1 | /*
|
---|
2 | * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
---|
4 | *
|
---|
5 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | #include <assert.h>
|
---|
12 | #include <limits.h>
|
---|
13 | #include <stdio.h>
|
---|
14 | #include "internal/cryptlib.h"
|
---|
15 | #include "bn_local.h"
|
---|
16 |
|
---|
17 | #ifndef OPENSSL_NO_EC2M
|
---|
18 |
|
---|
19 | /*
|
---|
20 | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
|
---|
21 | * fail.
|
---|
22 | */
|
---|
23 | # define MAX_ITERATIONS 50
|
---|
24 |
|
---|
25 | # define SQR_nibble(w) ((((w) & 8) << 3) \
|
---|
26 | | (((w) & 4) << 2) \
|
---|
27 | | (((w) & 2) << 1) \
|
---|
28 | | ((w) & 1))
|
---|
29 |
|
---|
30 |
|
---|
31 | /* Platform-specific macros to accelerate squaring. */
|
---|
32 | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
---|
33 | # define SQR1(w) \
|
---|
34 | SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
|
---|
35 | SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
|
---|
36 | SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
|
---|
37 | SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
|
---|
38 | # define SQR0(w) \
|
---|
39 | SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
|
---|
40 | SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
|
---|
41 | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
|
---|
42 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
|
---|
43 | # endif
|
---|
44 | # ifdef THIRTY_TWO_BIT
|
---|
45 | # define SQR1(w) \
|
---|
46 | SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
|
---|
47 | SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
|
---|
48 | # define SQR0(w) \
|
---|
49 | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
|
---|
50 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
|
---|
51 | # endif
|
---|
52 |
|
---|
53 | # if !defined(OPENSSL_BN_ASM_GF2m)
|
---|
54 | /*
|
---|
55 | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
|
---|
56 | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
|
---|
57 | * the variables have the right amount of space allocated.
|
---|
58 | */
|
---|
59 | # ifdef THIRTY_TWO_BIT
|
---|
60 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
---|
61 | const BN_ULONG b)
|
---|
62 | {
|
---|
63 | register BN_ULONG h, l, s;
|
---|
64 | BN_ULONG tab[8], top2b = a >> 30;
|
---|
65 | register BN_ULONG a1, a2, a4;
|
---|
66 |
|
---|
67 | a1 = a & (0x3FFFFFFF);
|
---|
68 | a2 = a1 << 1;
|
---|
69 | a4 = a2 << 1;
|
---|
70 |
|
---|
71 | tab[0] = 0;
|
---|
72 | tab[1] = a1;
|
---|
73 | tab[2] = a2;
|
---|
74 | tab[3] = a1 ^ a2;
|
---|
75 | tab[4] = a4;
|
---|
76 | tab[5] = a1 ^ a4;
|
---|
77 | tab[6] = a2 ^ a4;
|
---|
78 | tab[7] = a1 ^ a2 ^ a4;
|
---|
79 |
|
---|
80 | s = tab[b & 0x7];
|
---|
81 | l = s;
|
---|
82 | s = tab[b >> 3 & 0x7];
|
---|
83 | l ^= s << 3;
|
---|
84 | h = s >> 29;
|
---|
85 | s = tab[b >> 6 & 0x7];
|
---|
86 | l ^= s << 6;
|
---|
87 | h ^= s >> 26;
|
---|
88 | s = tab[b >> 9 & 0x7];
|
---|
89 | l ^= s << 9;
|
---|
90 | h ^= s >> 23;
|
---|
91 | s = tab[b >> 12 & 0x7];
|
---|
92 | l ^= s << 12;
|
---|
93 | h ^= s >> 20;
|
---|
94 | s = tab[b >> 15 & 0x7];
|
---|
95 | l ^= s << 15;
|
---|
96 | h ^= s >> 17;
|
---|
97 | s = tab[b >> 18 & 0x7];
|
---|
98 | l ^= s << 18;
|
---|
99 | h ^= s >> 14;
|
---|
100 | s = tab[b >> 21 & 0x7];
|
---|
101 | l ^= s << 21;
|
---|
102 | h ^= s >> 11;
|
---|
103 | s = tab[b >> 24 & 0x7];
|
---|
104 | l ^= s << 24;
|
---|
105 | h ^= s >> 8;
|
---|
106 | s = tab[b >> 27 & 0x7];
|
---|
107 | l ^= s << 27;
|
---|
108 | h ^= s >> 5;
|
---|
109 | s = tab[b >> 30];
|
---|
110 | l ^= s << 30;
|
---|
111 | h ^= s >> 2;
|
---|
112 |
|
---|
113 | /* compensate for the top two bits of a */
|
---|
114 |
|
---|
115 | if (top2b & 01) {
|
---|
116 | l ^= b << 30;
|
---|
117 | h ^= b >> 2;
|
---|
118 | }
|
---|
119 | if (top2b & 02) {
|
---|
120 | l ^= b << 31;
|
---|
121 | h ^= b >> 1;
|
---|
122 | }
|
---|
123 |
|
---|
124 | *r1 = h;
|
---|
125 | *r0 = l;
|
---|
126 | }
|
---|
127 | # endif
|
---|
128 | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
|
---|
129 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
|
---|
130 | const BN_ULONG b)
|
---|
131 | {
|
---|
132 | register BN_ULONG h, l, s;
|
---|
133 | BN_ULONG tab[16], top3b = a >> 61;
|
---|
134 | register BN_ULONG a1, a2, a4, a8;
|
---|
135 |
|
---|
136 | a1 = a & (0x1FFFFFFFFFFFFFFFULL);
|
---|
137 | a2 = a1 << 1;
|
---|
138 | a4 = a2 << 1;
|
---|
139 | a8 = a4 << 1;
|
---|
140 |
|
---|
141 | tab[0] = 0;
|
---|
142 | tab[1] = a1;
|
---|
143 | tab[2] = a2;
|
---|
144 | tab[3] = a1 ^ a2;
|
---|
145 | tab[4] = a4;
|
---|
146 | tab[5] = a1 ^ a4;
|
---|
147 | tab[6] = a2 ^ a4;
|
---|
148 | tab[7] = a1 ^ a2 ^ a4;
|
---|
149 | tab[8] = a8;
|
---|
150 | tab[9] = a1 ^ a8;
|
---|
151 | tab[10] = a2 ^ a8;
|
---|
152 | tab[11] = a1 ^ a2 ^ a8;
|
---|
153 | tab[12] = a4 ^ a8;
|
---|
154 | tab[13] = a1 ^ a4 ^ a8;
|
---|
155 | tab[14] = a2 ^ a4 ^ a8;
|
---|
156 | tab[15] = a1 ^ a2 ^ a4 ^ a8;
|
---|
157 |
|
---|
158 | s = tab[b & 0xF];
|
---|
159 | l = s;
|
---|
160 | s = tab[b >> 4 & 0xF];
|
---|
161 | l ^= s << 4;
|
---|
162 | h = s >> 60;
|
---|
163 | s = tab[b >> 8 & 0xF];
|
---|
164 | l ^= s << 8;
|
---|
165 | h ^= s >> 56;
|
---|
166 | s = tab[b >> 12 & 0xF];
|
---|
167 | l ^= s << 12;
|
---|
168 | h ^= s >> 52;
|
---|
169 | s = tab[b >> 16 & 0xF];
|
---|
170 | l ^= s << 16;
|
---|
171 | h ^= s >> 48;
|
---|
172 | s = tab[b >> 20 & 0xF];
|
---|
173 | l ^= s << 20;
|
---|
174 | h ^= s >> 44;
|
---|
175 | s = tab[b >> 24 & 0xF];
|
---|
176 | l ^= s << 24;
|
---|
177 | h ^= s >> 40;
|
---|
178 | s = tab[b >> 28 & 0xF];
|
---|
179 | l ^= s << 28;
|
---|
180 | h ^= s >> 36;
|
---|
181 | s = tab[b >> 32 & 0xF];
|
---|
182 | l ^= s << 32;
|
---|
183 | h ^= s >> 32;
|
---|
184 | s = tab[b >> 36 & 0xF];
|
---|
185 | l ^= s << 36;
|
---|
186 | h ^= s >> 28;
|
---|
187 | s = tab[b >> 40 & 0xF];
|
---|
188 | l ^= s << 40;
|
---|
189 | h ^= s >> 24;
|
---|
190 | s = tab[b >> 44 & 0xF];
|
---|
191 | l ^= s << 44;
|
---|
192 | h ^= s >> 20;
|
---|
193 | s = tab[b >> 48 & 0xF];
|
---|
194 | l ^= s << 48;
|
---|
195 | h ^= s >> 16;
|
---|
196 | s = tab[b >> 52 & 0xF];
|
---|
197 | l ^= s << 52;
|
---|
198 | h ^= s >> 12;
|
---|
199 | s = tab[b >> 56 & 0xF];
|
---|
200 | l ^= s << 56;
|
---|
201 | h ^= s >> 8;
|
---|
202 | s = tab[b >> 60];
|
---|
203 | l ^= s << 60;
|
---|
204 | h ^= s >> 4;
|
---|
205 |
|
---|
206 | /* compensate for the top three bits of a */
|
---|
207 |
|
---|
208 | if (top3b & 01) {
|
---|
209 | l ^= b << 61;
|
---|
210 | h ^= b >> 3;
|
---|
211 | }
|
---|
212 | if (top3b & 02) {
|
---|
213 | l ^= b << 62;
|
---|
214 | h ^= b >> 2;
|
---|
215 | }
|
---|
216 | if (top3b & 04) {
|
---|
217 | l ^= b << 63;
|
---|
218 | h ^= b >> 1;
|
---|
219 | }
|
---|
220 |
|
---|
221 | *r1 = h;
|
---|
222 | *r0 = l;
|
---|
223 | }
|
---|
224 | # endif
|
---|
225 |
|
---|
226 | /*
|
---|
227 | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
|
---|
228 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
|
---|
229 | * ensure that the variables have the right amount of space allocated.
|
---|
230 | */
|
---|
231 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
|
---|
232 | const BN_ULONG b1, const BN_ULONG b0)
|
---|
233 | {
|
---|
234 | BN_ULONG m1, m0;
|
---|
235 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
|
---|
236 | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
|
---|
237 | bn_GF2m_mul_1x1(r + 1, r, a0, b0);
|
---|
238 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
|
---|
239 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
|
---|
240 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
|
---|
241 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
|
---|
242 | }
|
---|
243 | # else
|
---|
244 | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
|
---|
245 | BN_ULONG b0);
|
---|
246 | # endif
|
---|
247 |
|
---|
248 | /*
|
---|
249 | * Add polynomials a and b and store result in r; r could be a or b, a and b
|
---|
250 | * could be equal; r is the bitwise XOR of a and b.
|
---|
251 | */
|
---|
252 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
|
---|
253 | {
|
---|
254 | int i;
|
---|
255 | const BIGNUM *at, *bt;
|
---|
256 |
|
---|
257 | bn_check_top(a);
|
---|
258 | bn_check_top(b);
|
---|
259 |
|
---|
260 | if (a->top < b->top) {
|
---|
261 | at = b;
|
---|
262 | bt = a;
|
---|
263 | } else {
|
---|
264 | at = a;
|
---|
265 | bt = b;
|
---|
266 | }
|
---|
267 |
|
---|
268 | if (bn_wexpand(r, at->top) == NULL)
|
---|
269 | return 0;
|
---|
270 |
|
---|
271 | for (i = 0; i < bt->top; i++) {
|
---|
272 | r->d[i] = at->d[i] ^ bt->d[i];
|
---|
273 | }
|
---|
274 | for (; i < at->top; i++) {
|
---|
275 | r->d[i] = at->d[i];
|
---|
276 | }
|
---|
277 |
|
---|
278 | r->top = at->top;
|
---|
279 | bn_correct_top(r);
|
---|
280 |
|
---|
281 | return 1;
|
---|
282 | }
|
---|
283 |
|
---|
284 | /*-
|
---|
285 | * Some functions allow for representation of the irreducible polynomials
|
---|
286 | * as an int[], say p. The irreducible f(t) is then of the form:
|
---|
287 | * t^p[0] + t^p[1] + ... + t^p[k]
|
---|
288 | * where m = p[0] > p[1] > ... > p[k] = 0.
|
---|
289 | */
|
---|
290 |
|
---|
291 | /* Performs modular reduction of a and store result in r. r could be a. */
|
---|
292 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
|
---|
293 | {
|
---|
294 | int j, k;
|
---|
295 | int n, dN, d0, d1;
|
---|
296 | BN_ULONG zz, *z;
|
---|
297 |
|
---|
298 | bn_check_top(a);
|
---|
299 |
|
---|
300 | if (!p[0]) {
|
---|
301 | /* reduction mod 1 => return 0 */
|
---|
302 | BN_zero(r);
|
---|
303 | return 1;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /*
|
---|
307 | * Since the algorithm does reduction in the r value, if a != r, copy the
|
---|
308 | * contents of a into r so we can do reduction in r.
|
---|
309 | */
|
---|
310 | if (a != r) {
|
---|
311 | if (!bn_wexpand(r, a->top))
|
---|
312 | return 0;
|
---|
313 | for (j = 0; j < a->top; j++) {
|
---|
314 | r->d[j] = a->d[j];
|
---|
315 | }
|
---|
316 | r->top = a->top;
|
---|
317 | }
|
---|
318 | z = r->d;
|
---|
319 |
|
---|
320 | /* start reduction */
|
---|
321 | dN = p[0] / BN_BITS2;
|
---|
322 | for (j = r->top - 1; j > dN;) {
|
---|
323 | zz = z[j];
|
---|
324 | if (z[j] == 0) {
|
---|
325 | j--;
|
---|
326 | continue;
|
---|
327 | }
|
---|
328 | z[j] = 0;
|
---|
329 |
|
---|
330 | for (k = 1; p[k] != 0; k++) {
|
---|
331 | /* reducing component t^p[k] */
|
---|
332 | n = p[0] - p[k];
|
---|
333 | d0 = n % BN_BITS2;
|
---|
334 | d1 = BN_BITS2 - d0;
|
---|
335 | n /= BN_BITS2;
|
---|
336 | z[j - n] ^= (zz >> d0);
|
---|
337 | if (d0)
|
---|
338 | z[j - n - 1] ^= (zz << d1);
|
---|
339 | }
|
---|
340 |
|
---|
341 | /* reducing component t^0 */
|
---|
342 | n = dN;
|
---|
343 | d0 = p[0] % BN_BITS2;
|
---|
344 | d1 = BN_BITS2 - d0;
|
---|
345 | z[j - n] ^= (zz >> d0);
|
---|
346 | if (d0)
|
---|
347 | z[j - n - 1] ^= (zz << d1);
|
---|
348 | }
|
---|
349 |
|
---|
350 | /* final round of reduction */
|
---|
351 | while (j == dN) {
|
---|
352 |
|
---|
353 | d0 = p[0] % BN_BITS2;
|
---|
354 | zz = z[dN] >> d0;
|
---|
355 | if (zz == 0)
|
---|
356 | break;
|
---|
357 | d1 = BN_BITS2 - d0;
|
---|
358 |
|
---|
359 | /* clear up the top d1 bits */
|
---|
360 | if (d0)
|
---|
361 | z[dN] = (z[dN] << d1) >> d1;
|
---|
362 | else
|
---|
363 | z[dN] = 0;
|
---|
364 | z[0] ^= zz; /* reduction t^0 component */
|
---|
365 |
|
---|
366 | for (k = 1; p[k] != 0; k++) {
|
---|
367 | BN_ULONG tmp_ulong;
|
---|
368 |
|
---|
369 | /* reducing component t^p[k] */
|
---|
370 | n = p[k] / BN_BITS2;
|
---|
371 | d0 = p[k] % BN_BITS2;
|
---|
372 | d1 = BN_BITS2 - d0;
|
---|
373 | z[n] ^= (zz << d0);
|
---|
374 | if (d0 && (tmp_ulong = zz >> d1))
|
---|
375 | z[n + 1] ^= tmp_ulong;
|
---|
376 | }
|
---|
377 |
|
---|
378 | }
|
---|
379 |
|
---|
380 | bn_correct_top(r);
|
---|
381 | return 1;
|
---|
382 | }
|
---|
383 |
|
---|
384 | /*
|
---|
385 | * Performs modular reduction of a by p and store result in r. r could be a.
|
---|
386 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
|
---|
387 | * function is only provided for convenience; for best performance, use the
|
---|
388 | * BN_GF2m_mod_arr function.
|
---|
389 | */
|
---|
390 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
|
---|
391 | {
|
---|
392 | int ret = 0;
|
---|
393 | int arr[6];
|
---|
394 | bn_check_top(a);
|
---|
395 | bn_check_top(p);
|
---|
396 | ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
|
---|
397 | if (!ret || ret > (int)OSSL_NELEM(arr)) {
|
---|
398 | BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH);
|
---|
399 | return 0;
|
---|
400 | }
|
---|
401 | ret = BN_GF2m_mod_arr(r, a, arr);
|
---|
402 | bn_check_top(r);
|
---|
403 | return ret;
|
---|
404 | }
|
---|
405 |
|
---|
406 | /*
|
---|
407 | * Compute the product of two polynomials a and b, reduce modulo p, and store
|
---|
408 | * the result in r. r could be a or b; a could be b.
|
---|
409 | */
|
---|
410 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
---|
411 | const int p[], BN_CTX *ctx)
|
---|
412 | {
|
---|
413 | int zlen, i, j, k, ret = 0;
|
---|
414 | BIGNUM *s;
|
---|
415 | BN_ULONG x1, x0, y1, y0, zz[4];
|
---|
416 |
|
---|
417 | bn_check_top(a);
|
---|
418 | bn_check_top(b);
|
---|
419 |
|
---|
420 | if (a == b) {
|
---|
421 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
|
---|
422 | }
|
---|
423 |
|
---|
424 | BN_CTX_start(ctx);
|
---|
425 | if ((s = BN_CTX_get(ctx)) == NULL)
|
---|
426 | goto err;
|
---|
427 |
|
---|
428 | zlen = a->top + b->top + 4;
|
---|
429 | if (!bn_wexpand(s, zlen))
|
---|
430 | goto err;
|
---|
431 | s->top = zlen;
|
---|
432 |
|
---|
433 | for (i = 0; i < zlen; i++)
|
---|
434 | s->d[i] = 0;
|
---|
435 |
|
---|
436 | for (j = 0; j < b->top; j += 2) {
|
---|
437 | y0 = b->d[j];
|
---|
438 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
|
---|
439 | for (i = 0; i < a->top; i += 2) {
|
---|
440 | x0 = a->d[i];
|
---|
441 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
|
---|
442 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
|
---|
443 | for (k = 0; k < 4; k++)
|
---|
444 | s->d[i + j + k] ^= zz[k];
|
---|
445 | }
|
---|
446 | }
|
---|
447 |
|
---|
448 | bn_correct_top(s);
|
---|
449 | if (BN_GF2m_mod_arr(r, s, p))
|
---|
450 | ret = 1;
|
---|
451 | bn_check_top(r);
|
---|
452 |
|
---|
453 | err:
|
---|
454 | BN_CTX_end(ctx);
|
---|
455 | return ret;
|
---|
456 | }
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * Compute the product of two polynomials a and b, reduce modulo p, and store
|
---|
460 | * the result in r. r could be a or b; a could equal b. This function calls
|
---|
461 | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
|
---|
462 | * only provided for convenience; for best performance, use the
|
---|
463 | * BN_GF2m_mod_mul_arr function.
|
---|
464 | */
|
---|
465 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
---|
466 | const BIGNUM *p, BN_CTX *ctx)
|
---|
467 | {
|
---|
468 | int ret = 0;
|
---|
469 | const int max = BN_num_bits(p) + 1;
|
---|
470 | int *arr = NULL;
|
---|
471 | bn_check_top(a);
|
---|
472 | bn_check_top(b);
|
---|
473 | bn_check_top(p);
|
---|
474 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
---|
475 | goto err;
|
---|
476 | ret = BN_GF2m_poly2arr(p, arr, max);
|
---|
477 | if (!ret || ret > max) {
|
---|
478 | BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH);
|
---|
479 | goto err;
|
---|
480 | }
|
---|
481 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
|
---|
482 | bn_check_top(r);
|
---|
483 | err:
|
---|
484 | OPENSSL_free(arr);
|
---|
485 | return ret;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /* Square a, reduce the result mod p, and store it in a. r could be a. */
|
---|
489 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
---|
490 | BN_CTX *ctx)
|
---|
491 | {
|
---|
492 | int i, ret = 0;
|
---|
493 | BIGNUM *s;
|
---|
494 |
|
---|
495 | bn_check_top(a);
|
---|
496 | BN_CTX_start(ctx);
|
---|
497 | if ((s = BN_CTX_get(ctx)) == NULL)
|
---|
498 | goto err;
|
---|
499 | if (!bn_wexpand(s, 2 * a->top))
|
---|
500 | goto err;
|
---|
501 |
|
---|
502 | for (i = a->top - 1; i >= 0; i--) {
|
---|
503 | s->d[2 * i + 1] = SQR1(a->d[i]);
|
---|
504 | s->d[2 * i] = SQR0(a->d[i]);
|
---|
505 | }
|
---|
506 |
|
---|
507 | s->top = 2 * a->top;
|
---|
508 | bn_correct_top(s);
|
---|
509 | if (!BN_GF2m_mod_arr(r, s, p))
|
---|
510 | goto err;
|
---|
511 | bn_check_top(r);
|
---|
512 | ret = 1;
|
---|
513 | err:
|
---|
514 | BN_CTX_end(ctx);
|
---|
515 | return ret;
|
---|
516 | }
|
---|
517 |
|
---|
518 | /*
|
---|
519 | * Square a, reduce the result mod p, and store it in a. r could be a. This
|
---|
520 | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
|
---|
521 | * wrapper function is only provided for convenience; for best performance,
|
---|
522 | * use the BN_GF2m_mod_sqr_arr function.
|
---|
523 | */
|
---|
524 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
---|
525 | {
|
---|
526 | int ret = 0;
|
---|
527 | const int max = BN_num_bits(p) + 1;
|
---|
528 | int *arr = NULL;
|
---|
529 |
|
---|
530 | bn_check_top(a);
|
---|
531 | bn_check_top(p);
|
---|
532 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
---|
533 | goto err;
|
---|
534 | ret = BN_GF2m_poly2arr(p, arr, max);
|
---|
535 | if (!ret || ret > max) {
|
---|
536 | BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH);
|
---|
537 | goto err;
|
---|
538 | }
|
---|
539 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
|
---|
540 | bn_check_top(r);
|
---|
541 | err:
|
---|
542 | OPENSSL_free(arr);
|
---|
543 | return ret;
|
---|
544 | }
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
|
---|
548 | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
|
---|
549 | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
|
---|
550 | * Curve Cryptography Over Binary Fields".
|
---|
551 | */
|
---|
552 | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
|
---|
553 | const BIGNUM *p, BN_CTX *ctx)
|
---|
554 | {
|
---|
555 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
|
---|
556 | int ret = 0;
|
---|
557 |
|
---|
558 | bn_check_top(a);
|
---|
559 | bn_check_top(p);
|
---|
560 |
|
---|
561 | BN_CTX_start(ctx);
|
---|
562 |
|
---|
563 | b = BN_CTX_get(ctx);
|
---|
564 | c = BN_CTX_get(ctx);
|
---|
565 | u = BN_CTX_get(ctx);
|
---|
566 | v = BN_CTX_get(ctx);
|
---|
567 | if (v == NULL)
|
---|
568 | goto err;
|
---|
569 |
|
---|
570 | if (!BN_GF2m_mod(u, a, p))
|
---|
571 | goto err;
|
---|
572 | if (BN_is_zero(u))
|
---|
573 | goto err;
|
---|
574 |
|
---|
575 | if (!BN_copy(v, p))
|
---|
576 | goto err;
|
---|
577 | # if 0
|
---|
578 | if (!BN_one(b))
|
---|
579 | goto err;
|
---|
580 |
|
---|
581 | while (1) {
|
---|
582 | while (!BN_is_odd(u)) {
|
---|
583 | if (BN_is_zero(u))
|
---|
584 | goto err;
|
---|
585 | if (!BN_rshift1(u, u))
|
---|
586 | goto err;
|
---|
587 | if (BN_is_odd(b)) {
|
---|
588 | if (!BN_GF2m_add(b, b, p))
|
---|
589 | goto err;
|
---|
590 | }
|
---|
591 | if (!BN_rshift1(b, b))
|
---|
592 | goto err;
|
---|
593 | }
|
---|
594 |
|
---|
595 | if (BN_abs_is_word(u, 1))
|
---|
596 | break;
|
---|
597 |
|
---|
598 | if (BN_num_bits(u) < BN_num_bits(v)) {
|
---|
599 | tmp = u;
|
---|
600 | u = v;
|
---|
601 | v = tmp;
|
---|
602 | tmp = b;
|
---|
603 | b = c;
|
---|
604 | c = tmp;
|
---|
605 | }
|
---|
606 |
|
---|
607 | if (!BN_GF2m_add(u, u, v))
|
---|
608 | goto err;
|
---|
609 | if (!BN_GF2m_add(b, b, c))
|
---|
610 | goto err;
|
---|
611 | }
|
---|
612 | # else
|
---|
613 | {
|
---|
614 | int i;
|
---|
615 | int ubits = BN_num_bits(u);
|
---|
616 | int vbits = BN_num_bits(v); /* v is copy of p */
|
---|
617 | int top = p->top;
|
---|
618 | BN_ULONG *udp, *bdp, *vdp, *cdp;
|
---|
619 |
|
---|
620 | if (!bn_wexpand(u, top))
|
---|
621 | goto err;
|
---|
622 | udp = u->d;
|
---|
623 | for (i = u->top; i < top; i++)
|
---|
624 | udp[i] = 0;
|
---|
625 | u->top = top;
|
---|
626 | if (!bn_wexpand(b, top))
|
---|
627 | goto err;
|
---|
628 | bdp = b->d;
|
---|
629 | bdp[0] = 1;
|
---|
630 | for (i = 1; i < top; i++)
|
---|
631 | bdp[i] = 0;
|
---|
632 | b->top = top;
|
---|
633 | if (!bn_wexpand(c, top))
|
---|
634 | goto err;
|
---|
635 | cdp = c->d;
|
---|
636 | for (i = 0; i < top; i++)
|
---|
637 | cdp[i] = 0;
|
---|
638 | c->top = top;
|
---|
639 | vdp = v->d; /* It pays off to "cache" *->d pointers,
|
---|
640 | * because it allows optimizer to be more
|
---|
641 | * aggressive. But we don't have to "cache"
|
---|
642 | * p->d, because *p is declared 'const'... */
|
---|
643 | while (1) {
|
---|
644 | while (ubits && !(udp[0] & 1)) {
|
---|
645 | BN_ULONG u0, u1, b0, b1, mask;
|
---|
646 |
|
---|
647 | u0 = udp[0];
|
---|
648 | b0 = bdp[0];
|
---|
649 | mask = (BN_ULONG)0 - (b0 & 1);
|
---|
650 | b0 ^= p->d[0] & mask;
|
---|
651 | for (i = 0; i < top - 1; i++) {
|
---|
652 | u1 = udp[i + 1];
|
---|
653 | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
|
---|
654 | u0 = u1;
|
---|
655 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
|
---|
656 | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
|
---|
657 | b0 = b1;
|
---|
658 | }
|
---|
659 | udp[i] = u0 >> 1;
|
---|
660 | bdp[i] = b0 >> 1;
|
---|
661 | ubits--;
|
---|
662 | }
|
---|
663 |
|
---|
664 | if (ubits <= BN_BITS2) {
|
---|
665 | if (udp[0] == 0) /* poly was reducible */
|
---|
666 | goto err;
|
---|
667 | if (udp[0] == 1)
|
---|
668 | break;
|
---|
669 | }
|
---|
670 |
|
---|
671 | if (ubits < vbits) {
|
---|
672 | i = ubits;
|
---|
673 | ubits = vbits;
|
---|
674 | vbits = i;
|
---|
675 | tmp = u;
|
---|
676 | u = v;
|
---|
677 | v = tmp;
|
---|
678 | tmp = b;
|
---|
679 | b = c;
|
---|
680 | c = tmp;
|
---|
681 | udp = vdp;
|
---|
682 | vdp = v->d;
|
---|
683 | bdp = cdp;
|
---|
684 | cdp = c->d;
|
---|
685 | }
|
---|
686 | for (i = 0; i < top; i++) {
|
---|
687 | udp[i] ^= vdp[i];
|
---|
688 | bdp[i] ^= cdp[i];
|
---|
689 | }
|
---|
690 | if (ubits == vbits) {
|
---|
691 | BN_ULONG ul;
|
---|
692 | int utop = (ubits - 1) / BN_BITS2;
|
---|
693 |
|
---|
694 | while ((ul = udp[utop]) == 0 && utop)
|
---|
695 | utop--;
|
---|
696 | ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
|
---|
697 | }
|
---|
698 | }
|
---|
699 | bn_correct_top(b);
|
---|
700 | }
|
---|
701 | # endif
|
---|
702 |
|
---|
703 | if (!BN_copy(r, b))
|
---|
704 | goto err;
|
---|
705 | bn_check_top(r);
|
---|
706 | ret = 1;
|
---|
707 |
|
---|
708 | err:
|
---|
709 | # ifdef BN_DEBUG /* BN_CTX_end would complain about the
|
---|
710 | * expanded form */
|
---|
711 | bn_correct_top(c);
|
---|
712 | bn_correct_top(u);
|
---|
713 | bn_correct_top(v);
|
---|
714 | # endif
|
---|
715 | BN_CTX_end(ctx);
|
---|
716 | return ret;
|
---|
717 | }
|
---|
718 |
|
---|
719 | /*-
|
---|
720 | * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
|
---|
721 | * This is not constant time.
|
---|
722 | * But it does eliminate first order deduction on the input.
|
---|
723 | */
|
---|
724 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
---|
725 | {
|
---|
726 | BIGNUM *b = NULL;
|
---|
727 | int ret = 0;
|
---|
728 |
|
---|
729 | BN_CTX_start(ctx);
|
---|
730 | if ((b = BN_CTX_get(ctx)) == NULL)
|
---|
731 | goto err;
|
---|
732 |
|
---|
733 | /* generate blinding value */
|
---|
734 | do {
|
---|
735 | if (!BN_priv_rand(b, BN_num_bits(p) - 1,
|
---|
736 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY))
|
---|
737 | goto err;
|
---|
738 | } while (BN_is_zero(b));
|
---|
739 |
|
---|
740 | /* r := a * b */
|
---|
741 | if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
|
---|
742 | goto err;
|
---|
743 |
|
---|
744 | /* r := 1/(a * b) */
|
---|
745 | if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
|
---|
746 | goto err;
|
---|
747 |
|
---|
748 | /* r := b/(a * b) = 1/a */
|
---|
749 | if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
|
---|
750 | goto err;
|
---|
751 |
|
---|
752 | ret = 1;
|
---|
753 |
|
---|
754 | err:
|
---|
755 | BN_CTX_end(ctx);
|
---|
756 | return ret;
|
---|
757 | }
|
---|
758 |
|
---|
759 | /*
|
---|
760 | * Invert xx, reduce modulo p, and store the result in r. r could be xx.
|
---|
761 | * This function calls down to the BN_GF2m_mod_inv implementation; this
|
---|
762 | * wrapper function is only provided for convenience; for best performance,
|
---|
763 | * use the BN_GF2m_mod_inv function.
|
---|
764 | */
|
---|
765 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
|
---|
766 | BN_CTX *ctx)
|
---|
767 | {
|
---|
768 | BIGNUM *field;
|
---|
769 | int ret = 0;
|
---|
770 |
|
---|
771 | bn_check_top(xx);
|
---|
772 | BN_CTX_start(ctx);
|
---|
773 | if ((field = BN_CTX_get(ctx)) == NULL)
|
---|
774 | goto err;
|
---|
775 | if (!BN_GF2m_arr2poly(p, field))
|
---|
776 | goto err;
|
---|
777 |
|
---|
778 | ret = BN_GF2m_mod_inv(r, xx, field, ctx);
|
---|
779 | bn_check_top(r);
|
---|
780 |
|
---|
781 | err:
|
---|
782 | BN_CTX_end(ctx);
|
---|
783 | return ret;
|
---|
784 | }
|
---|
785 |
|
---|
786 | /*
|
---|
787 | * Divide y by x, reduce modulo p, and store the result in r. r could be x
|
---|
788 | * or y, x could equal y.
|
---|
789 | */
|
---|
790 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
---|
791 | const BIGNUM *p, BN_CTX *ctx)
|
---|
792 | {
|
---|
793 | BIGNUM *xinv = NULL;
|
---|
794 | int ret = 0;
|
---|
795 |
|
---|
796 | bn_check_top(y);
|
---|
797 | bn_check_top(x);
|
---|
798 | bn_check_top(p);
|
---|
799 |
|
---|
800 | BN_CTX_start(ctx);
|
---|
801 | xinv = BN_CTX_get(ctx);
|
---|
802 | if (xinv == NULL)
|
---|
803 | goto err;
|
---|
804 |
|
---|
805 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
|
---|
806 | goto err;
|
---|
807 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
|
---|
808 | goto err;
|
---|
809 | bn_check_top(r);
|
---|
810 | ret = 1;
|
---|
811 |
|
---|
812 | err:
|
---|
813 | BN_CTX_end(ctx);
|
---|
814 | return ret;
|
---|
815 | }
|
---|
816 |
|
---|
817 | /*
|
---|
818 | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
|
---|
819 | * * or yy, xx could equal yy. This function calls down to the
|
---|
820 | * BN_GF2m_mod_div implementation; this wrapper function is only provided for
|
---|
821 | * convenience; for best performance, use the BN_GF2m_mod_div function.
|
---|
822 | */
|
---|
823 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
|
---|
824 | const int p[], BN_CTX *ctx)
|
---|
825 | {
|
---|
826 | BIGNUM *field;
|
---|
827 | int ret = 0;
|
---|
828 |
|
---|
829 | bn_check_top(yy);
|
---|
830 | bn_check_top(xx);
|
---|
831 |
|
---|
832 | BN_CTX_start(ctx);
|
---|
833 | if ((field = BN_CTX_get(ctx)) == NULL)
|
---|
834 | goto err;
|
---|
835 | if (!BN_GF2m_arr2poly(p, field))
|
---|
836 | goto err;
|
---|
837 |
|
---|
838 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
|
---|
839 | bn_check_top(r);
|
---|
840 |
|
---|
841 | err:
|
---|
842 | BN_CTX_end(ctx);
|
---|
843 | return ret;
|
---|
844 | }
|
---|
845 |
|
---|
846 | /*
|
---|
847 | * Compute the bth power of a, reduce modulo p, and store the result in r. r
|
---|
848 | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
|
---|
849 | * P1363.
|
---|
850 | */
|
---|
851 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
---|
852 | const int p[], BN_CTX *ctx)
|
---|
853 | {
|
---|
854 | int ret = 0, i, n;
|
---|
855 | BIGNUM *u;
|
---|
856 |
|
---|
857 | bn_check_top(a);
|
---|
858 | bn_check_top(b);
|
---|
859 |
|
---|
860 | if (BN_is_zero(b))
|
---|
861 | return BN_one(r);
|
---|
862 |
|
---|
863 | if (BN_abs_is_word(b, 1))
|
---|
864 | return (BN_copy(r, a) != NULL);
|
---|
865 |
|
---|
866 | BN_CTX_start(ctx);
|
---|
867 | if ((u = BN_CTX_get(ctx)) == NULL)
|
---|
868 | goto err;
|
---|
869 |
|
---|
870 | if (!BN_GF2m_mod_arr(u, a, p))
|
---|
871 | goto err;
|
---|
872 |
|
---|
873 | n = BN_num_bits(b) - 1;
|
---|
874 | for (i = n - 1; i >= 0; i--) {
|
---|
875 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
|
---|
876 | goto err;
|
---|
877 | if (BN_is_bit_set(b, i)) {
|
---|
878 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
|
---|
879 | goto err;
|
---|
880 | }
|
---|
881 | }
|
---|
882 | if (!BN_copy(r, u))
|
---|
883 | goto err;
|
---|
884 | bn_check_top(r);
|
---|
885 | ret = 1;
|
---|
886 | err:
|
---|
887 | BN_CTX_end(ctx);
|
---|
888 | return ret;
|
---|
889 | }
|
---|
890 |
|
---|
891 | /*
|
---|
892 | * Compute the bth power of a, reduce modulo p, and store the result in r. r
|
---|
893 | * could be a. This function calls down to the BN_GF2m_mod_exp_arr
|
---|
894 | * implementation; this wrapper function is only provided for convenience;
|
---|
895 | * for best performance, use the BN_GF2m_mod_exp_arr function.
|
---|
896 | */
|
---|
897 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
---|
898 | const BIGNUM *p, BN_CTX *ctx)
|
---|
899 | {
|
---|
900 | int ret = 0;
|
---|
901 | const int max = BN_num_bits(p) + 1;
|
---|
902 | int *arr = NULL;
|
---|
903 | bn_check_top(a);
|
---|
904 | bn_check_top(b);
|
---|
905 | bn_check_top(p);
|
---|
906 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
---|
907 | goto err;
|
---|
908 | ret = BN_GF2m_poly2arr(p, arr, max);
|
---|
909 | if (!ret || ret > max) {
|
---|
910 | BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH);
|
---|
911 | goto err;
|
---|
912 | }
|
---|
913 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
|
---|
914 | bn_check_top(r);
|
---|
915 | err:
|
---|
916 | OPENSSL_free(arr);
|
---|
917 | return ret;
|
---|
918 | }
|
---|
919 |
|
---|
920 | /*
|
---|
921 | * Compute the square root of a, reduce modulo p, and store the result in r.
|
---|
922 | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
|
---|
923 | */
|
---|
924 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
|
---|
925 | BN_CTX *ctx)
|
---|
926 | {
|
---|
927 | int ret = 0;
|
---|
928 | BIGNUM *u;
|
---|
929 |
|
---|
930 | bn_check_top(a);
|
---|
931 |
|
---|
932 | if (!p[0]) {
|
---|
933 | /* reduction mod 1 => return 0 */
|
---|
934 | BN_zero(r);
|
---|
935 | return 1;
|
---|
936 | }
|
---|
937 |
|
---|
938 | BN_CTX_start(ctx);
|
---|
939 | if ((u = BN_CTX_get(ctx)) == NULL)
|
---|
940 | goto err;
|
---|
941 |
|
---|
942 | if (!BN_set_bit(u, p[0] - 1))
|
---|
943 | goto err;
|
---|
944 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
|
---|
945 | bn_check_top(r);
|
---|
946 |
|
---|
947 | err:
|
---|
948 | BN_CTX_end(ctx);
|
---|
949 | return ret;
|
---|
950 | }
|
---|
951 |
|
---|
952 | /*
|
---|
953 | * Compute the square root of a, reduce modulo p, and store the result in r.
|
---|
954 | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
|
---|
955 | * implementation; this wrapper function is only provided for convenience;
|
---|
956 | * for best performance, use the BN_GF2m_mod_sqrt_arr function.
|
---|
957 | */
|
---|
958 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
---|
959 | {
|
---|
960 | int ret = 0;
|
---|
961 | const int max = BN_num_bits(p) + 1;
|
---|
962 | int *arr = NULL;
|
---|
963 | bn_check_top(a);
|
---|
964 | bn_check_top(p);
|
---|
965 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
---|
966 | goto err;
|
---|
967 | ret = BN_GF2m_poly2arr(p, arr, max);
|
---|
968 | if (!ret || ret > max) {
|
---|
969 | BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH);
|
---|
970 | goto err;
|
---|
971 | }
|
---|
972 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
|
---|
973 | bn_check_top(r);
|
---|
974 | err:
|
---|
975 | OPENSSL_free(arr);
|
---|
976 | return ret;
|
---|
977 | }
|
---|
978 |
|
---|
979 | /*
|
---|
980 | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
---|
981 | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
|
---|
982 | */
|
---|
983 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
|
---|
984 | BN_CTX *ctx)
|
---|
985 | {
|
---|
986 | int ret = 0, count = 0, j;
|
---|
987 | BIGNUM *a, *z, *rho, *w, *w2, *tmp;
|
---|
988 |
|
---|
989 | bn_check_top(a_);
|
---|
990 |
|
---|
991 | if (!p[0]) {
|
---|
992 | /* reduction mod 1 => return 0 */
|
---|
993 | BN_zero(r);
|
---|
994 | return 1;
|
---|
995 | }
|
---|
996 |
|
---|
997 | BN_CTX_start(ctx);
|
---|
998 | a = BN_CTX_get(ctx);
|
---|
999 | z = BN_CTX_get(ctx);
|
---|
1000 | w = BN_CTX_get(ctx);
|
---|
1001 | if (w == NULL)
|
---|
1002 | goto err;
|
---|
1003 |
|
---|
1004 | if (!BN_GF2m_mod_arr(a, a_, p))
|
---|
1005 | goto err;
|
---|
1006 |
|
---|
1007 | if (BN_is_zero(a)) {
|
---|
1008 | BN_zero(r);
|
---|
1009 | ret = 1;
|
---|
1010 | goto err;
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | if (p[0] & 0x1) { /* m is odd */
|
---|
1014 | /* compute half-trace of a */
|
---|
1015 | if (!BN_copy(z, a))
|
---|
1016 | goto err;
|
---|
1017 | for (j = 1; j <= (p[0] - 1) / 2; j++) {
|
---|
1018 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
---|
1019 | goto err;
|
---|
1020 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
---|
1021 | goto err;
|
---|
1022 | if (!BN_GF2m_add(z, z, a))
|
---|
1023 | goto err;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | } else { /* m is even */
|
---|
1027 |
|
---|
1028 | rho = BN_CTX_get(ctx);
|
---|
1029 | w2 = BN_CTX_get(ctx);
|
---|
1030 | tmp = BN_CTX_get(ctx);
|
---|
1031 | if (tmp == NULL)
|
---|
1032 | goto err;
|
---|
1033 | do {
|
---|
1034 | if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
|
---|
1035 | goto err;
|
---|
1036 | if (!BN_GF2m_mod_arr(rho, rho, p))
|
---|
1037 | goto err;
|
---|
1038 | BN_zero(z);
|
---|
1039 | if (!BN_copy(w, rho))
|
---|
1040 | goto err;
|
---|
1041 | for (j = 1; j <= p[0] - 1; j++) {
|
---|
1042 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
|
---|
1043 | goto err;
|
---|
1044 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
|
---|
1045 | goto err;
|
---|
1046 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
|
---|
1047 | goto err;
|
---|
1048 | if (!BN_GF2m_add(z, z, tmp))
|
---|
1049 | goto err;
|
---|
1050 | if (!BN_GF2m_add(w, w2, rho))
|
---|
1051 | goto err;
|
---|
1052 | }
|
---|
1053 | count++;
|
---|
1054 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
|
---|
1055 | if (BN_is_zero(w)) {
|
---|
1056 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS);
|
---|
1057 | goto err;
|
---|
1058 | }
|
---|
1059 | }
|
---|
1060 |
|
---|
1061 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
|
---|
1062 | goto err;
|
---|
1063 | if (!BN_GF2m_add(w, z, w))
|
---|
1064 | goto err;
|
---|
1065 | if (BN_GF2m_cmp(w, a)) {
|
---|
1066 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
|
---|
1067 | goto err;
|
---|
1068 | }
|
---|
1069 |
|
---|
1070 | if (!BN_copy(r, z))
|
---|
1071 | goto err;
|
---|
1072 | bn_check_top(r);
|
---|
1073 |
|
---|
1074 | ret = 1;
|
---|
1075 |
|
---|
1076 | err:
|
---|
1077 | BN_CTX_end(ctx);
|
---|
1078 | return ret;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | /*
|
---|
1082 | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
|
---|
1083 | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
|
---|
1084 | * implementation; this wrapper function is only provided for convenience;
|
---|
1085 | * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
|
---|
1086 | */
|
---|
1087 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
---|
1088 | BN_CTX *ctx)
|
---|
1089 | {
|
---|
1090 | int ret = 0;
|
---|
1091 | const int max = BN_num_bits(p) + 1;
|
---|
1092 | int *arr = NULL;
|
---|
1093 | bn_check_top(a);
|
---|
1094 | bn_check_top(p);
|
---|
1095 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL)
|
---|
1096 | goto err;
|
---|
1097 | ret = BN_GF2m_poly2arr(p, arr, max);
|
---|
1098 | if (!ret || ret > max) {
|
---|
1099 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH);
|
---|
1100 | goto err;
|
---|
1101 | }
|
---|
1102 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
|
---|
1103 | bn_check_top(r);
|
---|
1104 | err:
|
---|
1105 | OPENSSL_free(arr);
|
---|
1106 | return ret;
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | /*
|
---|
1110 | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
|
---|
1111 | * x^i) into an array of integers corresponding to the bits with non-zero
|
---|
1112 | * coefficient. Array is terminated with -1. Up to max elements of the array
|
---|
1113 | * will be filled. Return value is total number of array elements that would
|
---|
1114 | * be filled if array was large enough.
|
---|
1115 | */
|
---|
1116 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
|
---|
1117 | {
|
---|
1118 | int i, j, k = 0;
|
---|
1119 | BN_ULONG mask;
|
---|
1120 |
|
---|
1121 | if (BN_is_zero(a))
|
---|
1122 | return 0;
|
---|
1123 |
|
---|
1124 | for (i = a->top - 1; i >= 0; i--) {
|
---|
1125 | if (!a->d[i])
|
---|
1126 | /* skip word if a->d[i] == 0 */
|
---|
1127 | continue;
|
---|
1128 | mask = BN_TBIT;
|
---|
1129 | for (j = BN_BITS2 - 1; j >= 0; j--) {
|
---|
1130 | if (a->d[i] & mask) {
|
---|
1131 | if (k < max)
|
---|
1132 | p[k] = BN_BITS2 * i + j;
|
---|
1133 | k++;
|
---|
1134 | }
|
---|
1135 | mask >>= 1;
|
---|
1136 | }
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | if (k < max) {
|
---|
1140 | p[k] = -1;
|
---|
1141 | k++;
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 | return k;
|
---|
1145 | }
|
---|
1146 |
|
---|
1147 | /*
|
---|
1148 | * Convert the coefficient array representation of a polynomial to a
|
---|
1149 | * bit-string. The array must be terminated by -1.
|
---|
1150 | */
|
---|
1151 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
|
---|
1152 | {
|
---|
1153 | int i;
|
---|
1154 |
|
---|
1155 | bn_check_top(a);
|
---|
1156 | BN_zero(a);
|
---|
1157 | for (i = 0; p[i] != -1; i++) {
|
---|
1158 | if (BN_set_bit(a, p[i]) == 0)
|
---|
1159 | return 0;
|
---|
1160 | }
|
---|
1161 | bn_check_top(a);
|
---|
1162 |
|
---|
1163 | return 1;
|
---|
1164 | }
|
---|
1165 |
|
---|
1166 | #endif
|
---|