VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/ec/asm/ecp_nistz256-x86.pl@ 91772

Last change on this file since 91772 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

  • Property svn:executable set to *
File size: 56.3 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# ECP_NISTZ256 module for x86/SSE2.
18#
19# October 2014.
20#
21# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
22# http://eprint.iacr.org/2013/816. In the process of adaptation
23# original .c module was made 32-bit savvy in order to make this
24# implementation possible.
25#
26# with/without -DECP_NISTZ256_ASM
27# Pentium +66-163%
28# PIII +72-172%
29# P4 +65-132%
30# Core2 +90-215%
31# Sandy Bridge +105-265% (contemporary i[57]-* are all close to this)
32# Atom +65-155%
33# Opteron +54-110%
34# Bulldozer +99-240%
35# VIA Nano +93-290%
36#
37# Ranges denote minimum and maximum improvement coefficients depending
38# on benchmark. Lower coefficients are for ECDSA sign, server-side
39# operation. Keep in mind that +200% means 3x improvement.
40
41$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
42push(@INC,"${dir}","${dir}../../perlasm");
43require "x86asm.pl";
44
45$output=pop;
46open STDOUT,">$output";
47
48&asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
49
50$sse2=0;
51for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
52
53&external_label("OPENSSL_ia32cap_P") if ($sse2);
54
55
56########################################################################
57# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
58#
59open TABLE,"<ecp_nistz256_table.c" or
60open TABLE,"<${dir}../ecp_nistz256_table.c" or
61die "failed to open ecp_nistz256_table.c:",$!;
62
63use integer;
64
65foreach(<TABLE>) {
66 s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
67}
68close TABLE;
69
70# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
71# 64*16*37-1 is because $#arr returns last valid index or @arr, not
72# amount of elements.
73die "insane number of elements" if ($#arr != 64*16*37-1);
74
75&public_label("ecp_nistz256_precomputed");
76&align(4096);
77&set_label("ecp_nistz256_precomputed");
78
79########################################################################
80# this conversion smashes P256_POINT_AFFINE by individual bytes with
81# 64 byte interval, similar to
82# 1111222233334444
83# 1234123412341234
84for(1..37) {
85 @tbl = splice(@arr,0,64*16);
86 for($i=0;$i<64;$i++) {
87 undef @line;
88 for($j=0;$j<64;$j++) {
89 push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
90 }
91 &data_byte(join(',',map { sprintf "0x%02x",$_} @line));
92 }
93}
94
95########################################################################
96# Keep in mind that constants are stored least to most significant word
97&static_label("RR");
98&set_label("RR",64);
99&data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256
100
101&static_label("ONE_mont");
102&set_label("ONE_mont");
103&data_word(1,0,0,-1,-1,-1,-2,0);
104
105&static_label("ONE");
106&set_label("ONE");
107&data_word(1,0,0,0,0,0,0,0);
108&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by <appro\@openssl.org>");
109&align(64);
110
111########################################################################
112# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
113&function_begin("ecp_nistz256_mul_by_2");
114 &mov ("esi",&wparam(1));
115 &mov ("edi",&wparam(0));
116 &mov ("ebp","esi");
117########################################################################
118# common pattern for internal functions is that %edi is result pointer,
119# %esi and %ebp are input ones, %ebp being optional. %edi is preserved.
120 &call ("_ecp_nistz256_add");
121&function_end("ecp_nistz256_mul_by_2");
122
123########################################################################
124# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]);
125&function_begin("ecp_nistz256_mul_by_3");
126 &mov ("esi",&wparam(1));
127 # multiplication by 3 is performed
128 # as 2*n+n, but we can't use output
129 # to store 2*n, because if output
130 # pointer equals to input, then
131 # we'll get 2*n+2*n.
132 &stack_push(8); # therefore we need to allocate
133 # 256-bit intermediate buffer.
134 &mov ("edi","esp");
135 &mov ("ebp","esi");
136 &call ("_ecp_nistz256_add");
137 &lea ("esi",&DWP(0,"edi"));
138 &mov ("ebp",&wparam(1));
139 &mov ("edi",&wparam(0));
140 &call ("_ecp_nistz256_add");
141 &stack_pop(8);
142&function_end("ecp_nistz256_mul_by_3");
143
144########################################################################
145# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
146&function_begin("ecp_nistz256_div_by_2");
147 &mov ("esi",&wparam(1));
148 &mov ("edi",&wparam(0));
149 &call ("_ecp_nistz256_div_by_2");
150&function_end("ecp_nistz256_div_by_2");
151
152&function_begin_B("_ecp_nistz256_div_by_2");
153 # tmp = a is odd ? a+mod : a
154 #
155 # note that because mod has special form, i.e. consists of
156 # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
157 # assigning least significant bit of input to one register,
158 # %ebp, and its negative to another, %edx.
159
160 &mov ("ebp",&DWP(0,"esi"));
161 &xor ("edx","edx");
162 &mov ("ebx",&DWP(4,"esi"));
163 &mov ("eax","ebp");
164 &and ("ebp",1);
165 &mov ("ecx",&DWP(8,"esi"));
166 &sub ("edx","ebp");
167
168 &add ("eax","edx");
169 &adc ("ebx","edx");
170 &mov (&DWP(0,"edi"),"eax");
171 &adc ("ecx","edx");
172 &mov (&DWP(4,"edi"),"ebx");
173 &mov (&DWP(8,"edi"),"ecx");
174
175 &mov ("eax",&DWP(12,"esi"));
176 &mov ("ebx",&DWP(16,"esi"));
177 &adc ("eax",0);
178 &mov ("ecx",&DWP(20,"esi"));
179 &adc ("ebx",0);
180 &mov (&DWP(12,"edi"),"eax");
181 &adc ("ecx",0);
182 &mov (&DWP(16,"edi"),"ebx");
183 &mov (&DWP(20,"edi"),"ecx");
184
185 &mov ("eax",&DWP(24,"esi"));
186 &mov ("ebx",&DWP(28,"esi"));
187 &adc ("eax","ebp");
188 &adc ("ebx","edx");
189 &mov (&DWP(24,"edi"),"eax");
190 &sbb ("esi","esi"); # broadcast carry bit
191 &mov (&DWP(28,"edi"),"ebx");
192
193 # ret = tmp >> 1
194
195 &mov ("eax",&DWP(0,"edi"));
196 &mov ("ebx",&DWP(4,"edi"));
197 &mov ("ecx",&DWP(8,"edi"));
198 &mov ("edx",&DWP(12,"edi"));
199
200 &shr ("eax",1);
201 &mov ("ebp","ebx");
202 &shl ("ebx",31);
203 &or ("eax","ebx");
204
205 &shr ("ebp",1);
206 &mov ("ebx","ecx");
207 &shl ("ecx",31);
208 &mov (&DWP(0,"edi"),"eax");
209 &or ("ebp","ecx");
210 &mov ("eax",&DWP(16,"edi"));
211
212 &shr ("ebx",1);
213 &mov ("ecx","edx");
214 &shl ("edx",31);
215 &mov (&DWP(4,"edi"),"ebp");
216 &or ("ebx","edx");
217 &mov ("ebp",&DWP(20,"edi"));
218
219 &shr ("ecx",1);
220 &mov ("edx","eax");
221 &shl ("eax",31);
222 &mov (&DWP(8,"edi"),"ebx");
223 &or ("ecx","eax");
224 &mov ("ebx",&DWP(24,"edi"));
225
226 &shr ("edx",1);
227 &mov ("eax","ebp");
228 &shl ("ebp",31);
229 &mov (&DWP(12,"edi"),"ecx");
230 &or ("edx","ebp");
231 &mov ("ecx",&DWP(28,"edi"));
232
233 &shr ("eax",1);
234 &mov ("ebp","ebx");
235 &shl ("ebx",31);
236 &mov (&DWP(16,"edi"),"edx");
237 &or ("eax","ebx");
238
239 &shr ("ebp",1);
240 &mov ("ebx","ecx");
241 &shl ("ecx",31);
242 &mov (&DWP(20,"edi"),"eax");
243 &or ("ebp","ecx");
244
245 &shr ("ebx",1);
246 &shl ("esi",31);
247 &mov (&DWP(24,"edi"),"ebp");
248 &or ("ebx","esi"); # handle top-most carry bit
249 &mov (&DWP(28,"edi"),"ebx");
250
251 &ret ();
252&function_end_B("_ecp_nistz256_div_by_2");
253
254########################################################################
255# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8],
256# const BN_ULONG ebp[8]);
257&function_begin("ecp_nistz256_add");
258 &mov ("esi",&wparam(1));
259 &mov ("ebp",&wparam(2));
260 &mov ("edi",&wparam(0));
261 &call ("_ecp_nistz256_add");
262&function_end("ecp_nistz256_add");
263
264&function_begin_B("_ecp_nistz256_add");
265 &mov ("eax",&DWP(0,"esi"));
266 &mov ("ebx",&DWP(4,"esi"));
267 &mov ("ecx",&DWP(8,"esi"));
268 &add ("eax",&DWP(0,"ebp"));
269 &mov ("edx",&DWP(12,"esi"));
270 &adc ("ebx",&DWP(4,"ebp"));
271 &mov (&DWP(0,"edi"),"eax");
272 &adc ("ecx",&DWP(8,"ebp"));
273 &mov (&DWP(4,"edi"),"ebx");
274 &adc ("edx",&DWP(12,"ebp"));
275 &mov (&DWP(8,"edi"),"ecx");
276 &mov (&DWP(12,"edi"),"edx");
277
278 &mov ("eax",&DWP(16,"esi"));
279 &mov ("ebx",&DWP(20,"esi"));
280 &mov ("ecx",&DWP(24,"esi"));
281 &adc ("eax",&DWP(16,"ebp"));
282 &mov ("edx",&DWP(28,"esi"));
283 &adc ("ebx",&DWP(20,"ebp"));
284 &mov (&DWP(16,"edi"),"eax");
285 &adc ("ecx",&DWP(24,"ebp"));
286 &mov (&DWP(20,"edi"),"ebx");
287 &mov ("esi",0);
288 &adc ("edx",&DWP(28,"ebp"));
289 &mov (&DWP(24,"edi"),"ecx");
290 &adc ("esi",0);
291 &mov (&DWP(28,"edi"),"edx");
292
293 # if a+b >= modulus, subtract modulus.
294 #
295 # But since comparison implies subtraction, we subtract modulus
296 # to see if it borrows, and then subtract it for real if
297 # subtraction didn't borrow.
298
299 &mov ("eax",&DWP(0,"edi"));
300 &mov ("ebx",&DWP(4,"edi"));
301 &mov ("ecx",&DWP(8,"edi"));
302 &sub ("eax",-1);
303 &mov ("edx",&DWP(12,"edi"));
304 &sbb ("ebx",-1);
305 &mov ("eax",&DWP(16,"edi"));
306 &sbb ("ecx",-1);
307 &mov ("ebx",&DWP(20,"edi"));
308 &sbb ("edx",0);
309 &mov ("ecx",&DWP(24,"edi"));
310 &sbb ("eax",0);
311 &mov ("edx",&DWP(28,"edi"));
312 &sbb ("ebx",0);
313 &sbb ("ecx",1);
314 &sbb ("edx",-1);
315 &sbb ("esi",0);
316
317 # Note that because mod has special form, i.e. consists of
318 # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
319 # by using borrow.
320
321 &not ("esi");
322 &mov ("eax",&DWP(0,"edi"));
323 &mov ("ebp","esi");
324 &mov ("ebx",&DWP(4,"edi"));
325 &shr ("ebp",31);
326 &mov ("ecx",&DWP(8,"edi"));
327 &sub ("eax","esi");
328 &mov ("edx",&DWP(12,"edi"));
329 &sbb ("ebx","esi");
330 &mov (&DWP(0,"edi"),"eax");
331 &sbb ("ecx","esi");
332 &mov (&DWP(4,"edi"),"ebx");
333 &sbb ("edx",0);
334 &mov (&DWP(8,"edi"),"ecx");
335 &mov (&DWP(12,"edi"),"edx");
336
337 &mov ("eax",&DWP(16,"edi"));
338 &mov ("ebx",&DWP(20,"edi"));
339 &mov ("ecx",&DWP(24,"edi"));
340 &sbb ("eax",0);
341 &mov ("edx",&DWP(28,"edi"));
342 &sbb ("ebx",0);
343 &mov (&DWP(16,"edi"),"eax");
344 &sbb ("ecx","ebp");
345 &mov (&DWP(20,"edi"),"ebx");
346 &sbb ("edx","esi");
347 &mov (&DWP(24,"edi"),"ecx");
348 &mov (&DWP(28,"edi"),"edx");
349
350 &ret ();
351&function_end_B("_ecp_nistz256_add");
352
353########################################################################
354# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8],
355# const BN_ULONG ebp[8]);
356&function_begin("ecp_nistz256_sub");
357 &mov ("esi",&wparam(1));
358 &mov ("ebp",&wparam(2));
359 &mov ("edi",&wparam(0));
360 &call ("_ecp_nistz256_sub");
361&function_end("ecp_nistz256_sub");
362
363&function_begin_B("_ecp_nistz256_sub");
364 &mov ("eax",&DWP(0,"esi"));
365 &mov ("ebx",&DWP(4,"esi"));
366 &mov ("ecx",&DWP(8,"esi"));
367 &sub ("eax",&DWP(0,"ebp"));
368 &mov ("edx",&DWP(12,"esi"));
369 &sbb ("ebx",&DWP(4,"ebp"));
370 &mov (&DWP(0,"edi"),"eax");
371 &sbb ("ecx",&DWP(8,"ebp"));
372 &mov (&DWP(4,"edi"),"ebx");
373 &sbb ("edx",&DWP(12,"ebp"));
374 &mov (&DWP(8,"edi"),"ecx");
375 &mov (&DWP(12,"edi"),"edx");
376
377 &mov ("eax",&DWP(16,"esi"));
378 &mov ("ebx",&DWP(20,"esi"));
379 &mov ("ecx",&DWP(24,"esi"));
380 &sbb ("eax",&DWP(16,"ebp"));
381 &mov ("edx",&DWP(28,"esi"));
382 &sbb ("ebx",&DWP(20,"ebp"));
383 &sbb ("ecx",&DWP(24,"ebp"));
384 &mov (&DWP(16,"edi"),"eax");
385 &sbb ("edx",&DWP(28,"ebp"));
386 &mov (&DWP(20,"edi"),"ebx");
387 &sbb ("esi","esi"); # broadcast borrow bit
388 &mov (&DWP(24,"edi"),"ecx");
389 &mov (&DWP(28,"edi"),"edx");
390
391 # if a-b borrows, add modulus.
392 #
393 # Note that because mod has special form, i.e. consists of
394 # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
395 # assigning borrow bit to one register, %ebp, and its negative
396 # to another, %esi. But we started by calculating %esi...
397
398 &mov ("eax",&DWP(0,"edi"));
399 &mov ("ebp","esi");
400 &mov ("ebx",&DWP(4,"edi"));
401 &shr ("ebp",31);
402 &mov ("ecx",&DWP(8,"edi"));
403 &add ("eax","esi");
404 &mov ("edx",&DWP(12,"edi"));
405 &adc ("ebx","esi");
406 &mov (&DWP(0,"edi"),"eax");
407 &adc ("ecx","esi");
408 &mov (&DWP(4,"edi"),"ebx");
409 &adc ("edx",0);
410 &mov (&DWP(8,"edi"),"ecx");
411 &mov (&DWP(12,"edi"),"edx");
412
413 &mov ("eax",&DWP(16,"edi"));
414 &mov ("ebx",&DWP(20,"edi"));
415 &mov ("ecx",&DWP(24,"edi"));
416 &adc ("eax",0);
417 &mov ("edx",&DWP(28,"edi"));
418 &adc ("ebx",0);
419 &mov (&DWP(16,"edi"),"eax");
420 &adc ("ecx","ebp");
421 &mov (&DWP(20,"edi"),"ebx");
422 &adc ("edx","esi");
423 &mov (&DWP(24,"edi"),"ecx");
424 &mov (&DWP(28,"edi"),"edx");
425
426 &ret ();
427&function_end_B("_ecp_nistz256_sub");
428
429########################################################################
430# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]);
431&function_begin("ecp_nistz256_neg");
432 &mov ("ebp",&wparam(1));
433 &mov ("edi",&wparam(0));
434
435 &xor ("eax","eax");
436 &stack_push(8);
437 &mov (&DWP(0,"esp"),"eax");
438 &mov ("esi","esp");
439 &mov (&DWP(4,"esp"),"eax");
440 &mov (&DWP(8,"esp"),"eax");
441 &mov (&DWP(12,"esp"),"eax");
442 &mov (&DWP(16,"esp"),"eax");
443 &mov (&DWP(20,"esp"),"eax");
444 &mov (&DWP(24,"esp"),"eax");
445 &mov (&DWP(28,"esp"),"eax");
446
447 &call ("_ecp_nistz256_sub");
448
449 &stack_pop(8);
450&function_end("ecp_nistz256_neg");
451
452&function_begin_B("_picup_eax");
453 &mov ("eax",&DWP(0,"esp"));
454 &ret ();
455&function_end_B("_picup_eax");
456
457########################################################################
458# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
459&function_begin("ecp_nistz256_to_mont");
460 &mov ("esi",&wparam(1));
461 &call ("_picup_eax");
462 &set_label("pic");
463 &lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax"));
464 if ($sse2) {
465 &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
466 &mov ("eax",&DWP(0,"eax")); }
467 &mov ("edi",&wparam(0));
468 &call ("_ecp_nistz256_mul_mont");
469&function_end("ecp_nistz256_to_mont");
470
471########################################################################
472# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
473&function_begin("ecp_nistz256_from_mont");
474 &mov ("esi",&wparam(1));
475 &call ("_picup_eax");
476 &set_label("pic");
477 &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax"));
478 if ($sse2) {
479 &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
480 &mov ("eax",&DWP(0,"eax")); }
481 &mov ("edi",&wparam(0));
482 &call ("_ecp_nistz256_mul_mont");
483&function_end("ecp_nistz256_from_mont");
484
485########################################################################
486# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8],
487# const BN_ULONG ebp[8]);
488&function_begin("ecp_nistz256_mul_mont");
489 &mov ("esi",&wparam(1));
490 &mov ("ebp",&wparam(2));
491 if ($sse2) {
492 &call ("_picup_eax");
493 &set_label("pic");
494 &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
495 &mov ("eax",&DWP(0,"eax")); }
496 &mov ("edi",&wparam(0));
497 &call ("_ecp_nistz256_mul_mont");
498&function_end("ecp_nistz256_mul_mont");
499
500########################################################################
501# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
502&function_begin("ecp_nistz256_sqr_mont");
503 &mov ("esi",&wparam(1));
504 if ($sse2) {
505 &call ("_picup_eax");
506 &set_label("pic");
507 &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
508 &mov ("eax",&DWP(0,"eax")); }
509 &mov ("edi",&wparam(0));
510 &mov ("ebp","esi");
511 &call ("_ecp_nistz256_mul_mont");
512&function_end("ecp_nistz256_sqr_mont");
513
514&function_begin_B("_ecp_nistz256_mul_mont");
515 if ($sse2) {
516 &and ("eax",1<<24|1<<26);
517 &cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on
518 &jne (&label("mul_mont_ialu"));
519
520 ########################################
521 # SSE2 code path featuring 32x16-bit
522 # multiplications is ~2x faster than
523 # IALU counterpart (except on Atom)...
524 ########################################
525 # stack layout:
526 # +------------------------------------+< %esp
527 # | 7 16-byte temporary XMM words, |
528 # | "sliding" toward lower address |
529 # . .
530 # +------------------------------------+
531 # | unused XMM word |
532 # +------------------------------------+< +128,%ebx
533 # | 8 16-byte XMM words holding copies |
534 # | of a[i]<<64|a[i] |
535 # . .
536 # . .
537 # +------------------------------------+< +256
538 &mov ("edx","esp");
539 &sub ("esp",0x100);
540
541 &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy
542 &lea ("ebp",&DWP(4,"ebp"));
543 &pcmpeqd("xmm6","xmm6");
544 &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff
545
546 &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
547 &and ("esp",-64);
548 &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
549 &lea ("ebx",&DWP(0x80,"esp"));
550
551 &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy
552 &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy
553 &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ...
554 &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0]
555 &pmuludq("xmm0","xmm7"); # a[0]*b[0]
556
557 &movd ("xmm2",&DWP(4*2,"esi"));
558 &pshufd ("xmm1","xmm1",0b11001100);
559 &movdqa (&QWP(0x10,"ebx"),"xmm1");
560 &pmuludq("xmm1","xmm7"); # a[1]*b[0]
561
562 &movq ("xmm4","xmm0"); # clear upper 64 bits
563 &pslldq("xmm4",6);
564 &paddq ("xmm4","xmm0");
565 &movdqa("xmm5","xmm4");
566 &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0]
567 &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0]
568
569 # Upper half of a[0]*b[i] is carried into next multiplication
570 # iteration, while lower one "participates" in actual reduction.
571 # Normally latter is done by accumulating result of multiplication
572 # of modulus by "magic" digit, but thanks to special form of modulus
573 # and "magic" digit it can be performed only with additions and
574 # subtractions (see note in IALU section below). Note that we are
575 # not bothered with carry bits, they are accumulated in "flatten"
576 # phase after all multiplications and reductions.
577
578 &movd ("xmm3",&DWP(4*3,"esi"));
579 &pshufd ("xmm2","xmm2",0b11001100);
580 &movdqa (&QWP(0x20,"ebx"),"xmm2");
581 &pmuludq("xmm2","xmm7"); # a[2]*b[0]
582 &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry
583 &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0]
584
585 &movd ("xmm0",&DWP(4*4,"esi"));
586 &pshufd ("xmm3","xmm3",0b11001100);
587 &movdqa (&QWP(0x30,"ebx"),"xmm3");
588 &pmuludq("xmm3","xmm7"); # a[3]*b[0]
589 &movdqa (&QWP(0x10,"esp"),"xmm2");
590
591 &movd ("xmm1",&DWP(4*5,"esi"));
592 &pshufd ("xmm0","xmm0",0b11001100);
593 &movdqa (&QWP(0x40,"ebx"),"xmm0");
594 &pmuludq("xmm0","xmm7"); # a[4]*b[0]
595 &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step
596 &movdqa (&QWP(0x20,"esp"),"xmm3");
597
598 &movd ("xmm2",&DWP(4*6,"esi"));
599 &pshufd ("xmm1","xmm1",0b11001100);
600 &movdqa (&QWP(0x50,"ebx"),"xmm1");
601 &pmuludq("xmm1","xmm7"); # a[5]*b[0]
602 &movdqa (&QWP(0x30,"esp"),"xmm0");
603 &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
604
605 &movd ("xmm3",&DWP(4*7,"esi"));
606 &pshufd ("xmm2","xmm2",0b11001100);
607 &movdqa (&QWP(0x60,"ebx"),"xmm2");
608 &pmuludq("xmm2","xmm7"); # a[6]*b[0]
609 &movdqa (&QWP(0x40,"esp"),"xmm1");
610 &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
611
612 &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy
613 &pshufd ("xmm3","xmm3",0b11001100);
614 &movdqa (&QWP(0x70,"ebx"),"xmm3");
615 &pmuludq("xmm3","xmm7"); # a[7]*b[0]
616
617 &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y
618 &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
619 &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
620
621 &mov ("ecx",6);
622 &lea ("ebp",&DWP(4,"ebp"));
623 &jmp (&label("madd_sse2"));
624
625&set_label("madd_sse2",16);
626 &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled]
627 &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled]
628 &movdqa ("xmm1",&QWP(0x10,"ebx"));
629 &pmuludq("xmm0","xmm7"); # a[0]*b[i]
630 &movdqa(&QWP(0x50,"esp"),"xmm2");
631
632 &movdqa ("xmm2",&QWP(0x20,"ebx"));
633 &pmuludq("xmm1","xmm7"); # a[1]*b[i]
634 &movdqa(&QWP(0x60,"esp"),"xmm3");
635 &paddq ("xmm0",&QWP(0x00,"esp"));
636
637 &movdqa ("xmm3",&QWP(0x30,"ebx"));
638 &pmuludq("xmm2","xmm7"); # a[2]*b[i]
639 &movq ("xmm4","xmm0"); # clear upper 64 bits
640 &pslldq("xmm4",6);
641 &paddq ("xmm1",&QWP(0x10,"esp"));
642 &paddq ("xmm4","xmm0");
643 &movdqa("xmm5","xmm4");
644 &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
645
646 &movdqa ("xmm0",&QWP(0x40,"ebx"));
647 &pmuludq("xmm3","xmm7"); # a[3]*b[i]
648 &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry
649 &paddq ("xmm2",&QWP(0x20,"esp"));
650 &movdqa (&QWP(0x00,"esp"),"xmm1");
651
652 &movdqa ("xmm1",&QWP(0x50,"ebx"));
653 &pmuludq("xmm0","xmm7"); # a[4]*b[i]
654 &paddq ("xmm3",&QWP(0x30,"esp"));
655 &movdqa (&QWP(0x10,"esp"),"xmm2");
656 &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
657
658 &movdqa ("xmm2",&QWP(0x60,"ebx"));
659 &pmuludq("xmm1","xmm7"); # a[5]*b[i]
660 &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step
661 &paddq ("xmm0",&QWP(0x40,"esp"));
662 &movdqa (&QWP(0x20,"esp"),"xmm3");
663 &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
664
665 &movdqa ("xmm3","xmm7");
666 &pmuludq("xmm2","xmm7"); # a[6]*b[i]
667 &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy
668 &lea ("ebp",&DWP(4,"ebp"));
669 &paddq ("xmm1",&QWP(0x50,"esp"));
670 &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
671 &movdqa (&QWP(0x30,"esp"),"xmm0");
672 &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
673
674 &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i]
675 &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
676 &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
677 &movdqa (&QWP(0x40,"esp"),"xmm1");
678 &paddq ("xmm2",&QWP(0x60,"esp"));
679
680 &dec ("ecx");
681 &jnz (&label("madd_sse2"));
682
683 &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled]
684 &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled]
685 &movdqa ("xmm1",&QWP(0x10,"ebx"));
686 &pmuludq("xmm0","xmm7"); # a[0]*b[7]
687 &movdqa(&QWP(0x50,"esp"),"xmm2");
688
689 &movdqa ("xmm2",&QWP(0x20,"ebx"));
690 &pmuludq("xmm1","xmm7"); # a[1]*b[7]
691 &movdqa(&QWP(0x60,"esp"),"xmm3");
692 &paddq ("xmm0",&QWP(0x00,"esp"));
693
694 &movdqa ("xmm3",&QWP(0x30,"ebx"));
695 &pmuludq("xmm2","xmm7"); # a[2]*b[7]
696 &movq ("xmm4","xmm0"); # clear upper 64 bits
697 &pslldq("xmm4",6);
698 &paddq ("xmm1",&QWP(0x10,"esp"));
699 &paddq ("xmm4","xmm0");
700 &movdqa("xmm5","xmm4");
701 &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
702
703 &movdqa ("xmm0",&QWP(0x40,"ebx"));
704 &pmuludq("xmm3","xmm7"); # a[3]*b[7]
705 &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry
706 &paddq ("xmm2",&QWP(0x20,"esp"));
707 &movdqa (&QWP(0x00,"esp"),"xmm1");
708
709 &movdqa ("xmm1",&QWP(0x50,"ebx"));
710 &pmuludq("xmm0","xmm7"); # a[4]*b[7]
711 &paddq ("xmm3",&QWP(0x30,"esp"));
712 &movdqa (&QWP(0x10,"esp"),"xmm2");
713 &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
714
715 &movdqa ("xmm2",&QWP(0x60,"ebx"));
716 &pmuludq("xmm1","xmm7"); # a[5]*b[7]
717 &paddq ("xmm3","xmm5"); # reduction step
718 &paddq ("xmm0",&QWP(0x40,"esp"));
719 &movdqa (&QWP(0x20,"esp"),"xmm3");
720 &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
721
722 &movdqa ("xmm3",&QWP(0x70,"ebx"));
723 &pmuludq("xmm2","xmm7"); # a[6]*b[7]
724 &paddq ("xmm1",&QWP(0x50,"esp"));
725 &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
726 &movdqa (&QWP(0x30,"esp"),"xmm0");
727
728 &pmuludq("xmm3","xmm7"); # a[7]*b[7]
729 &pcmpeqd("xmm7","xmm7");
730 &movdqa ("xmm0",&QWP(0x00,"esp"));
731 &pslldq ("xmm7",8);
732 &movdqa (&QWP(0x40,"esp"),"xmm1");
733 &paddq ("xmm2",&QWP(0x60,"esp"));
734
735 &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step
736 &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step
737 &movdqa(&QWP(0x50,"esp"),"xmm2");
738 &movdqa(&QWP(0x60,"esp"),"xmm3");
739
740 &movdqa ("xmm1",&QWP(0x10,"esp"));
741 &movdqa ("xmm2",&QWP(0x20,"esp"));
742 &movdqa ("xmm3",&QWP(0x30,"esp"));
743
744 &movq ("xmm4","xmm0"); # "flatten"
745 &pand ("xmm0","xmm7");
746 &xor ("ebp","ebp");
747 &pslldq ("xmm4",6);
748 &movq ("xmm5","xmm1");
749 &paddq ("xmm0","xmm4");
750 &pand ("xmm1","xmm7");
751 &psrldq ("xmm0",6);
752 &movd ("eax","xmm0");
753 &psrldq ("xmm0",4);
754
755 &paddq ("xmm5","xmm0");
756 &movdqa ("xmm0",&QWP(0x40,"esp"));
757 &sub ("eax",-1); # start subtracting modulus,
758 # this is used to determine
759 # if result is larger/smaller
760 # than modulus (see below)
761 &pslldq ("xmm5",6);
762 &movq ("xmm4","xmm2");
763 &paddq ("xmm1","xmm5");
764 &pand ("xmm2","xmm7");
765 &psrldq ("xmm1",6);
766 &mov (&DWP(4*0,"edi"),"eax");
767 &movd ("eax","xmm1");
768 &psrldq ("xmm1",4);
769
770 &paddq ("xmm4","xmm1");
771 &movdqa ("xmm1",&QWP(0x50,"esp"));
772 &sbb ("eax",-1);
773 &pslldq ("xmm4",6);
774 &movq ("xmm5","xmm3");
775 &paddq ("xmm2","xmm4");
776 &pand ("xmm3","xmm7");
777 &psrldq ("xmm2",6);
778 &mov (&DWP(4*1,"edi"),"eax");
779 &movd ("eax","xmm2");
780 &psrldq ("xmm2",4);
781
782 &paddq ("xmm5","xmm2");
783 &movdqa ("xmm2",&QWP(0x60,"esp"));
784 &sbb ("eax",-1);
785 &pslldq ("xmm5",6);
786 &movq ("xmm4","xmm0");
787 &paddq ("xmm3","xmm5");
788 &pand ("xmm0","xmm7");
789 &psrldq ("xmm3",6);
790 &mov (&DWP(4*2,"edi"),"eax");
791 &movd ("eax","xmm3");
792 &psrldq ("xmm3",4);
793
794 &paddq ("xmm4","xmm3");
795 &sbb ("eax",0);
796 &pslldq ("xmm4",6);
797 &movq ("xmm5","xmm1");
798 &paddq ("xmm0","xmm4");
799 &pand ("xmm1","xmm7");
800 &psrldq ("xmm0",6);
801 &mov (&DWP(4*3,"edi"),"eax");
802 &movd ("eax","xmm0");
803 &psrldq ("xmm0",4);
804
805 &paddq ("xmm5","xmm0");
806 &sbb ("eax",0);
807 &pslldq ("xmm5",6);
808 &movq ("xmm4","xmm2");
809 &paddq ("xmm1","xmm5");
810 &pand ("xmm2","xmm7");
811 &psrldq ("xmm1",6);
812 &movd ("ebx","xmm1");
813 &psrldq ("xmm1",4);
814 &mov ("esp","edx");
815
816 &paddq ("xmm4","xmm1");
817 &pslldq ("xmm4",6);
818 &paddq ("xmm2","xmm4");
819 &psrldq ("xmm2",6);
820 &movd ("ecx","xmm2");
821 &psrldq ("xmm2",4);
822 &sbb ("ebx",0);
823 &movd ("edx","xmm2");
824 &pextrw ("esi","xmm2",2); # top-most overflow bit
825 &sbb ("ecx",1);
826 &sbb ("edx",-1);
827 &sbb ("esi",0); # borrow from subtraction
828
829 # Final step is "if result > mod, subtract mod", and at this point
830 # we have result - mod written to output buffer, as well as borrow
831 # bit from this subtraction, and if borrow bit is set, we add
832 # modulus back.
833 #
834 # Note that because mod has special form, i.e. consists of
835 # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
836 # assigning borrow bit to one register, %ebp, and its negative
837 # to another, %esi. But we started by calculating %esi...
838
839 &sub ("ebp","esi");
840 &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero
841 &adc (&DWP(4*1,"edi"),"esi");
842 &adc (&DWP(4*2,"edi"),"esi");
843 &adc (&DWP(4*3,"edi"),0);
844 &adc ("eax",0);
845 &adc ("ebx",0);
846 &mov (&DWP(4*4,"edi"),"eax");
847 &adc ("ecx","ebp");
848 &mov (&DWP(4*5,"edi"),"ebx");
849 &adc ("edx","esi");
850 &mov (&DWP(4*6,"edi"),"ecx");
851 &mov (&DWP(4*7,"edi"),"edx");
852
853 &ret ();
854
855&set_label("mul_mont_ialu",16); }
856
857 ########################################
858 # IALU code path suitable for all CPUs.
859 ########################################
860 # stack layout:
861 # +------------------------------------+< %esp
862 # | 8 32-bit temporary words, accessed |
863 # | as circular buffer |
864 # . .
865 # . .
866 # +------------------------------------+< +32
867 # | offloaded destination pointer |
868 # +------------------------------------+
869 # | unused |
870 # +------------------------------------+< +40
871 &sub ("esp",10*4);
872
873 &mov ("eax",&DWP(0*4,"esi")); # a[0]
874 &mov ("ebx",&DWP(0*4,"ebp")); # b[0]
875 &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr
876
877 &mul ("ebx"); # a[0]*b[0]
878 &mov (&DWP(0*4,"esp"),"eax"); # t[0]
879 &mov ("eax",&DWP(1*4,"esi"));
880 &mov ("ecx","edx")
881
882 &mul ("ebx"); # a[1]*b[0]
883 &add ("ecx","eax");
884 &mov ("eax",&DWP(2*4,"esi"));
885 &adc ("edx",0);
886 &mov (&DWP(1*4,"esp"),"ecx"); # t[1]
887 &mov ("ecx","edx");
888
889 &mul ("ebx"); # a[2]*b[0]
890 &add ("ecx","eax");
891 &mov ("eax",&DWP(3*4,"esi"));
892 &adc ("edx",0);
893 &mov (&DWP(2*4,"esp"),"ecx"); # t[2]
894 &mov ("ecx","edx");
895
896 &mul ("ebx"); # a[3]*b[0]
897 &add ("ecx","eax");
898 &mov ("eax",&DWP(4*4,"esi"));
899 &adc ("edx",0);
900 &mov (&DWP(3*4,"esp"),"ecx"); # t[3]
901 &mov ("ecx","edx");
902
903 &mul ("ebx"); # a[4]*b[0]
904 &add ("ecx","eax");
905 &mov ("eax",&DWP(5*4,"esi"));
906 &adc ("edx",0);
907 &mov (&DWP(4*4,"esp"),"ecx"); # t[4]
908 &mov ("ecx","edx");
909
910 &mul ("ebx"); # a[5]*b[0]
911 &add ("ecx","eax");
912 &mov ("eax",&DWP(6*4,"esi"));
913 &adc ("edx",0);
914 &mov (&DWP(5*4,"esp"),"ecx"); # t[5]
915 &mov ("ecx","edx");
916
917 &mul ("ebx"); # a[6]*b[0]
918 &add ("ecx","eax");
919 &mov ("eax",&DWP(7*4,"esi"));
920 &adc ("edx",0);
921 &mov (&DWP(6*4,"esp"),"ecx"); # t[6]
922 &mov ("ecx","edx");
923
924 &xor ("edi","edi"); # initial top-most carry
925 &mul ("ebx"); # a[7]*b[0]
926 &add ("ecx","eax"); # t[7]
927 &mov ("eax",&DWP(0*4,"esp")); # t[0]
928 &adc ("edx",0); # t[8]
929
930for ($i=0;$i<7;$i++) {
931 my $j=$i+1;
932
933 # Reduction iteration is normally performed by accumulating
934 # result of multiplication of modulus by "magic" digit [and
935 # omitting least significant word, which is guaranteed to
936 # be 0], but thanks to special form of modulus and "magic"
937 # digit being equal to least significant word, it can be
938 # performed with additions and subtractions alone. Indeed:
939 #
940 # ffff.0001.0000.0000.0000.ffff.ffff.ffff
941 # * abcd
942 # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
943 #
944 # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
945 # rewrite above as:
946 #
947 # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
948 # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
949 # - abcd.0000.0000.0000.0000.0000.0000.abcd
950 #
951 # or marking redundant operations:
952 #
953 # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
954 # + abcd.0000.abcd.0000.0000.abcd.----.----.----
955 # - abcd.----.----.----.----.----.----.----
956
957 &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
958 &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
959 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
960 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
961 &adc ("ecx",0); # t[7]+=0
962 &adc ("edx","eax"); # t[8]+=t[0]
963 &adc ("edi",0); # top-most carry
964 &mov ("ebx",&DWP($j*4,"ebp")); # b[i]
965 &sub ("ecx","eax"); # t[7]-=t[0]
966 &mov ("eax",&DWP(0*4,"esi")); # a[0]
967 &sbb ("edx",0); # t[8]-=0
968 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
969 &sbb ("edi",0); # top-most carry,
970 # keep in mind that
971 # netto result is
972 # *addition* of value
973 # with (abcd<<32)-abcd
974 # on top, so that
975 # underflow is
976 # impossible, because
977 # (abcd<<32)-abcd
978 # doesn't underflow
979 &mov (&DWP((($i+8)%8)*4,"esp"),"edx");
980
981 &mul ("ebx"); # a[0]*b[i]
982 &add ("eax",&DWP((($j+0)%8)*4,"esp"));
983 &adc ("edx",0);
984 &mov (&DWP((($j+0)%8)*4,"esp"),"eax");
985 &mov ("eax",&DWP(1*4,"esi"));
986 &mov ("ecx","edx")
987
988 &mul ("ebx"); # a[1]*b[i]
989 &add ("ecx",&DWP((($j+1)%8)*4,"esp"));
990 &adc ("edx",0);
991 &add ("ecx","eax");
992 &adc ("edx",0);
993 &mov ("eax",&DWP(2*4,"esi"));
994 &mov (&DWP((($j+1)%8)*4,"esp"),"ecx");
995 &mov ("ecx","edx");
996
997 &mul ("ebx"); # a[2]*b[i]
998 &add ("ecx",&DWP((($j+2)%8)*4,"esp"));
999 &adc ("edx",0);
1000 &add ("ecx","eax");
1001 &adc ("edx",0);
1002 &mov ("eax",&DWP(3*4,"esi"));
1003 &mov (&DWP((($j+2)%8)*4,"esp"),"ecx");
1004 &mov ("ecx","edx");
1005
1006 &mul ("ebx"); # a[3]*b[i]
1007 &add ("ecx",&DWP((($j+3)%8)*4,"esp"));
1008 &adc ("edx",0);
1009 &add ("ecx","eax");
1010 &adc ("edx",0);
1011 &mov ("eax",&DWP(4*4,"esi"));
1012 &mov (&DWP((($j+3)%8)*4,"esp"),"ecx");
1013 &mov ("ecx","edx");
1014
1015 &mul ("ebx"); # a[4]*b[i]
1016 &add ("ecx",&DWP((($j+4)%8)*4,"esp"));
1017 &adc ("edx",0);
1018 &add ("ecx","eax");
1019 &adc ("edx",0);
1020 &mov ("eax",&DWP(5*4,"esi"));
1021 &mov (&DWP((($j+4)%8)*4,"esp"),"ecx");
1022 &mov ("ecx","edx");
1023
1024 &mul ("ebx"); # a[5]*b[i]
1025 &add ("ecx",&DWP((($j+5)%8)*4,"esp"));
1026 &adc ("edx",0);
1027 &add ("ecx","eax");
1028 &adc ("edx",0);
1029 &mov ("eax",&DWP(6*4,"esi"));
1030 &mov (&DWP((($j+5)%8)*4,"esp"),"ecx");
1031 &mov ("ecx","edx");
1032
1033 &mul ("ebx"); # a[6]*b[i]
1034 &add ("ecx",&DWP((($j+6)%8)*4,"esp"));
1035 &adc ("edx",0);
1036 &add ("ecx","eax");
1037 &adc ("edx",0);
1038 &mov ("eax",&DWP(7*4,"esi"));
1039 &mov (&DWP((($j+6)%8)*4,"esp"),"ecx");
1040 &mov ("ecx","edx");
1041
1042 &mul ("ebx"); # a[7]*b[i]
1043 &add ("ecx",&DWP((($j+7)%8)*4,"esp"));
1044 &adc ("edx",0);
1045 &add ("ecx","eax"); # t[7]
1046 &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0]
1047 &adc ("edx","edi"); # t[8]
1048 &mov ("edi",0);
1049 &adc ("edi",0); # top-most carry
1050}
1051 &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr
1052 &xor ("esi","esi");
1053 my $j=$i+1;
1054
1055 # last multiplication-less reduction
1056 &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
1057 &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
1058 &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
1059 &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
1060 &adc ("ecx",0); # t[7]+=0
1061 &adc ("edx","eax"); # t[8]+=t[0]
1062 &adc ("edi",0); # top-most carry
1063 &mov ("ebx",&DWP((($j+1)%8)*4,"esp"));
1064 &sub ("ecx","eax"); # t[7]-=t[0]
1065 &mov ("eax",&DWP((($j+0)%8)*4,"esp"));
1066 &sbb ("edx",0); # t[8]-=0
1067 &mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
1068 &sbb ("edi",0); # top-most carry
1069 &mov (&DWP((($i+8)%8)*4,"esp"),"edx");
1070
1071 # Final step is "if result > mod, subtract mod", but we do it
1072 # "other way around", namely write result - mod to output buffer
1073 # and if subtraction borrowed, add modulus back.
1074
1075 &mov ("ecx",&DWP((($j+2)%8)*4,"esp"));
1076 &sub ("eax",-1);
1077 &mov ("edx",&DWP((($j+3)%8)*4,"esp"));
1078 &sbb ("ebx",-1);
1079 &mov (&DWP(0*4,"ebp"),"eax");
1080 &sbb ("ecx",-1);
1081 &mov (&DWP(1*4,"ebp"),"ebx");
1082 &sbb ("edx",0);
1083 &mov (&DWP(2*4,"ebp"),"ecx");
1084 &mov (&DWP(3*4,"ebp"),"edx");
1085
1086 &mov ("eax",&DWP((($j+4)%8)*4,"esp"));
1087 &mov ("ebx",&DWP((($j+5)%8)*4,"esp"));
1088 &mov ("ecx",&DWP((($j+6)%8)*4,"esp"));
1089 &sbb ("eax",0);
1090 &mov ("edx",&DWP((($j+7)%8)*4,"esp"));
1091 &sbb ("ebx",0);
1092 &sbb ("ecx",1);
1093 &sbb ("edx",-1);
1094 &sbb ("edi",0);
1095
1096 # Note that because mod has special form, i.e. consists of
1097 # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
1098 # assigning borrow bit to one register, %ebp, and its negative
1099 # to another, %esi. But we started by calculating %esi...
1100
1101 &sub ("esi","edi");
1102 &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero
1103 &adc (&DWP(1*4,"ebp"),"edi");
1104 &adc (&DWP(2*4,"ebp"),"edi");
1105 &adc (&DWP(3*4,"ebp"),0);
1106 &adc ("eax",0);
1107 &adc ("ebx",0);
1108 &mov (&DWP(4*4,"ebp"),"eax");
1109 &adc ("ecx","esi");
1110 &mov (&DWP(5*4,"ebp"),"ebx");
1111 &adc ("edx","edi");
1112 &mov (&DWP(6*4,"ebp"),"ecx");
1113 &mov ("edi","ebp"); # fulfill contract
1114 &mov (&DWP(7*4,"ebp"),"edx");
1115
1116 &add ("esp",10*4);
1117 &ret ();
1118&function_end_B("_ecp_nistz256_mul_mont");
1119
1120########################################################################
1121# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi,
1122# int ebp);
1123&function_begin("ecp_nistz256_scatter_w5");
1124 &mov ("edi",&wparam(0));
1125 &mov ("esi",&wparam(1));
1126 &mov ("ebp",&wparam(2));
1127
1128 &lea ("edi",&DWP(128-4,"edi","ebp",4));
1129 &mov ("ebp",96/16);
1130&set_label("scatter_w5_loop");
1131 &mov ("eax",&DWP(0,"esi"));
1132 &mov ("ebx",&DWP(4,"esi"));
1133 &mov ("ecx",&DWP(8,"esi"));
1134 &mov ("edx",&DWP(12,"esi"));
1135 &lea ("esi",&DWP(16,"esi"));
1136 &mov (&DWP(64*0-128,"edi"),"eax");
1137 &mov (&DWP(64*1-128,"edi"),"ebx");
1138 &mov (&DWP(64*2-128,"edi"),"ecx");
1139 &mov (&DWP(64*3-128,"edi"),"edx");
1140 &lea ("edi",&DWP(64*4,"edi"));
1141 &dec ("ebp");
1142 &jnz (&label("scatter_w5_loop"));
1143&function_end("ecp_nistz256_scatter_w5");
1144
1145########################################################################
1146# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi,
1147# int ebp);
1148&function_begin("ecp_nistz256_gather_w5");
1149 &mov ("esi",&wparam(1));
1150 &mov ("ebp",&wparam(2));
1151
1152 &lea ("esi",&DWP(0,"esi","ebp",4));
1153 &neg ("ebp");
1154 &sar ("ebp",31);
1155 &mov ("edi",&wparam(0));
1156 &lea ("esi",&DWP(0,"esi","ebp",4));
1157
1158 for($i=0;$i<24;$i+=4) {
1159 &mov ("eax",&DWP(64*($i+0),"esi"));
1160 &mov ("ebx",&DWP(64*($i+1),"esi"));
1161 &mov ("ecx",&DWP(64*($i+2),"esi"));
1162 &mov ("edx",&DWP(64*($i+3),"esi"));
1163 &and ("eax","ebp");
1164 &and ("ebx","ebp");
1165 &and ("ecx","ebp");
1166 &and ("edx","ebp");
1167 &mov (&DWP(4*($i+0),"edi"),"eax");
1168 &mov (&DWP(4*($i+1),"edi"),"ebx");
1169 &mov (&DWP(4*($i+2),"edi"),"ecx");
1170 &mov (&DWP(4*($i+3),"edi"),"edx");
1171 }
1172&function_end("ecp_nistz256_gather_w5");
1173
1174########################################################################
1175# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi,
1176# int ebp);
1177&function_begin("ecp_nistz256_scatter_w7");
1178 &mov ("edi",&wparam(0));
1179 &mov ("esi",&wparam(1));
1180 &mov ("ebp",&wparam(2));
1181
1182 &lea ("edi",&DWP(0,"edi","ebp"));
1183 &mov ("ebp",64/4);
1184&set_label("scatter_w7_loop");
1185 &mov ("eax",&DWP(0,"esi"));
1186 &lea ("esi",&DWP(4,"esi"));
1187 &mov (&BP(64*0,"edi"),"al");
1188 &mov (&BP(64*1,"edi"),"ah");
1189 &shr ("eax",16);
1190 &mov (&BP(64*2,"edi"),"al");
1191 &mov (&BP(64*3,"edi"),"ah");
1192 &lea ("edi",&DWP(64*4,"edi"));
1193 &dec ("ebp");
1194 &jnz (&label("scatter_w7_loop"));
1195&function_end("ecp_nistz256_scatter_w7");
1196
1197########################################################################
1198# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi,
1199# int ebp);
1200&function_begin("ecp_nistz256_gather_w7");
1201 &mov ("esi",&wparam(1));
1202 &mov ("ebp",&wparam(2));
1203
1204 &add ("esi","ebp");
1205 &neg ("ebp"),
1206 &sar ("ebp",31);
1207 &mov ("edi",&wparam(0));
1208 &lea ("esi",&DWP(0,"esi","ebp"));
1209
1210 for($i=0;$i<64;$i+=4) {
1211 &movz ("eax",&BP(64*($i+0),"esi"));
1212 &movz ("ebx",&BP(64*($i+1),"esi"));
1213 &movz ("ecx",&BP(64*($i+2),"esi"));
1214 &and ("eax","ebp");
1215 &movz ("edx",&BP(64*($i+3),"esi"));
1216 &and ("ebx","ebp");
1217 &mov (&BP($i+0,"edi"),"al");
1218 &and ("ecx","ebp");
1219 &mov (&BP($i+1,"edi"),"bl");
1220 &and ("edx","ebp");
1221 &mov (&BP($i+2,"edi"),"cl");
1222 &mov (&BP($i+3,"edi"),"dl");
1223 }
1224&function_end("ecp_nistz256_gather_w7");
1225
1226########################################################################
1227# following subroutines are "literal" implementation of those found in
1228# ecp_nistz256.c
1229#
1230########################################################################
1231# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
1232#
1233&static_label("point_double_shortcut");
1234&function_begin("ecp_nistz256_point_double");
1235{ my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
1236
1237 &mov ("esi",&wparam(1));
1238
1239 # above map() describes stack layout with 5 temporary
1240 # 256-bit vectors on top, then we take extra word for
1241 # OPENSSL_ia32cap_P copy.
1242 &stack_push(8*5+1);
1243 if ($sse2) {
1244 &call ("_picup_eax");
1245 &set_label("pic");
1246 &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1247 &mov ("ebp",&DWP(0,"edx")); }
1248
1249&set_label("point_double_shortcut");
1250 &mov ("eax",&DWP(0,"esi")); # copy in_x
1251 &mov ("ebx",&DWP(4,"esi"));
1252 &mov ("ecx",&DWP(8,"esi"));
1253 &mov ("edx",&DWP(12,"esi"));
1254 &mov (&DWP($in_x+0,"esp"),"eax");
1255 &mov (&DWP($in_x+4,"esp"),"ebx");
1256 &mov (&DWP($in_x+8,"esp"),"ecx");
1257 &mov (&DWP($in_x+12,"esp"),"edx");
1258 &mov ("eax",&DWP(16,"esi"));
1259 &mov ("ebx",&DWP(20,"esi"));
1260 &mov ("ecx",&DWP(24,"esi"));
1261 &mov ("edx",&DWP(28,"esi"));
1262 &mov (&DWP($in_x+16,"esp"),"eax");
1263 &mov (&DWP($in_x+20,"esp"),"ebx");
1264 &mov (&DWP($in_x+24,"esp"),"ecx");
1265 &mov (&DWP($in_x+28,"esp"),"edx");
1266 &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy
1267
1268 &lea ("ebp",&DWP(32,"esi"));
1269 &lea ("esi",&DWP(32,"esi"));
1270 &lea ("edi",&DWP($S,"esp"));
1271 &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y);
1272
1273 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1274 &mov ("esi",64);
1275 &add ("esi",&wparam(1));
1276 &lea ("edi",&DWP($Zsqr,"esp"));
1277 &mov ("ebp","esi");
1278 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z);
1279
1280 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1281 &lea ("esi",&DWP($S,"esp"));
1282 &lea ("ebp",&DWP($S,"esp"));
1283 &lea ("edi",&DWP($S,"esp"));
1284 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S);
1285
1286 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1287 &mov ("ebp",&wparam(1));
1288 &lea ("esi",&DWP(32,"ebp"));
1289 &lea ("ebp",&DWP(64,"ebp"));
1290 &lea ("edi",&DWP($tmp0,"esp"));
1291 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y);
1292
1293 &lea ("esi",&DWP($in_x,"esp"));
1294 &lea ("ebp",&DWP($Zsqr,"esp"));
1295 &lea ("edi",&DWP($M,"esp"));
1296 &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr);
1297
1298 &mov ("edi",64);
1299 &lea ("esi",&DWP($tmp0,"esp"));
1300 &lea ("ebp",&DWP($tmp0,"esp"));
1301 &add ("edi",&wparam(0));
1302 &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0);
1303
1304 &lea ("esi",&DWP($in_x,"esp"));
1305 &lea ("ebp",&DWP($Zsqr,"esp"));
1306 &lea ("edi",&DWP($Zsqr,"esp"));
1307 &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr);
1308
1309 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1310 &lea ("esi",&DWP($S,"esp"));
1311 &lea ("ebp",&DWP($S,"esp"));
1312 &lea ("edi",&DWP($tmp0,"esp"));
1313 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S);
1314
1315 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1316 &lea ("esi",&DWP($M,"esp"));
1317 &lea ("ebp",&DWP($Zsqr,"esp"));
1318 &lea ("edi",&DWP($M,"esp"));
1319 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr);
1320
1321 &mov ("edi",32);
1322 &lea ("esi",&DWP($tmp0,"esp"));
1323 &add ("edi",&wparam(0));
1324 &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0);
1325
1326 &lea ("esi",&DWP($M,"esp"));
1327 &lea ("ebp",&DWP($M,"esp"));
1328 &lea ("edi",&DWP($tmp0,"esp"));
1329 &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M);
1330
1331 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1332 &lea ("esi",&DWP($in_x,"esp"));
1333 &lea ("ebp",&DWP($S,"esp"));
1334 &lea ("edi",&DWP($S,"esp"));
1335 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x);
1336
1337 &lea ("esi",&DWP($tmp0,"esp"));
1338 &lea ("ebp",&DWP($M,"esp"));
1339 &lea ("edi",&DWP($M,"esp"));
1340 &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M);
1341
1342 &lea ("esi",&DWP($S,"esp"));
1343 &lea ("ebp",&DWP($S,"esp"));
1344 &lea ("edi",&DWP($tmp0,"esp"));
1345 &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S);
1346
1347 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1348 &lea ("esi",&DWP($M,"esp"));
1349 &lea ("ebp",&DWP($M,"esp"));
1350 &mov ("edi",&wparam(0));
1351 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M);
1352
1353 &mov ("esi","edi"); # %edi is still res_x here
1354 &lea ("ebp",&DWP($tmp0,"esp"));
1355 &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0);
1356
1357 &lea ("esi",&DWP($S,"esp"));
1358 &mov ("ebp","edi"); # %edi is still res_x
1359 &lea ("edi",&DWP($S,"esp"));
1360 &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x);
1361
1362 &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
1363 &mov ("esi","edi"); # %edi is still &S
1364 &lea ("ebp",&DWP($M,"esp"));
1365 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M);
1366
1367 &mov ("ebp",32);
1368 &lea ("esi",&DWP($S,"esp"));
1369 &add ("ebp",&wparam(0));
1370 &mov ("edi","ebp");
1371 &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y);
1372
1373 &stack_pop(8*5+1);
1374} &function_end("ecp_nistz256_point_double");
1375
1376########################################################################
1377# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
1378# const P256_POINT *in2);
1379&function_begin("ecp_nistz256_point_add");
1380{ my ($res_x,$res_y,$res_z,
1381 $in1_x,$in1_y,$in1_z,
1382 $in2_x,$in2_y,$in2_z,
1383 $H,$Hsqr,$R,$Rsqr,$Hcub,
1384 $U1,$U2,$S1,$S2)=map(32*$_,(0..17));
1385 my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
1386
1387 &mov ("esi",&wparam(2));
1388
1389 # above map() describes stack layout with 18 temporary
1390 # 256-bit vectors on top, then we take extra words for
1391 # ~in1infty, ~in2infty, result of check for zero and
1392 # OPENSSL_ia32cap_P copy. [one unused word for padding]
1393 &stack_push(8*18+5);
1394 if ($sse2) {
1395 &call ("_picup_eax");
1396 &set_label("pic");
1397 &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1398 &mov ("ebp",&DWP(0,"edx")); }
1399
1400 &lea ("edi",&DWP($in2_x,"esp"));
1401 for($i=0;$i<96;$i+=16) {
1402 &mov ("eax",&DWP($i+0,"esi")); # copy in2
1403 &mov ("ebx",&DWP($i+4,"esi"));
1404 &mov ("ecx",&DWP($i+8,"esi"));
1405 &mov ("edx",&DWP($i+12,"esi"));
1406 &mov (&DWP($i+0,"edi"),"eax");
1407 &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0);
1408 &mov ("ebp","eax") if ($i==64);
1409 &or ("ebp","eax") if ($i>64);
1410 &mov (&DWP($i+4,"edi"),"ebx");
1411 &or ("ebp","ebx") if ($i>=64);
1412 &mov (&DWP($i+8,"edi"),"ecx");
1413 &or ("ebp","ecx") if ($i>=64);
1414 &mov (&DWP($i+12,"edi"),"edx");
1415 &or ("ebp","edx") if ($i>=64);
1416 }
1417 &xor ("eax","eax");
1418 &mov ("esi",&wparam(1));
1419 &sub ("eax","ebp");
1420 &or ("ebp","eax");
1421 &sar ("ebp",31);
1422 &mov (&DWP(32*18+4,"esp"),"ebp"); # ~in2infty
1423
1424 &lea ("edi",&DWP($in1_x,"esp"));
1425 for($i=0;$i<96;$i+=16) {
1426 &mov ("eax",&DWP($i+0,"esi")); # copy in1
1427 &mov ("ebx",&DWP($i+4,"esi"));
1428 &mov ("ecx",&DWP($i+8,"esi"));
1429 &mov ("edx",&DWP($i+12,"esi"));
1430 &mov (&DWP($i+0,"edi"),"eax");
1431 &mov ("ebp","eax") if ($i==64);
1432 &or ("ebp","eax") if ($i>64);
1433 &mov (&DWP($i+4,"edi"),"ebx");
1434 &or ("ebp","ebx") if ($i>=64);
1435 &mov (&DWP($i+8,"edi"),"ecx");
1436 &or ("ebp","ecx") if ($i>=64);
1437 &mov (&DWP($i+12,"edi"),"edx");
1438 &or ("ebp","edx") if ($i>=64);
1439 }
1440 &xor ("eax","eax");
1441 &sub ("eax","ebp");
1442 &or ("ebp","eax");
1443 &sar ("ebp",31);
1444 &mov (&DWP(32*18+0,"esp"),"ebp"); # ~in1infty
1445
1446 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1447 &lea ("esi",&DWP($in2_z,"esp"));
1448 &lea ("ebp",&DWP($in2_z,"esp"));
1449 &lea ("edi",&DWP($Z2sqr,"esp"));
1450 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z);
1451
1452 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1453 &lea ("esi",&DWP($in1_z,"esp"));
1454 &lea ("ebp",&DWP($in1_z,"esp"));
1455 &lea ("edi",&DWP($Z1sqr,"esp"));
1456 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
1457
1458 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1459 &lea ("esi",&DWP($Z2sqr,"esp"));
1460 &lea ("ebp",&DWP($in2_z,"esp"));
1461 &lea ("edi",&DWP($S1,"esp"));
1462 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z);
1463
1464 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1465 &lea ("esi",&DWP($Z1sqr,"esp"));
1466 &lea ("ebp",&DWP($in1_z,"esp"));
1467 &lea ("edi",&DWP($S2,"esp"));
1468 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
1469
1470 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1471 &lea ("esi",&DWP($in1_y,"esp"));
1472 &lea ("ebp",&DWP($S1,"esp"));
1473 &lea ("edi",&DWP($S1,"esp"));
1474 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y);
1475
1476 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1477 &lea ("esi",&DWP($in2_y,"esp"));
1478 &lea ("ebp",&DWP($S2,"esp"));
1479 &lea ("edi",&DWP($S2,"esp"));
1480 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
1481
1482 &lea ("esi",&DWP($S2,"esp"));
1483 &lea ("ebp",&DWP($S1,"esp"));
1484 &lea ("edi",&DWP($R,"esp"));
1485 &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1);
1486
1487 &or ("ebx","eax"); # see if result is zero
1488 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1489 &or ("ebx","ecx");
1490 &or ("ebx","edx");
1491 &or ("ebx",&DWP(0,"edi"));
1492 &or ("ebx",&DWP(4,"edi"));
1493 &lea ("esi",&DWP($in1_x,"esp"));
1494 &or ("ebx",&DWP(8,"edi"));
1495 &lea ("ebp",&DWP($Z2sqr,"esp"));
1496 &or ("ebx",&DWP(12,"edi"));
1497 &lea ("edi",&DWP($U1,"esp"));
1498 &mov (&DWP(32*18+8,"esp"),"ebx");
1499
1500 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr);
1501
1502 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1503 &lea ("esi",&DWP($in2_x,"esp"));
1504 &lea ("ebp",&DWP($Z1sqr,"esp"));
1505 &lea ("edi",&DWP($U2,"esp"));
1506 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr);
1507
1508 &lea ("esi",&DWP($U2,"esp"));
1509 &lea ("ebp",&DWP($U1,"esp"));
1510 &lea ("edi",&DWP($H,"esp"));
1511 &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1);
1512
1513 &or ("eax","ebx"); # see if result is zero
1514 &or ("eax","ecx");
1515 &or ("eax","edx");
1516 &or ("eax",&DWP(0,"edi"));
1517 &or ("eax",&DWP(4,"edi"));
1518 &or ("eax",&DWP(8,"edi"));
1519 &or ("eax",&DWP(12,"edi")); # ~is_equal(U1,U2)
1520
1521 &mov ("ebx",&DWP(32*18+0,"esp")); # ~in1infty
1522 &not ("ebx"); # -1/0 -> 0/-1
1523 &or ("eax","ebx");
1524 &mov ("ebx",&DWP(32*18+4,"esp")); # ~in2infty
1525 &not ("ebx"); # -1/0 -> 0/-1
1526 &or ("eax","ebx");
1527 &or ("eax",&DWP(32*18+8,"esp")); # ~is_equal(S1,S2)
1528
1529 # if (~is_equal(U1,U2) | in1infty | in2infty | ~is_equal(S1,S2))
1530 &data_byte(0x3e); # predict taken
1531 &jnz (&label("add_proceed"));
1532
1533&set_label("add_double",16);
1534 &mov ("esi",&wparam(1));
1535 &mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1536 &add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes
1537 &jmp (&label("point_double_shortcut"));
1538
1539&set_label("add_proceed",16);
1540 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1541 &lea ("esi",&DWP($R,"esp"));
1542 &lea ("ebp",&DWP($R,"esp"));
1543 &lea ("edi",&DWP($Rsqr,"esp"));
1544 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
1545
1546 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1547 &lea ("esi",&DWP($H,"esp"));
1548 &lea ("ebp",&DWP($in1_z,"esp"));
1549 &lea ("edi",&DWP($res_z,"esp"));
1550 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
1551
1552 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1553 &lea ("esi",&DWP($H,"esp"));
1554 &lea ("ebp",&DWP($H,"esp"));
1555 &lea ("edi",&DWP($Hsqr,"esp"));
1556 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
1557
1558 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1559 &lea ("esi",&DWP($in2_z,"esp"));
1560 &lea ("ebp",&DWP($res_z,"esp"));
1561 &lea ("edi",&DWP($res_z,"esp"));
1562 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z);
1563
1564 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1565 &lea ("esi",&DWP($Hsqr,"esp"));
1566 &lea ("ebp",&DWP($U1,"esp"));
1567 &lea ("edi",&DWP($U2,"esp"));
1568 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr);
1569
1570 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1571 &lea ("esi",&DWP($H,"esp"));
1572 &lea ("ebp",&DWP($Hsqr,"esp"));
1573 &lea ("edi",&DWP($Hcub,"esp"));
1574 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
1575
1576 &lea ("esi",&DWP($U2,"esp"));
1577 &lea ("ebp",&DWP($U2,"esp"));
1578 &lea ("edi",&DWP($Hsqr,"esp"));
1579 &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
1580
1581 &lea ("esi",&DWP($Rsqr,"esp"));
1582 &lea ("ebp",&DWP($Hsqr,"esp"));
1583 &lea ("edi",&DWP($res_x,"esp"));
1584 &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
1585
1586 &lea ("esi",&DWP($res_x,"esp"));
1587 &lea ("ebp",&DWP($Hcub,"esp"));
1588 &lea ("edi",&DWP($res_x,"esp"));
1589 &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
1590
1591 &lea ("esi",&DWP($U2,"esp"));
1592 &lea ("ebp",&DWP($res_x,"esp"));
1593 &lea ("edi",&DWP($res_y,"esp"));
1594 &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
1595
1596 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1597 &lea ("esi",&DWP($Hcub,"esp"));
1598 &lea ("ebp",&DWP($S1,"esp"));
1599 &lea ("edi",&DWP($S2,"esp"));
1600 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub);
1601
1602 &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
1603 &lea ("esi",&DWP($R,"esp"));
1604 &lea ("ebp",&DWP($res_y,"esp"));
1605 &lea ("edi",&DWP($res_y,"esp"));
1606 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y);
1607
1608 &lea ("esi",&DWP($res_y,"esp"));
1609 &lea ("ebp",&DWP($S2,"esp"));
1610 &lea ("edi",&DWP($res_y,"esp"));
1611 &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
1612
1613 &mov ("ebp",&DWP(32*18+0,"esp")); # ~in1infty
1614 &mov ("esi",&DWP(32*18+4,"esp")); # ~in2infty
1615 &mov ("edi",&wparam(0));
1616 &mov ("edx","ebp");
1617 &not ("ebp");
1618 &and ("edx","esi"); # ~in1infty & ~in2infty
1619 &and ("ebp","esi"); # in1infty & ~in2infty
1620 &not ("esi"); # in2infty
1621
1622 ########################################
1623 # conditional moves
1624 for($i=64;$i<96;$i+=4) {
1625 &mov ("eax","edx"); # ~in1infty & ~in2infty
1626 &and ("eax",&DWP($res_x+$i,"esp"));
1627 &mov ("ebx","ebp"); # in1infty & ~in2infty
1628 &and ("ebx",&DWP($in2_x+$i,"esp"));
1629 &mov ("ecx","esi"); # in2infty
1630 &and ("ecx",&DWP($in1_x+$i,"esp"));
1631 &or ("eax","ebx");
1632 &or ("eax","ecx");
1633 &mov (&DWP($i,"edi"),"eax");
1634 }
1635 for($i=0;$i<64;$i+=4) {
1636 &mov ("eax","edx"); # ~in1infty & ~in2infty
1637 &and ("eax",&DWP($res_x+$i,"esp"));
1638 &mov ("ebx","ebp"); # in1infty & ~in2infty
1639 &and ("ebx",&DWP($in2_x+$i,"esp"));
1640 &mov ("ecx","esi"); # in2infty
1641 &and ("ecx",&DWP($in1_x+$i,"esp"));
1642 &or ("eax","ebx");
1643 &or ("eax","ecx");
1644 &mov (&DWP($i,"edi"),"eax");
1645 }
1646 &set_label("add_done");
1647 &stack_pop(8*18+5);
1648} &function_end("ecp_nistz256_point_add");
1649
1650########################################################################
1651# void ecp_nistz256_point_add_affine(P256_POINT *out,
1652# const P256_POINT *in1,
1653# const P256_POINT_AFFINE *in2);
1654&function_begin("ecp_nistz256_point_add_affine");
1655{
1656 my ($res_x,$res_y,$res_z,
1657 $in1_x,$in1_y,$in1_z,
1658 $in2_x,$in2_y,
1659 $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
1660 my $Z1sqr = $S2;
1661 my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);
1662
1663 &mov ("esi",&wparam(1));
1664
1665 # above map() describes stack layout with 15 temporary
1666 # 256-bit vectors on top, then we take extra words for
1667 # ~in1infty, ~in2infty, and OPENSSL_ia32cap_P copy.
1668 &stack_push(8*15+3);
1669 if ($sse2) {
1670 &call ("_picup_eax");
1671 &set_label("pic");
1672 &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
1673 &mov ("ebp",&DWP(0,"edx")); }
1674
1675 &lea ("edi",&DWP($in1_x,"esp"));
1676 for($i=0;$i<96;$i+=16) {
1677 &mov ("eax",&DWP($i+0,"esi")); # copy in1
1678 &mov ("ebx",&DWP($i+4,"esi"));
1679 &mov ("ecx",&DWP($i+8,"esi"));
1680 &mov ("edx",&DWP($i+12,"esi"));
1681 &mov (&DWP($i+0,"edi"),"eax");
1682 &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0);
1683 &mov ("ebp","eax") if ($i==64);
1684 &or ("ebp","eax") if ($i>64);
1685 &mov (&DWP($i+4,"edi"),"ebx");
1686 &or ("ebp","ebx") if ($i>=64);
1687 &mov (&DWP($i+8,"edi"),"ecx");
1688 &or ("ebp","ecx") if ($i>=64);
1689 &mov (&DWP($i+12,"edi"),"edx");
1690 &or ("ebp","edx") if ($i>=64);
1691 }
1692 &xor ("eax","eax");
1693 &mov ("esi",&wparam(2));
1694 &sub ("eax","ebp");
1695 &or ("ebp","eax");
1696 &sar ("ebp",31);
1697 &mov (&DWP(32*15+0,"esp"),"ebp"); # ~in1infty
1698
1699 &lea ("edi",&DWP($in2_x,"esp"));
1700 for($i=0;$i<64;$i+=16) {
1701 &mov ("eax",&DWP($i+0,"esi")); # copy in2
1702 &mov ("ebx",&DWP($i+4,"esi"));
1703 &mov ("ecx",&DWP($i+8,"esi"));
1704 &mov ("edx",&DWP($i+12,"esi"));
1705 &mov (&DWP($i+0,"edi"),"eax");
1706 &mov ("ebp","eax") if ($i==0);
1707 &or ("ebp","eax") if ($i!=0);
1708 &mov (&DWP($i+4,"edi"),"ebx");
1709 &or ("ebp","ebx");
1710 &mov (&DWP($i+8,"edi"),"ecx");
1711 &or ("ebp","ecx");
1712 &mov (&DWP($i+12,"edi"),"edx");
1713 &or ("ebp","edx");
1714 }
1715 &xor ("ebx","ebx");
1716 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1717 &sub ("ebx","ebp");
1718 &lea ("esi",&DWP($in1_z,"esp"));
1719 &or ("ebx","ebp");
1720 &lea ("ebp",&DWP($in1_z,"esp"));
1721 &sar ("ebx",31);
1722 &lea ("edi",&DWP($Z1sqr,"esp"));
1723 &mov (&DWP(32*15+4,"esp"),"ebx"); # ~in2infty
1724
1725 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
1726
1727 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1728 &lea ("esi",&DWP($in2_x,"esp"));
1729 &mov ("ebp","edi"); # %esi is stull &Z1sqr
1730 &lea ("edi",&DWP($U2,"esp"));
1731 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x);
1732
1733 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1734 &lea ("esi",&DWP($in1_z,"esp"));
1735 &lea ("ebp",&DWP($Z1sqr,"esp"));
1736 &lea ("edi",&DWP($S2,"esp"));
1737 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
1738
1739 &lea ("esi",&DWP($U2,"esp"));
1740 &lea ("ebp",&DWP($in1_x,"esp"));
1741 &lea ("edi",&DWP($H,"esp"));
1742 &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x);
1743
1744 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1745 &lea ("esi",&DWP($in2_y,"esp"));
1746 &lea ("ebp",&DWP($S2,"esp"));
1747 &lea ("edi",&DWP($S2,"esp"));
1748 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
1749
1750 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1751 &lea ("esi",&DWP($in1_z,"esp"));
1752 &lea ("ebp",&DWP($H,"esp"));
1753 &lea ("edi",&DWP($res_z,"esp"));
1754 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
1755
1756 &lea ("esi",&DWP($S2,"esp"));
1757 &lea ("ebp",&DWP($in1_y,"esp"));
1758 &lea ("edi",&DWP($R,"esp"));
1759 &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y);
1760
1761 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1762 &lea ("esi",&DWP($H,"esp"));
1763 &lea ("ebp",&DWP($H,"esp"));
1764 &lea ("edi",&DWP($Hsqr,"esp"));
1765 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
1766
1767 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1768 &lea ("esi",&DWP($R,"esp"));
1769 &lea ("ebp",&DWP($R,"esp"));
1770 &lea ("edi",&DWP($Rsqr,"esp"));
1771 &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
1772
1773 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1774 &lea ("esi",&DWP($in1_x,"esp"));
1775 &lea ("ebp",&DWP($Hsqr,"esp"));
1776 &lea ("edi",&DWP($U2,"esp"));
1777 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr);
1778
1779 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1780 &lea ("esi",&DWP($H,"esp"));
1781 &lea ("ebp",&DWP($Hsqr,"esp"));
1782 &lea ("edi",&DWP($Hcub,"esp"));
1783 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
1784
1785 &lea ("esi",&DWP($U2,"esp"));
1786 &lea ("ebp",&DWP($U2,"esp"));
1787 &lea ("edi",&DWP($Hsqr,"esp"));
1788 &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
1789
1790 &lea ("esi",&DWP($Rsqr,"esp"));
1791 &lea ("ebp",&DWP($Hsqr,"esp"));
1792 &lea ("edi",&DWP($res_x,"esp"));
1793 &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
1794
1795 &lea ("esi",&DWP($res_x,"esp"));
1796 &lea ("ebp",&DWP($Hcub,"esp"));
1797 &lea ("edi",&DWP($res_x,"esp"));
1798 &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
1799
1800 &lea ("esi",&DWP($U2,"esp"));
1801 &lea ("ebp",&DWP($res_x,"esp"));
1802 &lea ("edi",&DWP($res_y,"esp"));
1803 &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
1804
1805 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1806 &lea ("esi",&DWP($Hcub,"esp"));
1807 &lea ("ebp",&DWP($in1_y,"esp"));
1808 &lea ("edi",&DWP($S2,"esp"));
1809 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y);
1810
1811 &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
1812 &lea ("esi",&DWP($R,"esp"));
1813 &lea ("ebp",&DWP($res_y,"esp"));
1814 &lea ("edi",&DWP($res_y,"esp"));
1815 &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R);
1816
1817 &lea ("esi",&DWP($res_y,"esp"));
1818 &lea ("ebp",&DWP($S2,"esp"));
1819 &lea ("edi",&DWP($res_y,"esp"));
1820 &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
1821
1822 &mov ("ebp",&DWP(32*15+0,"esp")); # ~in1infty
1823 &mov ("esi",&DWP(32*15+4,"esp")); # ~in2infty
1824 &mov ("edi",&wparam(0));
1825 &mov ("edx","ebp");
1826 &not ("ebp");
1827 &and ("edx","esi"); # ~in1infty & ~in2infty
1828 &and ("ebp","esi"); # in1infty & ~in2infty
1829 &not ("esi"); # in2infty
1830
1831 ########################################
1832 # conditional moves
1833 for($i=64;$i<96;$i+=4) {
1834 my $one=@ONE_mont[($i-64)/4];
1835
1836 &mov ("eax","edx");
1837 &and ("eax",&DWP($res_x+$i,"esp"));
1838 &mov ("ebx","ebp") if ($one && $one!=-1);
1839 &and ("ebx",$one) if ($one && $one!=-1);
1840 &mov ("ecx","esi");
1841 &and ("ecx",&DWP($in1_x+$i,"esp"));
1842 &or ("eax",$one==-1?"ebp":"ebx") if ($one);
1843 &or ("eax","ecx");
1844 &mov (&DWP($i,"edi"),"eax");
1845 }
1846 for($i=0;$i<64;$i+=4) {
1847 &mov ("eax","edx"); # ~in1infty & ~in2infty
1848 &and ("eax",&DWP($res_x+$i,"esp"));
1849 &mov ("ebx","ebp"); # in1infty & ~in2infty
1850 &and ("ebx",&DWP($in2_x+$i,"esp"));
1851 &mov ("ecx","esi"); # in2infty
1852 &and ("ecx",&DWP($in1_x+$i,"esp"));
1853 &or ("eax","ebx");
1854 &or ("eax","ecx");
1855 &mov (&DWP($i,"edi"),"eax");
1856 }
1857 &stack_pop(8*15+3);
1858} &function_end("ecp_nistz256_point_add_affine");
1859
1860&asm_finish();
1861
1862close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette