1 | /*
|
---|
2 | * Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/cryptlib.h"
|
---|
11 | #include "bn_local.h"
|
---|
12 |
|
---|
13 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
---|
14 | /*
|
---|
15 | * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
|
---|
16 | * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
|
---|
17 | * Theory", algorithm 1.5.1). 'p' must be prime!
|
---|
18 | */
|
---|
19 | {
|
---|
20 | BIGNUM *ret = in;
|
---|
21 | int err = 1;
|
---|
22 | int r;
|
---|
23 | BIGNUM *A, *b, *q, *t, *x, *y;
|
---|
24 | int e, i, j;
|
---|
25 |
|
---|
26 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
|
---|
27 | if (BN_abs_is_word(p, 2)) {
|
---|
28 | if (ret == NULL)
|
---|
29 | ret = BN_new();
|
---|
30 | if (ret == NULL)
|
---|
31 | goto end;
|
---|
32 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
|
---|
33 | if (ret != in)
|
---|
34 | BN_free(ret);
|
---|
35 | return NULL;
|
---|
36 | }
|
---|
37 | bn_check_top(ret);
|
---|
38 | return ret;
|
---|
39 | }
|
---|
40 |
|
---|
41 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
---|
42 | return NULL;
|
---|
43 | }
|
---|
44 |
|
---|
45 | if (BN_is_zero(a) || BN_is_one(a)) {
|
---|
46 | if (ret == NULL)
|
---|
47 | ret = BN_new();
|
---|
48 | if (ret == NULL)
|
---|
49 | goto end;
|
---|
50 | if (!BN_set_word(ret, BN_is_one(a))) {
|
---|
51 | if (ret != in)
|
---|
52 | BN_free(ret);
|
---|
53 | return NULL;
|
---|
54 | }
|
---|
55 | bn_check_top(ret);
|
---|
56 | return ret;
|
---|
57 | }
|
---|
58 |
|
---|
59 | BN_CTX_start(ctx);
|
---|
60 | A = BN_CTX_get(ctx);
|
---|
61 | b = BN_CTX_get(ctx);
|
---|
62 | q = BN_CTX_get(ctx);
|
---|
63 | t = BN_CTX_get(ctx);
|
---|
64 | x = BN_CTX_get(ctx);
|
---|
65 | y = BN_CTX_get(ctx);
|
---|
66 | if (y == NULL)
|
---|
67 | goto end;
|
---|
68 |
|
---|
69 | if (ret == NULL)
|
---|
70 | ret = BN_new();
|
---|
71 | if (ret == NULL)
|
---|
72 | goto end;
|
---|
73 |
|
---|
74 | /* A = a mod p */
|
---|
75 | if (!BN_nnmod(A, a, p, ctx))
|
---|
76 | goto end;
|
---|
77 |
|
---|
78 | /* now write |p| - 1 as 2^e*q where q is odd */
|
---|
79 | e = 1;
|
---|
80 | while (!BN_is_bit_set(p, e))
|
---|
81 | e++;
|
---|
82 | /* we'll set q later (if needed) */
|
---|
83 |
|
---|
84 | if (e == 1) {
|
---|
85 | /*-
|
---|
86 | * The easy case: (|p|-1)/2 is odd, so 2 has an inverse
|
---|
87 | * modulo (|p|-1)/2, and square roots can be computed
|
---|
88 | * directly by modular exponentiation.
|
---|
89 | * We have
|
---|
90 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
|
---|
91 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
|
---|
92 | */
|
---|
93 | if (!BN_rshift(q, p, 2))
|
---|
94 | goto end;
|
---|
95 | q->neg = 0;
|
---|
96 | if (!BN_add_word(q, 1))
|
---|
97 | goto end;
|
---|
98 | if (!BN_mod_exp(ret, A, q, p, ctx))
|
---|
99 | goto end;
|
---|
100 | err = 0;
|
---|
101 | goto vrfy;
|
---|
102 | }
|
---|
103 |
|
---|
104 | if (e == 2) {
|
---|
105 | /*-
|
---|
106 | * |p| == 5 (mod 8)
|
---|
107 | *
|
---|
108 | * In this case 2 is always a non-square since
|
---|
109 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
|
---|
110 | * So if a really is a square, then 2*a is a non-square.
|
---|
111 | * Thus for
|
---|
112 | * b := (2*a)^((|p|-5)/8),
|
---|
113 | * i := (2*a)*b^2
|
---|
114 | * we have
|
---|
115 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
|
---|
116 | * = (2*a)^((p-1)/2)
|
---|
117 | * = -1;
|
---|
118 | * so if we set
|
---|
119 | * x := a*b*(i-1),
|
---|
120 | * then
|
---|
121 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
|
---|
122 | * = a^2 * b^2 * (-2*i)
|
---|
123 | * = a*(-i)*(2*a*b^2)
|
---|
124 | * = a*(-i)*i
|
---|
125 | * = a.
|
---|
126 | *
|
---|
127 | * (This is due to A.O.L. Atkin,
|
---|
128 | * Subject: Square Roots and Cognate Matters modulo p=8n+5.
|
---|
129 | * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
|
---|
130 | * November 1992.)
|
---|
131 | */
|
---|
132 |
|
---|
133 | /* t := 2*a */
|
---|
134 | if (!BN_mod_lshift1_quick(t, A, p))
|
---|
135 | goto end;
|
---|
136 |
|
---|
137 | /* b := (2*a)^((|p|-5)/8) */
|
---|
138 | if (!BN_rshift(q, p, 3))
|
---|
139 | goto end;
|
---|
140 | q->neg = 0;
|
---|
141 | if (!BN_mod_exp(b, t, q, p, ctx))
|
---|
142 | goto end;
|
---|
143 |
|
---|
144 | /* y := b^2 */
|
---|
145 | if (!BN_mod_sqr(y, b, p, ctx))
|
---|
146 | goto end;
|
---|
147 |
|
---|
148 | /* t := (2*a)*b^2 - 1 */
|
---|
149 | if (!BN_mod_mul(t, t, y, p, ctx))
|
---|
150 | goto end;
|
---|
151 | if (!BN_sub_word(t, 1))
|
---|
152 | goto end;
|
---|
153 |
|
---|
154 | /* x = a*b*t */
|
---|
155 | if (!BN_mod_mul(x, A, b, p, ctx))
|
---|
156 | goto end;
|
---|
157 | if (!BN_mod_mul(x, x, t, p, ctx))
|
---|
158 | goto end;
|
---|
159 |
|
---|
160 | if (!BN_copy(ret, x))
|
---|
161 | goto end;
|
---|
162 | err = 0;
|
---|
163 | goto vrfy;
|
---|
164 | }
|
---|
165 |
|
---|
166 | /*
|
---|
167 | * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
|
---|
168 | * find some y that is not a square.
|
---|
169 | */
|
---|
170 | if (!BN_copy(q, p))
|
---|
171 | goto end; /* use 'q' as temp */
|
---|
172 | q->neg = 0;
|
---|
173 | i = 2;
|
---|
174 | do {
|
---|
175 | /*
|
---|
176 | * For efficiency, try small numbers first; if this fails, try random
|
---|
177 | * numbers.
|
---|
178 | */
|
---|
179 | if (i < 22) {
|
---|
180 | if (!BN_set_word(y, i))
|
---|
181 | goto end;
|
---|
182 | } else {
|
---|
183 | if (!BN_priv_rand(y, BN_num_bits(p), 0, 0))
|
---|
184 | goto end;
|
---|
185 | if (BN_ucmp(y, p) >= 0) {
|
---|
186 | if (!(p->neg ? BN_add : BN_sub) (y, y, p))
|
---|
187 | goto end;
|
---|
188 | }
|
---|
189 | /* now 0 <= y < |p| */
|
---|
190 | if (BN_is_zero(y))
|
---|
191 | if (!BN_set_word(y, i))
|
---|
192 | goto end;
|
---|
193 | }
|
---|
194 |
|
---|
195 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
|
---|
196 | if (r < -1)
|
---|
197 | goto end;
|
---|
198 | if (r == 0) {
|
---|
199 | /* m divides p */
|
---|
200 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
---|
201 | goto end;
|
---|
202 | }
|
---|
203 | }
|
---|
204 | while (r == 1 && ++i < 82);
|
---|
205 |
|
---|
206 | if (r != -1) {
|
---|
207 | /*
|
---|
208 | * Many rounds and still no non-square -- this is more likely a bug
|
---|
209 | * than just bad luck. Even if p is not prime, we should have found
|
---|
210 | * some y such that r == -1.
|
---|
211 | */
|
---|
212 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
|
---|
213 | goto end;
|
---|
214 | }
|
---|
215 |
|
---|
216 | /* Here's our actual 'q': */
|
---|
217 | if (!BN_rshift(q, q, e))
|
---|
218 | goto end;
|
---|
219 |
|
---|
220 | /*
|
---|
221 | * Now that we have some non-square, we can find an element of order 2^e
|
---|
222 | * by computing its q'th power.
|
---|
223 | */
|
---|
224 | if (!BN_mod_exp(y, y, q, p, ctx))
|
---|
225 | goto end;
|
---|
226 | if (BN_is_one(y)) {
|
---|
227 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
|
---|
228 | goto end;
|
---|
229 | }
|
---|
230 |
|
---|
231 | /*-
|
---|
232 | * Now we know that (if p is indeed prime) there is an integer
|
---|
233 | * k, 0 <= k < 2^e, such that
|
---|
234 | *
|
---|
235 | * a^q * y^k == 1 (mod p).
|
---|
236 | *
|
---|
237 | * As a^q is a square and y is not, k must be even.
|
---|
238 | * q+1 is even, too, so there is an element
|
---|
239 | *
|
---|
240 | * X := a^((q+1)/2) * y^(k/2),
|
---|
241 | *
|
---|
242 | * and it satisfies
|
---|
243 | *
|
---|
244 | * X^2 = a^q * a * y^k
|
---|
245 | * = a,
|
---|
246 | *
|
---|
247 | * so it is the square root that we are looking for.
|
---|
248 | */
|
---|
249 |
|
---|
250 | /* t := (q-1)/2 (note that q is odd) */
|
---|
251 | if (!BN_rshift1(t, q))
|
---|
252 | goto end;
|
---|
253 |
|
---|
254 | /* x := a^((q-1)/2) */
|
---|
255 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */
|
---|
256 | if (!BN_nnmod(t, A, p, ctx))
|
---|
257 | goto end;
|
---|
258 | if (BN_is_zero(t)) {
|
---|
259 | /* special case: a == 0 (mod p) */
|
---|
260 | BN_zero(ret);
|
---|
261 | err = 0;
|
---|
262 | goto end;
|
---|
263 | } else if (!BN_one(x))
|
---|
264 | goto end;
|
---|
265 | } else {
|
---|
266 | if (!BN_mod_exp(x, A, t, p, ctx))
|
---|
267 | goto end;
|
---|
268 | if (BN_is_zero(x)) {
|
---|
269 | /* special case: a == 0 (mod p) */
|
---|
270 | BN_zero(ret);
|
---|
271 | err = 0;
|
---|
272 | goto end;
|
---|
273 | }
|
---|
274 | }
|
---|
275 |
|
---|
276 | /* b := a*x^2 (= a^q) */
|
---|
277 | if (!BN_mod_sqr(b, x, p, ctx))
|
---|
278 | goto end;
|
---|
279 | if (!BN_mod_mul(b, b, A, p, ctx))
|
---|
280 | goto end;
|
---|
281 |
|
---|
282 | /* x := a*x (= a^((q+1)/2)) */
|
---|
283 | if (!BN_mod_mul(x, x, A, p, ctx))
|
---|
284 | goto end;
|
---|
285 |
|
---|
286 | while (1) {
|
---|
287 | /*-
|
---|
288 | * Now b is a^q * y^k for some even k (0 <= k < 2^E
|
---|
289 | * where E refers to the original value of e, which we
|
---|
290 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
|
---|
291 | *
|
---|
292 | * We have a*b = x^2,
|
---|
293 | * y^2^(e-1) = -1,
|
---|
294 | * b^2^(e-1) = 1.
|
---|
295 | */
|
---|
296 |
|
---|
297 | if (BN_is_one(b)) {
|
---|
298 | if (!BN_copy(ret, x))
|
---|
299 | goto end;
|
---|
300 | err = 0;
|
---|
301 | goto vrfy;
|
---|
302 | }
|
---|
303 |
|
---|
304 | /* find smallest i such that b^(2^i) = 1 */
|
---|
305 | i = 1;
|
---|
306 | if (!BN_mod_sqr(t, b, p, ctx))
|
---|
307 | goto end;
|
---|
308 | while (!BN_is_one(t)) {
|
---|
309 | i++;
|
---|
310 | if (i == e) {
|
---|
311 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
---|
312 | goto end;
|
---|
313 | }
|
---|
314 | if (!BN_mod_mul(t, t, t, p, ctx))
|
---|
315 | goto end;
|
---|
316 | }
|
---|
317 |
|
---|
318 | /* t := y^2^(e - i - 1) */
|
---|
319 | if (!BN_copy(t, y))
|
---|
320 | goto end;
|
---|
321 | for (j = e - i - 1; j > 0; j--) {
|
---|
322 | if (!BN_mod_sqr(t, t, p, ctx))
|
---|
323 | goto end;
|
---|
324 | }
|
---|
325 | if (!BN_mod_mul(y, t, t, p, ctx))
|
---|
326 | goto end;
|
---|
327 | if (!BN_mod_mul(x, x, t, p, ctx))
|
---|
328 | goto end;
|
---|
329 | if (!BN_mod_mul(b, b, y, p, ctx))
|
---|
330 | goto end;
|
---|
331 | e = i;
|
---|
332 | }
|
---|
333 |
|
---|
334 | vrfy:
|
---|
335 | if (!err) {
|
---|
336 | /*
|
---|
337 | * verify the result -- the input might have been not a square (test
|
---|
338 | * added in 0.9.8)
|
---|
339 | */
|
---|
340 |
|
---|
341 | if (!BN_mod_sqr(x, ret, p, ctx))
|
---|
342 | err = 1;
|
---|
343 |
|
---|
344 | if (!err && 0 != BN_cmp(x, A)) {
|
---|
345 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
|
---|
346 | err = 1;
|
---|
347 | }
|
---|
348 | }
|
---|
349 |
|
---|
350 | end:
|
---|
351 | if (err) {
|
---|
352 | if (ret != in)
|
---|
353 | BN_clear_free(ret);
|
---|
354 | ret = NULL;
|
---|
355 | }
|
---|
356 | BN_CTX_end(ctx);
|
---|
357 | bn_check_top(ret);
|
---|
358 | return ret;
|
---|
359 | }
|
---|