogue compressed.
509.L_bn_sqr_words_ctop:
510{ .mfi; (p16) ldf8 f32=[r33],8
511 (p25) xmpy.lu f42=f41,f41
512 (p0) nop.i 0x0 }
513{ .mib; (p33) stf8 [r32]=f50,16
514 (p0) nop.i 0x0
515 (p0) nop.b 0x0 }
516{ .mfi; (p0) nop.m 0x0
517 (p25) xmpy.hu f52=f41,f41
518 (p0) nop.i 0x0 }
519{ .mib; (p33) stf8 [r34]=f60,16
520 (p0) nop.i 0x0
521 br.ctop.sptk .L_bn_sqr_words_ctop };;
522.L_bn_sqr_words_cend:
523
524{ .mii; nop.m 0x0
525 mov pr=r9,0x1ffff
526 mov ar.lc=r3 }
527{ .mfb; rum 1<<5 // clear um.mfh
528 nop.f 0x0
529 br.ret.sptk.many b0 };;
530.endp bn_sqr_words#
531#endif
532
533#if 1
534// Apparently we win nothing by implementing special bn_sqr_comba8.
535// Yes, it is possible to reduce the number of multiplications by
536// almost factor of two, but then the amount of additions would
537// increase by factor of two (as we would have to perform those
538// otherwise performed by xma ourselves). Normally we would trade
539// anyway as multiplications are way more expensive, but not this
540// time... Multiplication kernel is fully pipelined and as we drain
541// one 128-bit multiplication result per clock cycle multiplications
542// are effectively as inexpensive as additions. Special implementation
543// might become of interest for "wider" IA-64 implementation as you'll
544// be able to get through the multiplication phase faster (there won't
545// be any stall issues as discussed in the commentary section below and
546// you therefore will be able to employ all 4 FP units)... But these
547// Itanium days it's simply too hard to justify the effort so I just
548// drop down to bn_mul_comba8 code:-)
549//
550// void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a)
551//
552.global bn_sqr_comba8#
553.proc bn_sqr_comba8#
554.align 64
555bn_sqr_comba8:
556 .prologue
557 .save ar.pfs,r2
558#if defined(_HPUX_SOURCE) && !defined(_LP64)
559{ .mii; alloc r2=ar.pfs,2,1,0,0
560 addp4 r33=0,r33
561 addp4 r32=0,r32 };;
562{ .mii;
563#else
564{ .mii; alloc r2=ar.pfs,2,1,0,0
565#endif
566 mov r34=r33
567 add r14=8,r33 };;
568 .body
569{ .mii; add r17=8,r34
570 add r15=16,r33
571 add r18=16,r34 }
572{ .mfb; add r16=24,r33
573 br .L_cheat_entry_point8 };;
574.endp bn_sqr_comba8#
575#endif
576
577#if 1
578// I've estimated this routine to run in ~120 ticks, but in reality
579// (i.e. according to ar.itc) it takes ~160 ticks. Are those extra
580// cycles consumed for instructions fetch? Or did I misinterpret some
581// clause in Itanium µ-architecture manual? Comments are welcomed and
582// highly appreciated.
583//
584// On Itanium 2 it takes ~190 ticks. This is because of stalls on
585// result from getf.sig. I do nothing about it at this point for
586// reasons depicted below.
587//
588// However! It should be noted that even 160 ticks is darn good result
589// as it's over 10 (yes, ten, spelled as t-e-n) times faster than the
590// C version (compiled with gcc with inline assembler). I really
591// kicked compiler's butt here, didn't I? Yeah! This brings us to the
592// following statement. It's damn shame that this routine isn't called
593// very often nowadays! According to the profiler most CPU time is
594// consumed by bn_mul_add_words called from BN_from_montgomery. In
595// order to estimate what we're missing, I've compared the performance
596// of this routine against "traditional" implementation, i.e. against
597// following routine:
598//
599// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
600// { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]);
601// r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
602// r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
603// r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
604// r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
605// r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
606// r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
607// r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
608// }
609//
610// The one below is over 8 times faster than the one above:-( Even
611// more reasons to "combafy" bn_mul_add_mont...
612//
613// And yes, this routine really made me wish there were an optimizing
614// assembler! It also feels like it deserves a dedication.
615//
616// To my wife for being there and to my kids...
617//
618// void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
619//
620#define carry1 r14
621#define carry2 r15
622#define carry3 r34
623.global bn_mul_comba8#
624.proc bn_mul_comba8#
625.align 64
626bn_mul_comba8:
627 .prologue
628 .save ar.pfs,r2
629#if defined(_HPUX_SOURCE) && !defined(_LP64)
630{ .mii; alloc r2=ar.pfs,3,0,0,0
631 addp4 r33=0,r33
632 addp4 r34=0,r34 };;
633{ .mii; addp4 r32=0,r32
634#else
635{ .mii; alloc r2=ar.pfs,3,0,0,0
636#endif
637 add r14=8,r33
638 add r17=8,r34 }
639 .body
640{ .mii; add r15=16,r33
641 add r18=16,r34
642 add r16=24,r33 }
643.L_cheat_entry_point8:
644{ .mmi; add r19=24,r34
645
646 ldf8 f32=[r33],32 };;
647
648{ .mmi; ldf8 f120=[r34],32
649 ldf8 f121=[r17],32 }
650{ .mmi; ldf8 f122=[r18],32
651 ldf8 f123=[r19],32 };;
652{ .mmi; ldf8 f124=[r34]
653 ldf8 f125=[r17] }
654{ .mmi; ldf8 f126=[r18]
655 ldf8 f127=[r19] }
656
657{ .mmi; ldf8 f33=[r14],32
658 ldf8 f34=[r15],32 }
659{ .mmi; ldf8 f35=[r16],32;;
660 ldf8 f36=[r33] }
661{ .mmi; ldf8 f37=[r14]
662 ldf8 f38=[r15] }
663{ .mfi; ldf8 f39=[r16]
664// -------\ Entering multiplier's heaven /-------
665// ------------\ /------------
666// -----------------\ /-----------------
667// ----------------------\/----------------------
668 xma.hu f41=f32,f120,f0 }
669{ .mfi; xma.lu f40=f32,f120,f0 };; // (*)
670{ .mfi; xma.hu f51=f32,f121,f0 }
671{ .mfi; xma.lu f50=f32,f121,f0 };;
672{ .mfi; xma.hu f61=f32,f122,f0 }
673{ .mfi; xma.lu f60=f32,f122,f0 };;
674{ .mfi; xma.hu f71=f32,f123,f0 }
675{ .mfi; xma.lu f70=f32,f123,f0 };;
676{ .mfi; xma.hu f81=f32,f124,f0 }
677{ .mfi; xma.lu f80=f32,f124,f0 };;
678{ .mfi; xma.hu f91=f32,f125,f0 }
679{ .mfi; xma.lu f90=f32,f125,f0 };;
680{ .mfi; xma.hu f101=f32,f126,f0 }
681{ .mfi; xma.lu f100=f32,f126,f0 };;
682{ .mfi; xma.hu f111=f32,f127,f0 }
683{ .mfi; xma.lu f110=f32,f127,f0 };;//
684// (*) You can argue that splitting at every second bundle would
685// prevent "wider" IA-64 implementations from achieving the peak
686// performance. Well, not really... The catch is that if you
687// intend to keep 4 FP units busy by splitting at every fourth
688// bundle and thus perform these 16 multiplications in 4 ticks,
689// the first bundle *below* would stall because the result from
690// the first xma bundle *above* won't be available for another 3
691// ticks (if not more, being an optimist, I assume that "wider"
692// implementation will have same latency:-). This stall will hold
693// you back and the performance would be as if every second bundle
694// were split *anyway*...
695{ .mfi; getf.sig r16=f40
696 xma.hu f42=f33,f120,f41
697 add r33=8,r32 }
698{ .mfi; xma.lu f41=f33,f120,f41 };;
699{ .mfi; getf.sig r24=f50
700 xma.hu f52=f33,f121,f51 }
701{ .mfi; xma.lu f51=f33,f121,f51 };;
702{ .mfi; st8 [r32]=r16,16
703 xma.hu f62=f33,f122,f61 }
704{ .mfi; xma.lu f61=f33,f122,f61 };;
705{ .mfi; xma.hu f72=f33,f123,f71 }
706{ .mfi; xma.lu f71=f33,f123,f71 };;
707{ .mfi; xma.hu f82=f33,f124,f81 }
708{ .mfi; xma.lu f81=f33,f124,f81 };;
709{ .mfi; xma.hu f92=f33,f125,f91 }
710{ .mfi; xma.lu f91=f33,f125,f91 };;
711{ .mfi; xma.hu f102=f33,f126,f101 }
712{ .mfi; xma.lu f101=f33,f126,f101 };;
713{ .mfi; xma.hu f112=f33,f127,f111 }
714{ .mfi; xma.lu f111=f33,f127,f111 };;//
715//-------------------------------------------------//
716{ .mfi; getf.sig r25=f41
717 xma.hu f43=f34,f120,f42 }
718{ .mfi; xma.lu f42=f34,f120,f42 };;
719{ .mfi; getf.sig r16=f60
720 xma.hu f53=f34,f121,f52 }
721{ .mfi; xma.lu f52=f34,f121,f52 };;
722{ .mfi; getf.sig r17=f51
723 xma.hu f63=f34,f122,f62
724 add r25=r25,r24 }
725{ .mfi; xma.lu f62=f34,f122,f62
726 mov carry1=0 };;
727{ .mfi; cmp.ltu p6,p0=r25,r24
728 xma.hu f73=f34,f123,f72 }
729{ .mfi; xma.lu f72=f34,f123,f72 };;
730{ .mfi; st8 [r33]=r25,16
731 xma.hu f83=f34,f124,f82
732(p6) add carry1=1,carry1 }
733{ .mfi; xma.lu f82=f34,f124,f82 };;
734{ .mfi; xma.hu f93=f34,f125,f92 }
735{ .mfi; xma.lu f92=f34,f125,f92 };;
736{ .mfi; xma.hu f103=f34,f126,f102 }
737{ .mfi; xma.lu f102=f34,f126,f102 };;
738{ .mfi; xma.hu f113=f34,f127,f112 }
739{ .mfi; xma.lu f112=f34,f127,f112 };;//
740//-------------------------------------------------//
741{ .mfi; getf.sig r18=f42
742 xma.hu f44=f35,f120,f43
743 add r17=r17,r16 }
744{ .mfi; xma.lu f43=f35,f120,f43 };;
745{ .mfi; getf.sig r24=f70
746 xma.hu f54=f35,f121,f53 }
747{ .mfi; mov carry2=0
748 xma.lu f53=f35,f121,f53 };;
749{ .mfi; getf.sig r25=f61
750 xma.hu f64=f35,f122,f63
751 cmp.ltu p7,p0=r17,r16 }
752{ .mfi; add r18=r18,r17
753 xma.lu f63=f35,f122,f63 };;
754{ .mfi; getf.sig r26=f52
755 xma.hu f74=f35,f123,f73
756(p7) add carry2=1,carry2 }
757{ .mfi; cmp.ltu p7,p0=r18,r17
758 xma.lu f73=f35,f123,f73
759 add r18=r18,carry1 };;
760{ .mfi;
761 xma.hu f84=f35,f124,f83
762(p7) add carry2=1,carry2 }
763{ .mfi; cmp.ltu p7,p0=r18,carry1
764 xma.lu f83=f35,f124,f83 };;
765{ .mfi; st8 [r32]=r18,16
766 xma.hu f94=f35,f125,f93
767(p7) add carry2=1,carry2 }
768{ .mfi; xma.lu f93=f35,f125,f93 };;
769{ .mfi; xma.hu f104=f35,f126,f103 }
770{ .mfi; xma.lu f103=f35,f126,f103 };;
771{ .mfi; xma.hu f114=f35,f127,f113 }
772{ .mfi; mov carry1=0
773 xma.lu f113=f35,f127,f113
774 add r25=r25,r24 };;//
775//-------------------------------------------------//
776{ .mfi; getf.sig r27=f43
777 xma.hu f45=f36,f120,f44
778 cmp.ltu p6,p0=r25,r24 }
779{ .mfi; xma.lu f44=f36,f120,f44
780 add r26=r26,r25 };;
781{ .mfi; getf.sig r16=f80
782 xma.hu f55=f36,f121,f54
783(p6) add carry1=1,carry1 }
784{ .mfi; xma.lu f54=f36,f121,f54 };;
785{ .mfi; getf.sig r17=f71
786 xma.hu f65=f36,f122,f64
787 cmp.ltu p6,p0=r26,r25 }
788{ .mfi; xma.lu f64=f36,f122,f64
789 add r27=r27,r26 };;
790{ .mfi; getf.sig r18=f62
791 xma.hu f75=f36,f123,f74
792(p6) add carry1=1,carry1 }
793{ .mfi; cmp.ltu p6,p0=r27,r26
794 xma.lu f74=f36,f123,f74
795 add r27=r27,carry2 };;
796{ .mfi; getf.sig r19=f53
797 xma.hu f85=f36,f124,f84
798(p6) add carry1=1,carry1 }
799{ .mfi; xma.lu f84=f36,f124,f84
800 cmp.ltu p6,p0=r27,carry2 };;
801{ .mfi; st8 [r33]=r27,16
802 xma.hu f95=f36,f125,f94
803(p6) add carry1=1,carry1 }
804{ .mfi; xma.lu f94=f36,f125,f94 };;
805{ .mfi; xma.hu f105=f36,f126,f104 }
806{ .mfi; mov carry2=0
807 xma.lu f104=f36,f126,f104
808 add r17=r17,r16 };;
809{ .mfi; xma.hu f115=f36,f127,f114
810 cmp.ltu p7,p0=r17,r16 }
811{ .mfi; xma.lu f114=f36,f127,f114
812 add r18=r18,r17 };;//
813//-------------------------------------------------//
814{ .mfi; getf.sig r20=f44
815 xma.hu f46=f37,f120,f45
816(p7) add carry2=1,carry2 }
817{ .mfi; cmp.ltu p7,p0=r18,r17
818 xma.lu f45=f37,f120,f45
819 add r19=r19,r18 };;
820{ .mfi; getf.sig r24=f90
821 xma.hu f56=f37,f121,f55 }
822{ .mfi; xma.lu f55=f37,f121,f55 };;
823{ .mfi; getf.sig r25=f81
824 xma.hu f66=f37,f122,f65
825(p7) add carry2=1,carry2 }
826{ .mfi; cmp.ltu p7,p0=r19,r18
827 xma.lu f65=f37,f122,f65
828 add r20=r20,r19 };;
829{ .mfi; getf.sig r26=f72
830 xma.hu f76=f37,f123,f75
831(p7) add carry2=1,carry2 }
832{ .mfi; cmp.ltu p7,p0=r20,r19
833 xma.lu f75=f37,f123,f75
834 add r20=r20,carry1 };;
835{ .mfi; getf.sig r27=f63
836 xma.hu f86=f37,f124,f85
837(p7) add carry2=1,carry2 }
838{ .mfi; xma.lu f85=f37,f124,f85
839 cmp.ltu p7,p0=r20,carry1 };;
840{ .mfi; getf.sig r28=f54
841 xma.hu f96=f37,f125,f95
842(p7) add carry2=1,carry2 }
843{ .mfi; st8 [r32]=r20,16
844 xma.lu f95=f37,f125,f95 };;
845{ .mfi; xma.hu f106=f37,f126,f105 }
846{ .mfi; mov carry1=0
847 xma.lu f105=f37,f126,f105
848 add r25=r25,r24 };;
849{ .mfi; xma.hu f116=f37,f127,f115
850 cmp.ltu p6,p0=r25,r24 }
851{ .mfi; xma.lu f115=f37,f127,f115
852 add r26=r26,r25 };;//
853//-------------------------------------------------//
854{ .mfi; getf.sig r29=f45
855 xma.hu f47=f38,f120,f46
856(p6) add carry1=1,carry1 }
857{ .mfi; cmp.ltu p6,p0=r26,r25
858 xma.lu f46=f38,f120,f46
859 add r27=r27,r26 };;
860{ .mfi; getf.sig r16=f100
861 xma.hu f57=f38,f121,f56
862(p6) add carry1=1,carry1 }
863{ .mfi; cmp.ltu p6,p0=r27,r26
864 xma.lu f56=f38,f121,f56
865 add r28=r28,r27 };;
866{ .mfi; getf.sig r17=f91
867 xma.hu f67=f38,f122,f66
868(p6) add carry1=1,carry1 }
869{ .mfi; cmp.ltu p6,p0=r28,r27
870 xma.lu f66=f38,f122,f66
871 add r29=r29,r28 };;
872{ .mfi; getf.sig r18=f82
873 xma.hu f77=f38,f123,f76
874(p6) add carry1=1,carry1 }
875{ .mfi; cmp.ltu p6,p0=r29,r28
876 xma.lu f76=f38,f123,f76
877 add r29=r29,carry2 };;
878{ .mfi; getf.sig r19=f73
879 xma.hu f87=f38,f124,f86
880(p6) add carry1=1,carry1 }
881{ .mfi; xma.lu f86=f38,f124,f86
882 cmp.ltu p6,p0=r29,carry2 };;
883{ .mfi; getf.sig r20=f64
884 xma.hu f97=f38,f125,f96
885(p6) add carry1=1,carry1 }
886{ .mfi; st8 [r33]=r29,16
887 xma.lu f96=f38,f125,f96 };;
888{ .mfi; getf.sig r21=f55
889 xma.hu f107=f38,f126,f106 }
890{ .mfi; mov carry2=0
891 xma.lu f106=f38,f126,f106
892 add r17=r17,r16 };;
893{ .mfi; xma.hu f117=f38,f127,f116
894 cmp.ltu p7,p0=r17,r16 }
895{ .mfi; xma.lu f116=f38,f127,f116
896 add r18=r18,r17 };;//
897//-------------------------------------------------//
898{ .mfi; getf.sig r22=f46
899 xma.hu f48=f39,f120,f47
900(p7) add carry2=1,carry2 }
901{ .mfi; cmp.ltu p7,p0=r18,r17
902 xma.lu f47=f39,f120,f47
903 add r19=r19,r18 };;
904{ .mfi; getf.sig r24=f110
905 xma.hu f58=f39,f121,f57
906(p7) add carry2=1,carry2 }
907{ .mfi; cmp.ltu p7,p0=r19,r18
908 xma.lu f57=f39,f121,f57
909 add r20=r20,r19 };;
910{ .mfi; getf.sig r25=f101
911 xma.hu f68=f39,f122,f67
912(p7) add carry2=1,carry2 }
913{ .mfi; cmp.ltu p7,p0=r20,r19
914 xma.lu f67=f39,f122,f67
915 add r21=r21,r20 };;
916{ .mfi; getf.sig r26=f92
917 xma.hu f78=f39,f123,f77
918(p7) add carry2=1,carry2 }
919{ .mfi; cmp.ltu p7,p0=r21,r20
920 xma.lu f77=f39,f123,f77
921 add r22=r22,r21 };;
922{ .mfi; getf.sig r27=f83
923 xma.hu f88=f39,f124,f87
924(p7) add carry2=1,carry2 }
925{ .mfi; cmp.ltu p7,p0=r22,r21
926 xma.lu f87=f39,f124,f87
927 add r22=r22,carry1 };;
928{ .mfi; getf.sig r28=f74
929 xma.hu f98=f39,f125,f97
930(p7) add carry2=1,carry2 }
931{ .mfi; xma.lu f97=f39,f125,f97
932 cmp.ltu p7,p0=r22,carry1 };;
933{ .mfi; getf.sig r29=f65
934 xma.hu f108=f39,f126,f107
935(p7) add carry2=1,carry2 }
936{ .mfi; st8 [r32]=r22,16
937 xma.lu f107=f39,f126,f107 };;
938{ .mfi; getf.sig r30=f56
939 xma.hu f118=f39,f127,f117 }
940{ .mfi; xma.lu f117=f39,f127,f117 };;//
941//-------------------------------------------------//
942// Leaving multiplier's heaven... Quite a ride, huh?
943
944{ .mii; getf.sig r31=f47
945 add r25=r25,r24
946 mov carry1=0 };;
947{ .mii; getf.sig r16=f111
948 cmp.ltu p6,p0=r25,r24
949 add r26=r26,r25 };;
950{ .mfb; getf.sig r17=f102 }
951{ .mii;
952(p6) add carry1=1,carry1
953 cmp.ltu p6,p0=r26,r25
954 add r27=r27,r26 };;
955{ .mfb; nop.m 0x0 }
956{ .mii;
957(p6) add carry1=1,carry1
958 cmp.ltu p6,p0=r27,r26
959 add r28=r28,r27 };;
960{ .mii; getf.sig r18=f93
961 add r17=r17,r16
962 mov carry3=0 }
963{ .mii;
964(p6) add carry1=1,carry1
965 cmp.ltu p6,p0=r28,r27
966 add r29=r29,r28 };;
967{ .mii; getf.sig r19=f84
968 cmp.ltu p7,p0=r17,r16 }
969{ .mii;
970(p6) add carry1=1,carry1
971 cmp.ltu p6,p0=r29,r28
972 add r30=r30,r29 };;
973{ .mii; getf.sig r20=f75
974 add r18=r18,r17 }
975{ .mii;
976(p6) add carry1=1,carry1
977 cmp.ltu p6,p0=r30,r29
978 add r31=r31,r30 };;
979{ .mfb; getf.sig r21=f66 }
980{ .mii; (p7) add carry3=1,carry3
981 cmp.ltu p7,p0=r18,r17
982 add r19=r19,r18 }
983{ .mfb; nop.m 0x0 }
984{ .mii;
985(p6) add carry1=1,carry1
986 cmp.ltu p6,p0=r31,r30
987 add r31=r31,carry2 };;
988{ .mfb; getf.sig r22=f57 }
989{ .mii; (p7) add carry3=1,carry3
990 cmp.ltu p7,p0=r19,r18
991 add r20=r20,r19 }
992{ .mfb; nop.m 0x0 }
993{ .mii;
994(p6) add carry1=1,carry1
995 cmp.ltu p6,p0=r31,carry2 };;
996{ .mfb; getf.sig r23=f48 }
997{ .mii; (p7) add carry3=1,carry3
998 cmp.ltu p7,p0=r20,r19
999 add r21=r21,r20 }
1000{ .mii;
1001(p6) add carry1=1,carry1 }
1002{ .mfb; st8 [r33]=r31,16 };;
1003
1004{ .mfb; getf.sig r24=f112 }
1005{ .mii; (p7) add carry3=1,carry3
1006 cmp.ltu p7,p0=r21,r20
1007 add r22=r22,r21 };;
1008{ .mfb; getf.sig r25=f103 }
1009{ .mii; (p7) add carry3=1,carry3
1010 cmp.ltu p7,p0=r22,r21
1011 add r23=r23,r22 };;
1012{ .mfb; getf.sig r26=f94 }
1013{ .mii; (p7) add carry3=1,carry3
1014 cmp.ltu p7,p0=r23,r22
1015 add r23=r23,carry1 };;
1016{ .mfb; getf.sig r27=f85 }
1017{ .mii; (p7) add carry3=1,carry3
1018 cmp.ltu p7,p8=r23,carry1};;
1019{ .mii; getf.sig r28=f76
1020 add r25=r25,r24
1021 mov carry1=0 }
1022{ .mii; st8 [r32]=r23,16
1023 (p7) add carry2=1,carry3
1024 (p8) add carry2=0,carry3 };;
1025
1026{ .mfb; nop.m 0x0 }
1027{ .mii; getf.sig r29=f67
1028 cmp.ltu p6,p0=r25,r24
1029 add r26=r26,r25 };;
1030{ .mfb; getf.sig r30=f58 }
1031{ .mii;
1032(p6) add carry1=1,carry1
1033 cmp.ltu p6,p0=r26,r25
1034 add r27=r27,r26 };;
1035{ .mfb; getf.sig r16=f113 }
1036{ .mii;
1037(p6) add carry1=1,carry1
1038 cmp.ltu p6,p0=r27,r26
1039 add r28=r28,r27 };;
1040{ .mfb; getf.sig r17=f104 }
1041{ .mii;
1042(p6) add carry1=1,carry1
1043 cmp.ltu p6,p0=r28,r27
1044 add r29=r29,r28 };;
1045{ .mfb; getf.sig r18=f95 }
1046{ .mii;
1047(p6) add carry1=1,carry1
1048 cmp.ltu p6,p0=r29,r28
1049 add r30=r30,r29 };;
1050{ .mii; getf.sig r19=f86
1051 add r17=r17,r16
1052 mov carry3=0 }
1053{ .mii;
1054(p6) add carry1=1,carry1
1055 cmp.ltu p6,p0=r30,r29
1056 add r30=r30,carry2 };;
1057{ .mii; getf.sig r20=f77
1058 cmp.ltu p7,p0=r17,r16
1059 add r18=r18,r17 }
1060{ .mii;
1061(p6) add carry1=1,carry1
1062 cmp.ltu p6,p0=r30,carry2 };;
1063{ .mfb; getf.sig r21=f68 }
1064{ .mii; st8 [r33]=r30,16
1065(p6) add carry1=1,carry1 };;
1066
1067{ .mfb; getf.sig r24=f114 }
1068{ .mii; (p7) add carry3=1,carry3
1069 cmp.ltu p7,p0=r18,r17
1070 add r19=r19,r18 };;
1071{ .mfb; getf.sig r25=f105 }
1072{ .mii; (p7) add carry3=1,carry3
1073 cmp.ltu p7,p0=r19,r18
1074 add r20=r20,r19 };;
1075{ .mfb; getf.sig r26=f96 }
1076{ .mii; (p7) add carry3=1,carry3
1077 cmp.ltu p7,p0=r20,r19
1078 add r21=r21,r20 };;
1079{ .mfb; getf.sig r27=f87 }
1080{ .mii; (p7) add carry3=1,carry3
1081 cmp.ltu p7,p0=r21,r20
1082 add r21=r21,carry1 };;
1083{ .mib; getf.sig r28=f78
1084 add r25=r25,r24 }
1085{ .mib; (p7) add carry3=1,carry3
1086 cmp.ltu p7,p8=r21,carry1};;
1087{ .mii; st8 [r32]=r21,16
1088 (p7) add carry2=1,carry3
1089 (p8) add carry2=0,carry3 }
1090
1091{ .mii; mov carry1=0
1092 cmp.ltu p6,p0=r25,r24
1093 add r26=r26,r25 };;
1094{ .mfb; getf.sig r16=f115 }
1095{ .mii;
1096(p6) add carry1=1,carry1
1097 cmp.ltu p6,p0=r26,r25
1098 add r27=r27,r26 };;
1099{ .mfb; getf.sig r17=f106 }
1100{ .mii;
1101(p6) add carry1=1,carry1
1102 cmp.ltu p6,p0=r27,r26
1103 add r28=r28,r27 };;
1104{ .mfb; getf.sig r18=f97 }
1105{ .mii;
1106(p6) add carry1=1,carry1
1107 cmp.ltu p6,p0=r28,r27
1108 add r28=r28,carry2 };;
1109{ .mib; getf.sig r19=f88
1110 add r17=r17,r16 }
1111{ .mib;
1112(p6) add carry1=1,carry1
1113 cmp.ltu p6,p0=r28,carry2 };;
1114{ .mii; st8 [r33]=r28,16
1115(p6) add carry1=1,carry1 }
1116
1117{ .mii; mov carry2=0
1118 cmp.ltu p7,p0=r17,r16
1119 add r18=r18,r17 };;
1120{ .mfb; getf.sig r24=f116 }
1121{ .mii; (p7) add carry2=1,carry2
1122 cmp.ltu p7,p0=r18,r17
1123 add r19=r19,r18 };;
1124{ .mfb; getf.sig r25=f107 }
1125{ .mii; (p7) add carry2=1,carry2
1126 cmp.ltu p7,p0=r19,r18
1127 add r19=r19,carry1 };;
1128{ .mfb; getf.sig r26=f98 }
1129{ .mii; (p7) add carry2=1,carry2
1130 cmp.ltu p7,p0=r19,carry1};;
1131{ .mii; st8 [r32]=r19,16
1132 (p7) add carry2=1,carry2 }
1133
1134{ .mfb; add r25=r25,r24 };;
1135
1136{ .mfb; getf.sig r16=f117 }
1137{ .mii; mov carry1=0
1138 cmp.ltu p6,p0=r25,r24
1139 add r26=r26,r25 };;
1140{ .mfb; getf.sig r17=f108 }
1141{ .mii;
1142(p6) add carry1=1,carry1
1143 cmp.ltu p6,p0=r26,r25
1144 add r26=r26,carry2 };;
1145{ .mfb; nop.m 0x0 }
1146{ .mii;
1147(p6) add carry1=1,carry1
1148 cmp.ltu p6,p0=r26,carry2 };;
1149{ .mii; st8 [r33]=r26,16
1150(p6) add carry1=1,carry1 }
1151
1152{ .mfb; add r17=r17,r16 };;
1153{ .mfb; getf.sig r24=f118 }
1154{ .mii; mov carry2=0
1155 cmp.ltu p7,p0=r17,r16
1156 add r17=r17,carry1 };;
1157{ .mii; (p7) add carry2=1,carry2
1158 cmp.ltu p7,p0=r17,carry1};;
1159{ .mii; st8 [r32]=r17
1160 (p7) add carry2=1,carry2 };;
1161{ .mfb; add r24=r24,carry2 };;
1162{ .mib; st8 [r33]=r24 }
1163
1164{ .mib; rum 1<<5 // clear um.mfh
1165 br.ret.sptk.many b0 };;
1166.endp bn_mul_comba8#
1167#undef carry3
1168#undef carry2
1169#undef carry1
1170#endif
1171
1172#if 1
1173// It's possible to make it faster (see comment to bn_sqr_comba8), but
1174// I reckon it doesn't worth the effort. Basically because the routine
1175// (actually both of them) practically never called... So I just play
1176// same trick as with bn_sqr_comba8.
1177//
1178// void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
1179//
1180.global bn_sqr_comba4#
1181.proc bn_sqr_comba4#
1182.align 64
1183bn_sqr_comba4:
1184 .prologue
1185 .save ar.pfs,r2
1186#if defined(_HPUX_SOURCE) && !defined(_LP64)
1187{ .mii; alloc r2=ar.pfs,2,1,0,0
1188 addp4 r32=0,r32
1189 addp4 r33=0,r33 };;
1190{ .mii;
1191#else
1192{ .mii; alloc r2=ar.pfs,2,1,0,0
1193#endif
1194 mov r34=r33
1195 add r14=8,r33 };;
1196 .body
1197{ .mii; add r17=8,r34
1198 add r15=16,r33
1199 add r18=16,r34 }
1200{ .mfb; add r16=24,r33
1201 br .L_cheat_entry_point4 };;
1202.endp bn_sqr_comba4#
1203#endif
1204
1205#if 1
1206// Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever...
1207//
1208// void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
1209//
1210#define carry1 r14
1211#define carry2 r15
1212.global bn_mul_comba4#
1213.proc bn_mul_comba4#
1214.align 64
1215bn_mul_comba4:
1216 .prologue
1217 .save ar.pfs,r2
1218#if defined(_HPUX_SOURCE) && !defined(_LP64)
1219{ .mii; alloc r2=ar.pfs,3,0,0,0
1220 addp4 r33=0,r33
1221 addp4 r34=0,r34 };;
1222{ .mii; addp4 r32=0,r32
1223#else
1224{ .mii; alloc r2=ar.pfs,3,0,0,0
1225#endif
1226 add r14=8,r33
1227 add r17=8,r34 }
1228 .body
1229{ .mii; add r15=16,r33
1230 add r18=16,r34
1231 add r16=24,r33 };;
1232.L_cheat_entry_point4:
1233{ .mmi; add r19=24,r34
1234
1235 ldf8 f32=[r33] }
1236
1237{ .mmi; ldf8 f120=[r34]
1238 ldf8 f121=[r17] };;
1239{ .mmi; ldf8 f122=[r18]
1240 ldf8 f123=[r19] }
1241
1242{ .mmi; ldf8 f33=[r14]
1243 ldf8 f34=[r15] }
1244{ .mfi; ldf8 f35=[r16]
1245
1246 xma.hu f41=f32,f120,f0 }
1247{ .mfi; xma.lu f40=f32,f120,f0 };;
1248{ .mfi; xma.hu f51=f32,f121,f0 }
1249{ .mfi; xma.lu f50=f32,f121,f0 };;
1250{ .mfi; xma.hu f61=f32,f122,f0 }
1251{ .mfi; xma.lu f60=f32,f122,f0 };;
1252{ .mfi; xma.hu f71=f32,f123,f0 }
1253{ .mfi; xma.lu f70=f32,f123,f0 };;//
1254// Major stall takes place here, and 3 more places below. Result from
1255// first xma is not available for another 3 ticks.
1256{ .mfi; getf.sig r16=f40
1257 xma.hu f42=f33,f120,f41
1258 add r33=8,r32 }
1259{ .mfi; xma.lu f41=f33,f120,f41 };;
1260{ .mfi; getf.sig r24=f50
1261 xma.hu f52=f33,f121,f51 }
1262{ .mfi; xma.lu f51=f33,f121,f51 };;
1263{ .mfi; st8 [r32]=r16,16
1264 xma.hu f62=f33,f122,f61 }
1265{ .mfi; xma.lu f61=f33,f122,f61 };;
1266{ .mfi; xma.hu f72=f33,f123,f71 }
1267{ .mfi; xma.lu f71=f33,f123,f71 };;//
1268//-------------------------------------------------//
1269{ .mfi; getf.sig r25=f41
1270 xma.hu f43=f34,f120,f42 }
1271{ .mfi; xma.lu f42=f34,f120,f42 };;
1272{ .mfi; getf.sig r16=f60
1273 xma.hu f53=f34,f121,f52 }
1274{ .mfi; xma.lu f52=f34,f121,f52 };;
1275{ .mfi; getf.sig r17=f51
1276 xma.hu f63=f34,f122,f62
1277 add r25=r25,r24 }
1278{ .mfi; mov carry1=0
1279 xma.lu f62=f34,f122,f62 };;
1280{ .mfi; st8 [r33]=r25,16
1281 xma.hu f73=f34,f123,f72
1282 cmp.ltu p6,p0=r25,r24 }
1283{ .mfi; xma.lu f72=f34,f123,f72 };;//
1284//-------------------------------------------------//
1285{ .mfi; getf.sig r18=f42
1286 xma.hu f44=f35,f120,f43
1287(p6) add carry1=1,carry1 }
1288{ .mfi; add r17=r17,r16
1289 xma.lu f43=f35,f120,f43
1290 mov carry2=0 };;
1291{ .mfi; getf.sig r24=f70
1292 xma.hu f54=f35,f121,f53
1293 cmp.ltu p7,p0=r17,r16 }
1294{ .mfi; xma.lu f53=f35,f121,f53 };;
1295{ .mfi; getf.sig r25=f61
1296 xma.hu f64=f35,f122,f63
1297 add r18=r18,r17 }
1298{ .mfi; xma.lu f63=f35,f122,f63
1299(p7) add carry2=1,carry2 };;
1300{ .mfi; getf.sig r26=f52
1301 xma.hu f74=f35,f123,f73
1302 cmp.ltu p7,p0=r18,r17 }
1303{ .mfi; xma.lu f73=f35,f123,f73
1304 add r18=r18,carry1 };;
1305//-------------------------------------------------//
1306{ .mii; st8 [r32]=r18,16
1307(p7) add carry2=1,carry2
1308 cmp.ltu p7,p0=r18,carry1 };;
1309
1310{ .mfi; getf.sig r27=f43 // last major stall
1311(p7) add carry2=1,carry2 };;
1312{ .mii; getf.sig r16=f71
1313 add r25=r25,r24
1314 mov carry1=0 };;
1315{ .mii; getf.sig r17=f62
1316 cmp.ltu p6,p0=r25,r24
1317 add r26=r26,r25 };;
1318{ .mii;
1319(p6) add carry1=1,carry1
1320 cmp.ltu p6,p0=r26,r25
1321 add r27=r27,r26 };;
1322{ .mii;
1323(p6) add carry1=1,carry1
1324 cmp.ltu p6,p0=r27,r26
1325 add r27=r27,carry2 };;
1326{ .mii; getf.sig r18=f53
1327(p6) add carry1=1,carry1
1328 cmp.ltu p6,p0=r27,carry2 };;
1329{ .mfi; st8 [r33]=r27,16
1330(p6) add carry1=1,carry1 }
1331
1332{ .mii; getf.sig r19=f44
1333 add r17=r17,r16
1334 mov carry2=0 };;
1335{ .mii; getf.sig r24=f72
1336 cmp.ltu p7,p0=r17,r16
1337 add r18=r18,r17 };;
1338{ .mii; (p7) add carry2=1,carry2
1339 cmp.ltu p7,p0=r18,r17
1340 add r19=r19,r18 };;
1341{ .mii; (p7) add carry2=1,carry2
1342 cmp.ltu p7,p0=r19,r18
1343 add r19=r19,carry1 };;
1344{ .mii; getf.sig r25=f63
1345 (p7) add carry2=1,carry2
1346 cmp.ltu p7,p0=r19,carry1};;
1347{ .mii; st8 [r32]=r19,16
1348 (p7) add carry2=1,carry2 }
1349
1350{ .mii; getf.sig r26=f54
1351 add r25=r25,r24
1352 mov carry1=0 };;
1353{ .mii; getf.sig r16=f73
1354 cmp.ltu p6,p0=r25,r24
1355 add r26=r26,r25 };;
1356{ .mii;
1357(p6) add carry1=1,carry1
1358 cmp.ltu p6,p0=r26,r25
1359 add r26=r26,carry2 };;
1360{ .mii; getf.sig r17=f64
1361(p6) add carry1=1,carry1
1362 cmp.ltu p6,p0=r26,carry2 };;
1363{ .mii; st8 [r33]=r26,16
1364(p6) add carry1=1,carry1 }
1365
1366{ .mii; getf.sig r24=f74
1367 add r17=r17,r16
1368 mov carry2=0 };;
1369{ .mii; cmp.ltu p7,p0=r17,r16
1370 add r17=r17,carry1 };;
1371
1372{ .mii; (p7) add carry2=1,carry2
1373 cmp.ltu p7,p0=r17,carry1};;
1374{ .mii; st8 [r32]=r17,16
1375 (p7) add carry2=1,carry2 };;
1376
1377{ .mii; add r24=r24,carry2 };;
1378{ .mii; st8 [r33]=r24 }
1379
1380{ .mib; rum 1<<5 // clear um.mfh
1381 br.ret.sptk.many b0 };;
1382.endp bn_mul_comba4#
1383#undef carry2
1384#undef carry1
1385#endif
1386
1387#if 1
1388//
1389// BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
1390//
1391// In the nutshell it's a port of my MIPS III/IV implementation.
1392//
1393#define AT r14
1394#define H r16
1395#define HH r20
1396#define L r17
1397#define D r18
1398#define DH r22
1399#define I r21
1400
1401#if 0
1402// Some preprocessors (most notably HP-UX) appear to be allergic to
1403// macros enclosed to parenthesis [as these three were].
1404#define cont p16
1405#define break p0 // p20
1406#define equ p24
1407#else
1408cont=p16
1409break=p0
1410equ=p24
1411#endif
1412
1413.global abort#
1414.global bn_div_words#
1415.proc bn_div_words#
1416.align 64
1417bn_div_words:
1418 .prologue
1419 .save ar.pfs,r2
1420{ .mii; alloc r2=ar.pfs,3,5,0,8
1421 .save b0,r3
1422 mov r3=b0
1423 .save pr,r10
1424 mov r10=pr };;
1425{ .mmb; cmp.eq p6,p0=r34,r0
1426 mov r8=-1
1427(p6) br.ret.spnt.many b0 };;
1428
1429 .body
1430{ .mii; mov H=r32 // save h
1431 mov ar.ec=0 // don't rotate at exit
1432 mov pr.rot=0 }
1433{ .mii; mov L=r33 // save l
1434 mov r25=r0 // needed if abort is called on VMS
1435 mov r36=r0 };;
1436
1437.L_divw_shift: // -vv- note signed comparison
1438{ .mfi; (p0) cmp.lt p16,p0=r0,r34 // d
1439 (p0) shladd r33=r34,1,r0 }
1440{ .mfb; (p0) add r35=1,r36
1441 (p0) nop.f 0x0
1442(p16) br.wtop.dpnt .L_divw_shift };;
1443
1444{ .mii; mov D=r34
1445 shr.u DH=r34,32
1446 sub r35=64,r36 };;
1447{ .mii; setf.sig f7=DH
1448 shr.u AT=H,r35
1449 mov I=r36 };;
1450{ .mib; cmp.ne p6,p0=r0,AT
1451 shl H=H,r36
1452(p6) br.call.spnt.clr b0=abort };; // overflow, die...
1453
1454{ .mfi; fcvt.xuf.s1 f7=f7
1455 shr.u AT=L,r35 };;
1456{ .mii; shl L=L,r36
1457 or H=H,AT };;
1458
1459{ .mii; nop.m 0x0
1460 cmp.leu p6,p0=D,H;;
1461(p6) sub H=H,D }
1462
1463{ .mlx; setf.sig f14=D
1464 movl AT=0xffffffff };;
1465///////////////////////////////////////////////////////////
1466{ .mii; setf.sig f6=H
1467 shr.u HH=H,32;;
1468 cmp.eq p6,p7=HH,DH };;
1469{ .mfb;
1470(p6) setf.sig f8=AT
1471(p7) fcvt.xuf.s1 f6=f6
1472(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1473
1474{ .mfi; getf.sig r33=f8 // q
1475 xmpy.lu f9=f8,f14 }
1476{ .mfi; xmpy.hu f10=f8,f14
1477 shrp H=H,L,32 };;
1478
1479{ .mmi; getf.sig r35=f9 // tl
1480 getf.sig r31=f10 };; // th
1481
1482.L_divw_1st_iter:
1483{ .mii; (p0) add r32=-1,r33
1484 (p0) cmp.eq equ,cont=HH,r31 };;
1485{ .mii; (p0) cmp.ltu p8,p0=r35,D
1486 (p0) sub r34=r35,D
1487 (equ) cmp.leu break,cont=r35,H };;
1488{ .mib; (cont) cmp.leu cont,break=HH,r31
1489 (p8) add r31=-1,r31
1490(cont) br.wtop.spnt .L_divw_1st_iter };;
1491///////////////////////////////////////////////////////////
1492{ .mii; sub H=H,r35
1493 shl r8=r33,32
1494 shl L=L,32 };;
1495///////////////////////////////////////////////////////////
1496{ .mii; setf.sig f6=H
1497 shr.u HH=H,32;;
1498 cmp.eq p6,p7=HH,DH };;
1499{ .mfb;
1500(p6) setf.sig f8=AT
1501(p7) fcvt.xuf.s1 f6=f6
1502(p7) br.call.sptk b6=.L_udiv64_32_b6 };;
1503
1504{ .mfi; getf.sig r33=f8 // q
1505 xmpy.lu f9=f8,f14 }
1506{ .mfi; xmpy.hu f10=f8,f14
1507 shrp H=H,L,32 };;
1508
1509{ .mmi; getf.sig r35=f9 // tl
1510 getf.sig r31=f10 };; // th
1511
1512.L_divw_2nd_iter:
1513{ .mii; (p0) add r32=-1,r33
1514 (p0) cmp.eq equ,cont=HH,r31 };;
1515{ .mii; (p0) cmp.ltu p8,p0=r35,D
1516 (p0) sub r34=r35,D
1517 (equ) cmp.leu break,cont=r35,H };;
1518{ .mib; (cont) cmp.leu cont,break=HH,r31
1519 (p8) add r31=-1,r31
1520(cont) br.wtop.spnt .L_divw_2nd_iter };;
1521///////////////////////////////////////////////////////////
1522{ .mii; sub H=H,r35
1523 or r8=r8,r33
1524 mov ar.pfs=r2 };;
1525{ .mii; shr.u r9=H,I // remainder if anybody wants it
1526 mov pr=r10,0x1ffff }
1527{ .mfb; br.ret.sptk.many b0 };;
1528
1529// Unsigned 64 by 32 (well, by 64 for the moment) bit integer division
1530// procedure.
1531//
1532// inputs: f6 = (double)a, f7 = (double)b
1533// output: f8 = (int)(a/b)
1534// clobbered: f8,f9,f10,f11,pred
1535pred=p15
1536// This snippet is based on text found in the "Divide, Square
1537// Root and Remainder" section at
1538// http://www.intel.com/software/products/opensource/libraries/num.htm.
1539// Yes, I admit that the referred code was used as template,
1540// but after I realized that there hardly is any other instruction
1541// sequence which would perform this operation. I mean I figure that
1542// any independent attempt to implement high-performance division
1543// will result in code virtually identical to the Intel code. It
1544// should be noted though that below division kernel is 1 cycle
1545// faster than Intel one (note commented splits:-), not to mention
1546// original prologue (rather lack of one) and epilogue.
1547.align 32
1548.skip 16
1549.L_udiv64_32_b6:
1550 frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b
1551
1552(pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0
1553(pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0
1554(pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0
1555(pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0
1556(pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0
1557(pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1
1558(pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1
1559(pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2
1560(pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2
1561
1562 fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3)
1563 br.ret.sptk.many b6;;
1564.endp bn_div_words#
1565#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette