VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/ec/ec_mult.c@ 91772

Last change on this file since 91772 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

File size: 30.6 KB
Line 
1/*
2 * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11#include <string.h>
12#include <openssl/err.h>
13
14#include "internal/cryptlib.h"
15#include "crypto/bn.h"
16#include "ec_local.h"
17#include "internal/refcount.h"
18
19/*
20 * This file implements the wNAF-based interleaving multi-exponentiation method
21 * Formerly at:
22 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
23 * You might now find it here:
24 * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
25 * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
26 * For multiplication with precomputation, we use wNAF splitting, formerly at:
27 * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
28 */
29
30/* structure for precomputed multiples of the generator */
31struct ec_pre_comp_st {
32 const EC_GROUP *group; /* parent EC_GROUP object */
33 size_t blocksize; /* block size for wNAF splitting */
34 size_t numblocks; /* max. number of blocks for which we have
35 * precomputation */
36 size_t w; /* window size */
37 EC_POINT **points; /* array with pre-calculated multiples of
38 * generator: 'num' pointers to EC_POINT
39 * objects followed by a NULL */
40 size_t num; /* numblocks * 2^(w-1) */
41 CRYPTO_REF_COUNT references;
42 CRYPTO_RWLOCK *lock;
43};
44
45static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
46{
47 EC_PRE_COMP *ret = NULL;
48
49 if (!group)
50 return NULL;
51
52 ret = OPENSSL_zalloc(sizeof(*ret));
53 if (ret == NULL) {
54 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
55 return ret;
56 }
57
58 ret->group = group;
59 ret->blocksize = 8; /* default */
60 ret->w = 4; /* default */
61 ret->references = 1;
62
63 ret->lock = CRYPTO_THREAD_lock_new();
64 if (ret->lock == NULL) {
65 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
66 OPENSSL_free(ret);
67 return NULL;
68 }
69 return ret;
70}
71
72EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
73{
74 int i;
75 if (pre != NULL)
76 CRYPTO_UP_REF(&pre->references, &i, pre->lock);
77 return pre;
78}
79
80void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
81{
82 int i;
83
84 if (pre == NULL)
85 return;
86
87 CRYPTO_DOWN_REF(&pre->references, &i, pre->lock);
88 REF_PRINT_COUNT("EC_ec", pre);
89 if (i > 0)
90 return;
91 REF_ASSERT_ISNT(i < 0);
92
93 if (pre->points != NULL) {
94 EC_POINT **pts;
95
96 for (pts = pre->points; *pts != NULL; pts++)
97 EC_POINT_free(*pts);
98 OPENSSL_free(pre->points);
99 }
100 CRYPTO_THREAD_lock_free(pre->lock);
101 OPENSSL_free(pre);
102}
103
104#define EC_POINT_BN_set_flags(P, flags) do { \
105 BN_set_flags((P)->X, (flags)); \
106 BN_set_flags((P)->Y, (flags)); \
107 BN_set_flags((P)->Z, (flags)); \
108} while(0)
109
110/*-
111 * This functions computes a single point multiplication over the EC group,
112 * using, at a high level, a Montgomery ladder with conditional swaps, with
113 * various timing attack defenses.
114 *
115 * It performs either a fixed point multiplication
116 * (scalar * generator)
117 * when point is NULL, or a variable point multiplication
118 * (scalar * point)
119 * when point is not NULL.
120 *
121 * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
122 * constant time bets are off (where n is the cardinality of the EC group).
123 *
124 * This function expects `group->order` and `group->cardinality` to be well
125 * defined and non-zero: it fails with an error code otherwise.
126 *
127 * NB: This says nothing about the constant-timeness of the ladder step
128 * implementation (i.e., the default implementation is based on EC_POINT_add and
129 * EC_POINT_dbl, which of course are not constant time themselves) or the
130 * underlying multiprecision arithmetic.
131 *
132 * The product is stored in `r`.
133 *
134 * This is an internal function: callers are in charge of ensuring that the
135 * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
136 *
137 * Returns 1 on success, 0 otherwise.
138 */
139int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
140 const BIGNUM *scalar, const EC_POINT *point,
141 BN_CTX *ctx)
142{
143 int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
144 EC_POINT *p = NULL;
145 EC_POINT *s = NULL;
146 BIGNUM *k = NULL;
147 BIGNUM *lambda = NULL;
148 BIGNUM *cardinality = NULL;
149 int ret = 0;
150
151 /* early exit if the input point is the point at infinity */
152 if (point != NULL && EC_POINT_is_at_infinity(group, point))
153 return EC_POINT_set_to_infinity(group, r);
154
155 if (BN_is_zero(group->order)) {
156 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER);
157 return 0;
158 }
159 if (BN_is_zero(group->cofactor)) {
160 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR);
161 return 0;
162 }
163
164 BN_CTX_start(ctx);
165
166 if (((p = EC_POINT_new(group)) == NULL)
167 || ((s = EC_POINT_new(group)) == NULL)) {
168 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
169 goto err;
170 }
171
172 if (point == NULL) {
173 if (!EC_POINT_copy(p, group->generator)) {
174 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
175 goto err;
176 }
177 } else {
178 if (!EC_POINT_copy(p, point)) {
179 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
180 goto err;
181 }
182 }
183
184 EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
185 EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
186 EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
187
188 cardinality = BN_CTX_get(ctx);
189 lambda = BN_CTX_get(ctx);
190 k = BN_CTX_get(ctx);
191 if (k == NULL) {
192 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
193 goto err;
194 }
195
196 if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
197 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
198 goto err;
199 }
200
201 /*
202 * Group cardinalities are often on a word boundary.
203 * So when we pad the scalar, some timing diff might
204 * pop if it needs to be expanded due to carries.
205 * So expand ahead of time.
206 */
207 cardinality_bits = BN_num_bits(cardinality);
208 group_top = bn_get_top(cardinality);
209 if ((bn_wexpand(k, group_top + 2) == NULL)
210 || (bn_wexpand(lambda, group_top + 2) == NULL)) {
211 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
212 goto err;
213 }
214
215 if (!BN_copy(k, scalar)) {
216 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
217 goto err;
218 }
219
220 BN_set_flags(k, BN_FLG_CONSTTIME);
221
222 if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
223 /*-
224 * this is an unusual input, and we don't guarantee
225 * constant-timeness
226 */
227 if (!BN_nnmod(k, k, cardinality, ctx)) {
228 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
229 goto err;
230 }
231 }
232
233 if (!BN_add(lambda, k, cardinality)) {
234 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
235 goto err;
236 }
237 BN_set_flags(lambda, BN_FLG_CONSTTIME);
238 if (!BN_add(k, lambda, cardinality)) {
239 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
240 goto err;
241 }
242 /*
243 * lambda := scalar + cardinality
244 * k := scalar + 2*cardinality
245 */
246 kbit = BN_is_bit_set(lambda, cardinality_bits);
247 BN_consttime_swap(kbit, k, lambda, group_top + 2);
248
249 group_top = bn_get_top(group->field);
250 if ((bn_wexpand(s->X, group_top) == NULL)
251 || (bn_wexpand(s->Y, group_top) == NULL)
252 || (bn_wexpand(s->Z, group_top) == NULL)
253 || (bn_wexpand(r->X, group_top) == NULL)
254 || (bn_wexpand(r->Y, group_top) == NULL)
255 || (bn_wexpand(r->Z, group_top) == NULL)
256 || (bn_wexpand(p->X, group_top) == NULL)
257 || (bn_wexpand(p->Y, group_top) == NULL)
258 || (bn_wexpand(p->Z, group_top) == NULL)) {
259 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
260 goto err;
261 }
262
263 /* ensure input point is in affine coords for ladder step efficiency */
264 if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) {
265 ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
266 goto err;
267 }
268
269 /* Initialize the Montgomery ladder */
270 if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
271 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
272 goto err;
273 }
274
275 /* top bit is a 1, in a fixed pos */
276 pbit = 1;
277
278#define EC_POINT_CSWAP(c, a, b, w, t) do { \
279 BN_consttime_swap(c, (a)->X, (b)->X, w); \
280 BN_consttime_swap(c, (a)->Y, (b)->Y, w); \
281 BN_consttime_swap(c, (a)->Z, (b)->Z, w); \
282 t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
283 (a)->Z_is_one ^= (t); \
284 (b)->Z_is_one ^= (t); \
285} while(0)
286
287 /*-
288 * The ladder step, with branches, is
289 *
290 * k[i] == 0: S = add(R, S), R = dbl(R)
291 * k[i] == 1: R = add(S, R), S = dbl(S)
292 *
293 * Swapping R, S conditionally on k[i] leaves you with state
294 *
295 * k[i] == 0: T, U = R, S
296 * k[i] == 1: T, U = S, R
297 *
298 * Then perform the ECC ops.
299 *
300 * U = add(T, U)
301 * T = dbl(T)
302 *
303 * Which leaves you with state
304 *
305 * k[i] == 0: U = add(R, S), T = dbl(R)
306 * k[i] == 1: U = add(S, R), T = dbl(S)
307 *
308 * Swapping T, U conditionally on k[i] leaves you with state
309 *
310 * k[i] == 0: R, S = T, U
311 * k[i] == 1: R, S = U, T
312 *
313 * Which leaves you with state
314 *
315 * k[i] == 0: S = add(R, S), R = dbl(R)
316 * k[i] == 1: R = add(S, R), S = dbl(S)
317 *
318 * So we get the same logic, but instead of a branch it's a
319 * conditional swap, followed by ECC ops, then another conditional swap.
320 *
321 * Optimization: The end of iteration i and start of i-1 looks like
322 *
323 * ...
324 * CSWAP(k[i], R, S)
325 * ECC
326 * CSWAP(k[i], R, S)
327 * (next iteration)
328 * CSWAP(k[i-1], R, S)
329 * ECC
330 * CSWAP(k[i-1], R, S)
331 * ...
332 *
333 * So instead of two contiguous swaps, you can merge the condition
334 * bits and do a single swap.
335 *
336 * k[i] k[i-1] Outcome
337 * 0 0 No Swap
338 * 0 1 Swap
339 * 1 0 Swap
340 * 1 1 No Swap
341 *
342 * This is XOR. pbit tracks the previous bit of k.
343 */
344
345 for (i = cardinality_bits - 1; i >= 0; i--) {
346 kbit = BN_is_bit_set(k, i) ^ pbit;
347 EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
348
349 /* Perform a single step of the Montgomery ladder */
350 if (!ec_point_ladder_step(group, r, s, p, ctx)) {
351 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
352 goto err;
353 }
354 /*
355 * pbit logic merges this cswap with that of the
356 * next iteration
357 */
358 pbit ^= kbit;
359 }
360 /* one final cswap to move the right value into r */
361 EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
362#undef EC_POINT_CSWAP
363
364 /* Finalize ladder (and recover full point coordinates) */
365 if (!ec_point_ladder_post(group, r, s, p, ctx)) {
366 ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
367 goto err;
368 }
369
370 ret = 1;
371
372 err:
373 EC_POINT_free(p);
374 EC_POINT_clear_free(s);
375 BN_CTX_end(ctx);
376
377 return ret;
378}
379
380#undef EC_POINT_BN_set_flags
381
382/*
383 * TODO: table should be optimised for the wNAF-based implementation,
384 * sometimes smaller windows will give better performance (thus the
385 * boundaries should be increased)
386 */
387#define EC_window_bits_for_scalar_size(b) \
388 ((size_t) \
389 ((b) >= 2000 ? 6 : \
390 (b) >= 800 ? 5 : \
391 (b) >= 300 ? 4 : \
392 (b) >= 70 ? 3 : \
393 (b) >= 20 ? 2 : \
394 1))
395
396/*-
397 * Compute
398 * \sum scalars[i]*points[i],
399 * also including
400 * scalar*generator
401 * in the addition if scalar != NULL
402 */
403int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
404 size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
405 BN_CTX *ctx)
406{
407 const EC_POINT *generator = NULL;
408 EC_POINT *tmp = NULL;
409 size_t totalnum;
410 size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
411 size_t pre_points_per_block = 0;
412 size_t i, j;
413 int k;
414 int r_is_inverted = 0;
415 int r_is_at_infinity = 1;
416 size_t *wsize = NULL; /* individual window sizes */
417 signed char **wNAF = NULL; /* individual wNAFs */
418 size_t *wNAF_len = NULL;
419 size_t max_len = 0;
420 size_t num_val;
421 EC_POINT **val = NULL; /* precomputation */
422 EC_POINT **v;
423 EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
424 * 'pre_comp->points' */
425 const EC_PRE_COMP *pre_comp = NULL;
426 int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be
427 * treated like other scalars, i.e.
428 * precomputation is not available */
429 int ret = 0;
430
431 if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
432 /*-
433 * Handle the common cases where the scalar is secret, enforcing a
434 * scalar multiplication implementation based on a Montgomery ladder,
435 * with various timing attack defenses.
436 */
437 if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
438 /*-
439 * In this case we want to compute scalar * GeneratorPoint: this
440 * codepath is reached most prominently by (ephemeral) key
441 * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
442 * ECDH keygen/first half), where the scalar is always secret. This
443 * is why we ignore if BN_FLG_CONSTTIME is actually set and we
444 * always call the ladder version.
445 */
446 return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
447 }
448 if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
449 /*-
450 * In this case we want to compute scalar * VariablePoint: this
451 * codepath is reached most prominently by the second half of ECDH,
452 * where the secret scalar is multiplied by the peer's public point.
453 * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
454 * actually set and we always call the ladder version.
455 */
456 return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
457 }
458 }
459
460 if (scalar != NULL) {
461 generator = EC_GROUP_get0_generator(group);
462 if (generator == NULL) {
463 ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
464 goto err;
465 }
466
467 /* look if we can use precomputed multiples of generator */
468
469 pre_comp = group->pre_comp.ec;
470 if (pre_comp && pre_comp->numblocks
471 && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
472 0)) {
473 blocksize = pre_comp->blocksize;
474
475 /*
476 * determine maximum number of blocks that wNAF splitting may
477 * yield (NB: maximum wNAF length is bit length plus one)
478 */
479 numblocks = (BN_num_bits(scalar) / blocksize) + 1;
480
481 /*
482 * we cannot use more blocks than we have precomputation for
483 */
484 if (numblocks > pre_comp->numblocks)
485 numblocks = pre_comp->numblocks;
486
487 pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
488
489 /* check that pre_comp looks sane */
490 if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
491 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
492 goto err;
493 }
494 } else {
495 /* can't use precomputation */
496 pre_comp = NULL;
497 numblocks = 1;
498 num_scalar = 1; /* treat 'scalar' like 'num'-th element of
499 * 'scalars' */
500 }
501 }
502
503 totalnum = num + numblocks;
504
505 wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
506 wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
507 /* include space for pivot */
508 wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
509 val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
510
511 /* Ensure wNAF is initialised in case we end up going to err */
512 if (wNAF != NULL)
513 wNAF[0] = NULL; /* preliminary pivot */
514
515 if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) {
516 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
517 goto err;
518 }
519
520 /*
521 * num_val will be the total number of temporarily precomputed points
522 */
523 num_val = 0;
524
525 for (i = 0; i < num + num_scalar; i++) {
526 size_t bits;
527
528 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
529 wsize[i] = EC_window_bits_for_scalar_size(bits);
530 num_val += (size_t)1 << (wsize[i] - 1);
531 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
532 wNAF[i] =
533 bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
534 &wNAF_len[i]);
535 if (wNAF[i] == NULL)
536 goto err;
537 if (wNAF_len[i] > max_len)
538 max_len = wNAF_len[i];
539 }
540
541 if (numblocks) {
542 /* we go here iff scalar != NULL */
543
544 if (pre_comp == NULL) {
545 if (num_scalar != 1) {
546 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
547 goto err;
548 }
549 /* we have already generated a wNAF for 'scalar' */
550 } else {
551 signed char *tmp_wNAF = NULL;
552 size_t tmp_len = 0;
553
554 if (num_scalar != 0) {
555 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
556 goto err;
557 }
558
559 /*
560 * use the window size for which we have precomputation
561 */
562 wsize[num] = pre_comp->w;
563 tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
564 if (!tmp_wNAF)
565 goto err;
566
567 if (tmp_len <= max_len) {
568 /*
569 * One of the other wNAFs is at least as long as the wNAF
570 * belonging to the generator, so wNAF splitting will not buy
571 * us anything.
572 */
573
574 numblocks = 1;
575 totalnum = num + 1; /* don't use wNAF splitting */
576 wNAF[num] = tmp_wNAF;
577 wNAF[num + 1] = NULL;
578 wNAF_len[num] = tmp_len;
579 /*
580 * pre_comp->points starts with the points that we need here:
581 */
582 val_sub[num] = pre_comp->points;
583 } else {
584 /*
585 * don't include tmp_wNAF directly into wNAF array - use wNAF
586 * splitting and include the blocks
587 */
588
589 signed char *pp;
590 EC_POINT **tmp_points;
591
592 if (tmp_len < numblocks * blocksize) {
593 /*
594 * possibly we can do with fewer blocks than estimated
595 */
596 numblocks = (tmp_len + blocksize - 1) / blocksize;
597 if (numblocks > pre_comp->numblocks) {
598 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
599 OPENSSL_free(tmp_wNAF);
600 goto err;
601 }
602 totalnum = num + numblocks;
603 }
604
605 /* split wNAF in 'numblocks' parts */
606 pp = tmp_wNAF;
607 tmp_points = pre_comp->points;
608
609 for (i = num; i < totalnum; i++) {
610 if (i < totalnum - 1) {
611 wNAF_len[i] = blocksize;
612 if (tmp_len < blocksize) {
613 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
614 OPENSSL_free(tmp_wNAF);
615 goto err;
616 }
617 tmp_len -= blocksize;
618 } else
619 /*
620 * last block gets whatever is left (this could be
621 * more or less than 'blocksize'!)
622 */
623 wNAF_len[i] = tmp_len;
624
625 wNAF[i + 1] = NULL;
626 wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
627 if (wNAF[i] == NULL) {
628 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
629 OPENSSL_free(tmp_wNAF);
630 goto err;
631 }
632 memcpy(wNAF[i], pp, wNAF_len[i]);
633 if (wNAF_len[i] > max_len)
634 max_len = wNAF_len[i];
635
636 if (*tmp_points == NULL) {
637 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
638 OPENSSL_free(tmp_wNAF);
639 goto err;
640 }
641 val_sub[i] = tmp_points;
642 tmp_points += pre_points_per_block;
643 pp += blocksize;
644 }
645 OPENSSL_free(tmp_wNAF);
646 }
647 }
648 }
649
650 /*
651 * All points we precompute now go into a single array 'val'.
652 * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
653 * subarray of 'pre_comp->points' if we already have precomputation.
654 */
655 val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
656 if (val == NULL) {
657 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
658 goto err;
659 }
660 val[num_val] = NULL; /* pivot element */
661
662 /* allocate points for precomputation */
663 v = val;
664 for (i = 0; i < num + num_scalar; i++) {
665 val_sub[i] = v;
666 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
667 *v = EC_POINT_new(group);
668 if (*v == NULL)
669 goto err;
670 v++;
671 }
672 }
673 if (!(v == val + num_val)) {
674 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
675 goto err;
676 }
677
678 if ((tmp = EC_POINT_new(group)) == NULL)
679 goto err;
680
681 /*-
682 * prepare precomputed values:
683 * val_sub[i][0] := points[i]
684 * val_sub[i][1] := 3 * points[i]
685 * val_sub[i][2] := 5 * points[i]
686 * ...
687 */
688 for (i = 0; i < num + num_scalar; i++) {
689 if (i < num) {
690 if (!EC_POINT_copy(val_sub[i][0], points[i]))
691 goto err;
692 } else {
693 if (!EC_POINT_copy(val_sub[i][0], generator))
694 goto err;
695 }
696
697 if (wsize[i] > 1) {
698 if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
699 goto err;
700 for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
701 if (!EC_POINT_add
702 (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
703 goto err;
704 }
705 }
706 }
707
708 if (!EC_POINTs_make_affine(group, num_val, val, ctx))
709 goto err;
710
711 r_is_at_infinity = 1;
712
713 for (k = max_len - 1; k >= 0; k--) {
714 if (!r_is_at_infinity) {
715 if (!EC_POINT_dbl(group, r, r, ctx))
716 goto err;
717 }
718
719 for (i = 0; i < totalnum; i++) {
720 if (wNAF_len[i] > (size_t)k) {
721 int digit = wNAF[i][k];
722 int is_neg;
723
724 if (digit) {
725 is_neg = digit < 0;
726
727 if (is_neg)
728 digit = -digit;
729
730 if (is_neg != r_is_inverted) {
731 if (!r_is_at_infinity) {
732 if (!EC_POINT_invert(group, r, ctx))
733 goto err;
734 }
735 r_is_inverted = !r_is_inverted;
736 }
737
738 /* digit > 0 */
739
740 if (r_is_at_infinity) {
741 if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
742 goto err;
743
744 /*-
745 * Apply coordinate blinding for EC_POINT.
746 *
747 * The underlying EC_METHOD can optionally implement this function:
748 * ec_point_blind_coordinates() returns 0 in case of errors or 1 on
749 * success or if coordinate blinding is not implemented for this
750 * group.
751 */
752 if (!ec_point_blind_coordinates(group, r, ctx)) {
753 ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE);
754 goto err;
755 }
756
757 r_is_at_infinity = 0;
758 } else {
759 if (!EC_POINT_add
760 (group, r, r, val_sub[i][digit >> 1], ctx))
761 goto err;
762 }
763 }
764 }
765 }
766 }
767
768 if (r_is_at_infinity) {
769 if (!EC_POINT_set_to_infinity(group, r))
770 goto err;
771 } else {
772 if (r_is_inverted)
773 if (!EC_POINT_invert(group, r, ctx))
774 goto err;
775 }
776
777 ret = 1;
778
779 err:
780 EC_POINT_free(tmp);
781 OPENSSL_free(wsize);
782 OPENSSL_free(wNAF_len);
783 if (wNAF != NULL) {
784 signed char **w;
785
786 for (w = wNAF; *w != NULL; w++)
787 OPENSSL_free(*w);
788
789 OPENSSL_free(wNAF);
790 }
791 if (val != NULL) {
792 for (v = val; *v != NULL; v++)
793 EC_POINT_clear_free(*v);
794
795 OPENSSL_free(val);
796 }
797 OPENSSL_free(val_sub);
798 return ret;
799}
800
801/*-
802 * ec_wNAF_precompute_mult()
803 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
804 * for use with wNAF splitting as implemented in ec_wNAF_mul().
805 *
806 * 'pre_comp->points' is an array of multiples of the generator
807 * of the following form:
808 * points[0] = generator;
809 * points[1] = 3 * generator;
810 * ...
811 * points[2^(w-1)-1] = (2^(w-1)-1) * generator;
812 * points[2^(w-1)] = 2^blocksize * generator;
813 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
814 * ...
815 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator
816 * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator
817 * ...
818 * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator
819 * points[2^(w-1)*numblocks] = NULL
820 */
821int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
822{
823 const EC_POINT *generator;
824 EC_POINT *tmp_point = NULL, *base = NULL, **var;
825 BN_CTX *new_ctx = NULL;
826 const BIGNUM *order;
827 size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
828 EC_POINT **points = NULL;
829 EC_PRE_COMP *pre_comp;
830 int ret = 0;
831
832 /* if there is an old EC_PRE_COMP object, throw it away */
833 EC_pre_comp_free(group);
834 if ((pre_comp = ec_pre_comp_new(group)) == NULL)
835 return 0;
836
837 generator = EC_GROUP_get0_generator(group);
838 if (generator == NULL) {
839 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
840 goto err;
841 }
842
843 if (ctx == NULL) {
844 ctx = new_ctx = BN_CTX_new();
845 if (ctx == NULL)
846 goto err;
847 }
848
849 BN_CTX_start(ctx);
850
851 order = EC_GROUP_get0_order(group);
852 if (order == NULL)
853 goto err;
854 if (BN_is_zero(order)) {
855 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
856 goto err;
857 }
858
859 bits = BN_num_bits(order);
860 /*
861 * The following parameters mean we precompute (approximately) one point
862 * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
863 * bit lengths, other parameter combinations might provide better
864 * efficiency.
865 */
866 blocksize = 8;
867 w = 4;
868 if (EC_window_bits_for_scalar_size(bits) > w) {
869 /* let's not make the window too small ... */
870 w = EC_window_bits_for_scalar_size(bits);
871 }
872
873 numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
874 * to use for wNAF
875 * splitting */
876
877 pre_points_per_block = (size_t)1 << (w - 1);
878 num = pre_points_per_block * numblocks; /* number of points to compute
879 * and store */
880
881 points = OPENSSL_malloc(sizeof(*points) * (num + 1));
882 if (points == NULL) {
883 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
884 goto err;
885 }
886
887 var = points;
888 var[num] = NULL; /* pivot */
889 for (i = 0; i < num; i++) {
890 if ((var[i] = EC_POINT_new(group)) == NULL) {
891 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
892 goto err;
893 }
894 }
895
896 if ((tmp_point = EC_POINT_new(group)) == NULL
897 || (base = EC_POINT_new(group)) == NULL) {
898 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
899 goto err;
900 }
901
902 if (!EC_POINT_copy(base, generator))
903 goto err;
904
905 /* do the precomputation */
906 for (i = 0; i < numblocks; i++) {
907 size_t j;
908
909 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
910 goto err;
911
912 if (!EC_POINT_copy(*var++, base))
913 goto err;
914
915 for (j = 1; j < pre_points_per_block; j++, var++) {
916 /*
917 * calculate odd multiples of the current base point
918 */
919 if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
920 goto err;
921 }
922
923 if (i < numblocks - 1) {
924 /*
925 * get the next base (multiply current one by 2^blocksize)
926 */
927 size_t k;
928
929 if (blocksize <= 2) {
930 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
931 goto err;
932 }
933
934 if (!EC_POINT_dbl(group, base, tmp_point, ctx))
935 goto err;
936 for (k = 2; k < blocksize; k++) {
937 if (!EC_POINT_dbl(group, base, base, ctx))
938 goto err;
939 }
940 }
941 }
942
943 if (!EC_POINTs_make_affine(group, num, points, ctx))
944 goto err;
945
946 pre_comp->group = group;
947 pre_comp->blocksize = blocksize;
948 pre_comp->numblocks = numblocks;
949 pre_comp->w = w;
950 pre_comp->points = points;
951 points = NULL;
952 pre_comp->num = num;
953 SETPRECOMP(group, ec, pre_comp);
954 pre_comp = NULL;
955 ret = 1;
956
957 err:
958 BN_CTX_end(ctx);
959 BN_CTX_free(new_ctx);
960 EC_ec_pre_comp_free(pre_comp);
961 if (points) {
962 EC_POINT **p;
963
964 for (p = points; *p != NULL; p++)
965 EC_POINT_free(*p);
966 OPENSSL_free(points);
967 }
968 EC_POINT_free(tmp_point);
969 EC_POINT_free(base);
970 return ret;
971}
972
973int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
974{
975 return HAVEPRECOMP(group, ec);
976}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette