1 | /*
|
---|
2 | * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <openssl/bn.h>
|
---|
12 | #include "bn_local.h"
|
---|
13 |
|
---|
14 | /* X9.31 routines for prime derivation */
|
---|
15 |
|
---|
16 | /*
|
---|
17 | * X9.31 prime derivation. This is used to generate the primes pi (p1, p2,
|
---|
18 | * q1, q2) from a parameter Xpi by checking successive odd integers.
|
---|
19 | */
|
---|
20 |
|
---|
21 | static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx,
|
---|
22 | BN_GENCB *cb)
|
---|
23 | {
|
---|
24 | int i = 0, is_prime;
|
---|
25 | if (!BN_copy(pi, Xpi))
|
---|
26 | return 0;
|
---|
27 | if (!BN_is_odd(pi) && !BN_add_word(pi, 1))
|
---|
28 | return 0;
|
---|
29 | for (;;) {
|
---|
30 | i++;
|
---|
31 | BN_GENCB_call(cb, 0, i);
|
---|
32 | /* NB 27 MR is specified in X9.31 */
|
---|
33 | is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb);
|
---|
34 | if (is_prime < 0)
|
---|
35 | return 0;
|
---|
36 | if (is_prime)
|
---|
37 | break;
|
---|
38 | if (!BN_add_word(pi, 2))
|
---|
39 | return 0;
|
---|
40 | }
|
---|
41 | BN_GENCB_call(cb, 2, i);
|
---|
42 | return 1;
|
---|
43 | }
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2
|
---|
47 | * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they
|
---|
48 | * will be returned too: this is needed for testing.
|
---|
49 | */
|
---|
50 |
|
---|
51 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
---|
52 | const BIGNUM *Xp, const BIGNUM *Xp1,
|
---|
53 | const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx,
|
---|
54 | BN_GENCB *cb)
|
---|
55 | {
|
---|
56 | int ret = 0;
|
---|
57 |
|
---|
58 | BIGNUM *t, *p1p2, *pm1;
|
---|
59 |
|
---|
60 | /* Only even e supported */
|
---|
61 | if (!BN_is_odd(e))
|
---|
62 | return 0;
|
---|
63 |
|
---|
64 | BN_CTX_start(ctx);
|
---|
65 | if (p1 == NULL)
|
---|
66 | p1 = BN_CTX_get(ctx);
|
---|
67 |
|
---|
68 | if (p2 == NULL)
|
---|
69 | p2 = BN_CTX_get(ctx);
|
---|
70 |
|
---|
71 | t = BN_CTX_get(ctx);
|
---|
72 |
|
---|
73 | p1p2 = BN_CTX_get(ctx);
|
---|
74 |
|
---|
75 | pm1 = BN_CTX_get(ctx);
|
---|
76 |
|
---|
77 | if (pm1 == NULL)
|
---|
78 | goto err;
|
---|
79 |
|
---|
80 | if (!bn_x931_derive_pi(p1, Xp1, ctx, cb))
|
---|
81 | goto err;
|
---|
82 |
|
---|
83 | if (!bn_x931_derive_pi(p2, Xp2, ctx, cb))
|
---|
84 | goto err;
|
---|
85 |
|
---|
86 | if (!BN_mul(p1p2, p1, p2, ctx))
|
---|
87 | goto err;
|
---|
88 |
|
---|
89 | /* First set p to value of Rp */
|
---|
90 |
|
---|
91 | if (!BN_mod_inverse(p, p2, p1, ctx))
|
---|
92 | goto err;
|
---|
93 |
|
---|
94 | if (!BN_mul(p, p, p2, ctx))
|
---|
95 | goto err;
|
---|
96 |
|
---|
97 | if (!BN_mod_inverse(t, p1, p2, ctx))
|
---|
98 | goto err;
|
---|
99 |
|
---|
100 | if (!BN_mul(t, t, p1, ctx))
|
---|
101 | goto err;
|
---|
102 |
|
---|
103 | if (!BN_sub(p, p, t))
|
---|
104 | goto err;
|
---|
105 |
|
---|
106 | if (p->neg && !BN_add(p, p, p1p2))
|
---|
107 | goto err;
|
---|
108 |
|
---|
109 | /* p now equals Rp */
|
---|
110 |
|
---|
111 | if (!BN_mod_sub(p, p, Xp, p1p2, ctx))
|
---|
112 | goto err;
|
---|
113 |
|
---|
114 | if (!BN_add(p, p, Xp))
|
---|
115 | goto err;
|
---|
116 |
|
---|
117 | /* p now equals Yp0 */
|
---|
118 |
|
---|
119 | for (;;) {
|
---|
120 | int i = 1;
|
---|
121 | BN_GENCB_call(cb, 0, i++);
|
---|
122 | if (!BN_copy(pm1, p))
|
---|
123 | goto err;
|
---|
124 | if (!BN_sub_word(pm1, 1))
|
---|
125 | goto err;
|
---|
126 | if (!BN_gcd(t, pm1, e, ctx))
|
---|
127 | goto err;
|
---|
128 | if (BN_is_one(t)) {
|
---|
129 | /*
|
---|
130 | * X9.31 specifies 8 MR and 1 Lucas test or any prime test
|
---|
131 | * offering similar or better guarantees 50 MR is considerably
|
---|
132 | * better.
|
---|
133 | */
|
---|
134 | int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb);
|
---|
135 | if (r < 0)
|
---|
136 | goto err;
|
---|
137 | if (r)
|
---|
138 | break;
|
---|
139 | }
|
---|
140 | if (!BN_add(p, p, p1p2))
|
---|
141 | goto err;
|
---|
142 | }
|
---|
143 |
|
---|
144 | BN_GENCB_call(cb, 3, 0);
|
---|
145 |
|
---|
146 | ret = 1;
|
---|
147 |
|
---|
148 | err:
|
---|
149 |
|
---|
150 | BN_CTX_end(ctx);
|
---|
151 |
|
---|
152 | return ret;
|
---|
153 | }
|
---|
154 |
|
---|
155 | /*
|
---|
156 | * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits
|
---|
157 | * parameter is sum of number of bits in both.
|
---|
158 | */
|
---|
159 |
|
---|
160 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx)
|
---|
161 | {
|
---|
162 | BIGNUM *t;
|
---|
163 | int i;
|
---|
164 | /*
|
---|
165 | * Number of bits for each prime is of the form 512+128s for s = 0, 1,
|
---|
166 | * ...
|
---|
167 | */
|
---|
168 | if ((nbits < 1024) || (nbits & 0xff))
|
---|
169 | return 0;
|
---|
170 | nbits >>= 1;
|
---|
171 | /*
|
---|
172 | * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits
|
---|
173 | * - 1. By setting the top two bits we ensure that the lower bound is
|
---|
174 | * exceeded.
|
---|
175 | */
|
---|
176 | if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
|
---|
177 | goto err;
|
---|
178 |
|
---|
179 | BN_CTX_start(ctx);
|
---|
180 | t = BN_CTX_get(ctx);
|
---|
181 | if (t == NULL)
|
---|
182 | goto err;
|
---|
183 |
|
---|
184 | for (i = 0; i < 1000; i++) {
|
---|
185 | if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY))
|
---|
186 | goto err;
|
---|
187 |
|
---|
188 | /* Check that |Xp - Xq| > 2^(nbits - 100) */
|
---|
189 | if (!BN_sub(t, Xp, Xq))
|
---|
190 | goto err;
|
---|
191 | if (BN_num_bits(t) > (nbits - 100))
|
---|
192 | break;
|
---|
193 | }
|
---|
194 |
|
---|
195 | BN_CTX_end(ctx);
|
---|
196 |
|
---|
197 | if (i < 1000)
|
---|
198 | return 1;
|
---|
199 |
|
---|
200 | return 0;
|
---|
201 |
|
---|
202 | err:
|
---|
203 | BN_CTX_end(ctx);
|
---|
204 | return 0;
|
---|
205 | }
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and
|
---|
209 | * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the
|
---|
210 | * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| >
|
---|
211 | * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the
|
---|
212 | * previous function and supplied as input.
|
---|
213 | */
|
---|
214 |
|
---|
215 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
|
---|
216 | BIGNUM *Xp1, BIGNUM *Xp2,
|
---|
217 | const BIGNUM *Xp,
|
---|
218 | const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb)
|
---|
219 | {
|
---|
220 | int ret = 0;
|
---|
221 |
|
---|
222 | BN_CTX_start(ctx);
|
---|
223 | if (Xp1 == NULL)
|
---|
224 | Xp1 = BN_CTX_get(ctx);
|
---|
225 | if (Xp2 == NULL)
|
---|
226 | Xp2 = BN_CTX_get(ctx);
|
---|
227 | if (Xp1 == NULL || Xp2 == NULL)
|
---|
228 | goto error;
|
---|
229 |
|
---|
230 | if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
|
---|
231 | goto error;
|
---|
232 | if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
|
---|
233 | goto error;
|
---|
234 | if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb))
|
---|
235 | goto error;
|
---|
236 |
|
---|
237 | ret = 1;
|
---|
238 |
|
---|
239 | error:
|
---|
240 | BN_CTX_end(ctx);
|
---|
241 |
|
---|
242 | return ret;
|
---|
243 |
|
---|
244 | }
|
---|