1 | /*
|
---|
2 | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
---|
4 | *
|
---|
5 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | #include <openssl/err.h>
|
---|
12 | #include <openssl/symhacks.h>
|
---|
13 |
|
---|
14 | #include "ec_local.h"
|
---|
15 |
|
---|
16 | const EC_METHOD *EC_GFp_simple_method(void)
|
---|
17 | {
|
---|
18 | static const EC_METHOD ret = {
|
---|
19 | EC_FLAGS_DEFAULT_OCT,
|
---|
20 | NID_X9_62_prime_field,
|
---|
21 | ec_GFp_simple_group_init,
|
---|
22 | ec_GFp_simple_group_finish,
|
---|
23 | ec_GFp_simple_group_clear_finish,
|
---|
24 | ec_GFp_simple_group_copy,
|
---|
25 | ec_GFp_simple_group_set_curve,
|
---|
26 | ec_GFp_simple_group_get_curve,
|
---|
27 | ec_GFp_simple_group_get_degree,
|
---|
28 | ec_group_simple_order_bits,
|
---|
29 | ec_GFp_simple_group_check_discriminant,
|
---|
30 | ec_GFp_simple_point_init,
|
---|
31 | ec_GFp_simple_point_finish,
|
---|
32 | ec_GFp_simple_point_clear_finish,
|
---|
33 | ec_GFp_simple_point_copy,
|
---|
34 | ec_GFp_simple_point_set_to_infinity,
|
---|
35 | ec_GFp_simple_set_Jprojective_coordinates_GFp,
|
---|
36 | ec_GFp_simple_get_Jprojective_coordinates_GFp,
|
---|
37 | ec_GFp_simple_point_set_affine_coordinates,
|
---|
38 | ec_GFp_simple_point_get_affine_coordinates,
|
---|
39 | 0, 0, 0,
|
---|
40 | ec_GFp_simple_add,
|
---|
41 | ec_GFp_simple_dbl,
|
---|
42 | ec_GFp_simple_invert,
|
---|
43 | ec_GFp_simple_is_at_infinity,
|
---|
44 | ec_GFp_simple_is_on_curve,
|
---|
45 | ec_GFp_simple_cmp,
|
---|
46 | ec_GFp_simple_make_affine,
|
---|
47 | ec_GFp_simple_points_make_affine,
|
---|
48 | 0 /* mul */ ,
|
---|
49 | 0 /* precompute_mult */ ,
|
---|
50 | 0 /* have_precompute_mult */ ,
|
---|
51 | ec_GFp_simple_field_mul,
|
---|
52 | ec_GFp_simple_field_sqr,
|
---|
53 | 0 /* field_div */ ,
|
---|
54 | ec_GFp_simple_field_inv,
|
---|
55 | 0 /* field_encode */ ,
|
---|
56 | 0 /* field_decode */ ,
|
---|
57 | 0, /* field_set_to_one */
|
---|
58 | ec_key_simple_priv2oct,
|
---|
59 | ec_key_simple_oct2priv,
|
---|
60 | 0, /* set private */
|
---|
61 | ec_key_simple_generate_key,
|
---|
62 | ec_key_simple_check_key,
|
---|
63 | ec_key_simple_generate_public_key,
|
---|
64 | 0, /* keycopy */
|
---|
65 | 0, /* keyfinish */
|
---|
66 | ecdh_simple_compute_key,
|
---|
67 | 0, /* field_inverse_mod_ord */
|
---|
68 | ec_GFp_simple_blind_coordinates,
|
---|
69 | ec_GFp_simple_ladder_pre,
|
---|
70 | ec_GFp_simple_ladder_step,
|
---|
71 | ec_GFp_simple_ladder_post
|
---|
72 | };
|
---|
73 |
|
---|
74 | return &ret;
|
---|
75 | }
|
---|
76 |
|
---|
77 | /*
|
---|
78 | * Most method functions in this file are designed to work with
|
---|
79 | * non-trivial representations of field elements if necessary
|
---|
80 | * (see ecp_mont.c): while standard modular addition and subtraction
|
---|
81 | * are used, the field_mul and field_sqr methods will be used for
|
---|
82 | * multiplication, and field_encode and field_decode (if defined)
|
---|
83 | * will be used for converting between representations.
|
---|
84 | *
|
---|
85 | * Functions ec_GFp_simple_points_make_affine() and
|
---|
86 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume
|
---|
87 | * that if a non-trivial representation is used, it is a Montgomery
|
---|
88 | * representation (i.e. 'encoding' means multiplying by some factor R).
|
---|
89 | */
|
---|
90 |
|
---|
91 | int ec_GFp_simple_group_init(EC_GROUP *group)
|
---|
92 | {
|
---|
93 | group->field = BN_new();
|
---|
94 | group->a = BN_new();
|
---|
95 | group->b = BN_new();
|
---|
96 | if (group->field == NULL || group->a == NULL || group->b == NULL) {
|
---|
97 | BN_free(group->field);
|
---|
98 | BN_free(group->a);
|
---|
99 | BN_free(group->b);
|
---|
100 | return 0;
|
---|
101 | }
|
---|
102 | group->a_is_minus3 = 0;
|
---|
103 | return 1;
|
---|
104 | }
|
---|
105 |
|
---|
106 | void ec_GFp_simple_group_finish(EC_GROUP *group)
|
---|
107 | {
|
---|
108 | BN_free(group->field);
|
---|
109 | BN_free(group->a);
|
---|
110 | BN_free(group->b);
|
---|
111 | }
|
---|
112 |
|
---|
113 | void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
|
---|
114 | {
|
---|
115 | BN_clear_free(group->field);
|
---|
116 | BN_clear_free(group->a);
|
---|
117 | BN_clear_free(group->b);
|
---|
118 | }
|
---|
119 |
|
---|
120 | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
---|
121 | {
|
---|
122 | if (!BN_copy(dest->field, src->field))
|
---|
123 | return 0;
|
---|
124 | if (!BN_copy(dest->a, src->a))
|
---|
125 | return 0;
|
---|
126 | if (!BN_copy(dest->b, src->b))
|
---|
127 | return 0;
|
---|
128 |
|
---|
129 | dest->a_is_minus3 = src->a_is_minus3;
|
---|
130 |
|
---|
131 | return 1;
|
---|
132 | }
|
---|
133 |
|
---|
134 | int ec_GFp_simple_group_set_curve(EC_GROUP *group,
|
---|
135 | const BIGNUM *p, const BIGNUM *a,
|
---|
136 | const BIGNUM *b, BN_CTX *ctx)
|
---|
137 | {
|
---|
138 | int ret = 0;
|
---|
139 | BN_CTX *new_ctx = NULL;
|
---|
140 | BIGNUM *tmp_a;
|
---|
141 |
|
---|
142 | /* p must be a prime > 3 */
|
---|
143 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
|
---|
144 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
|
---|
145 | return 0;
|
---|
146 | }
|
---|
147 |
|
---|
148 | if (ctx == NULL) {
|
---|
149 | ctx = new_ctx = BN_CTX_new();
|
---|
150 | if (ctx == NULL)
|
---|
151 | return 0;
|
---|
152 | }
|
---|
153 |
|
---|
154 | BN_CTX_start(ctx);
|
---|
155 | tmp_a = BN_CTX_get(ctx);
|
---|
156 | if (tmp_a == NULL)
|
---|
157 | goto err;
|
---|
158 |
|
---|
159 | /* group->field */
|
---|
160 | if (!BN_copy(group->field, p))
|
---|
161 | goto err;
|
---|
162 | BN_set_negative(group->field, 0);
|
---|
163 |
|
---|
164 | /* group->a */
|
---|
165 | if (!BN_nnmod(tmp_a, a, p, ctx))
|
---|
166 | goto err;
|
---|
167 | if (group->meth->field_encode) {
|
---|
168 | if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
|
---|
169 | goto err;
|
---|
170 | } else if (!BN_copy(group->a, tmp_a))
|
---|
171 | goto err;
|
---|
172 |
|
---|
173 | /* group->b */
|
---|
174 | if (!BN_nnmod(group->b, b, p, ctx))
|
---|
175 | goto err;
|
---|
176 | if (group->meth->field_encode)
|
---|
177 | if (!group->meth->field_encode(group, group->b, group->b, ctx))
|
---|
178 | goto err;
|
---|
179 |
|
---|
180 | /* group->a_is_minus3 */
|
---|
181 | if (!BN_add_word(tmp_a, 3))
|
---|
182 | goto err;
|
---|
183 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
|
---|
184 |
|
---|
185 | ret = 1;
|
---|
186 |
|
---|
187 | err:
|
---|
188 | BN_CTX_end(ctx);
|
---|
189 | BN_CTX_free(new_ctx);
|
---|
190 | return ret;
|
---|
191 | }
|
---|
192 |
|
---|
193 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
|
---|
194 | BIGNUM *b, BN_CTX *ctx)
|
---|
195 | {
|
---|
196 | int ret = 0;
|
---|
197 | BN_CTX *new_ctx = NULL;
|
---|
198 |
|
---|
199 | if (p != NULL) {
|
---|
200 | if (!BN_copy(p, group->field))
|
---|
201 | return 0;
|
---|
202 | }
|
---|
203 |
|
---|
204 | if (a != NULL || b != NULL) {
|
---|
205 | if (group->meth->field_decode) {
|
---|
206 | if (ctx == NULL) {
|
---|
207 | ctx = new_ctx = BN_CTX_new();
|
---|
208 | if (ctx == NULL)
|
---|
209 | return 0;
|
---|
210 | }
|
---|
211 | if (a != NULL) {
|
---|
212 | if (!group->meth->field_decode(group, a, group->a, ctx))
|
---|
213 | goto err;
|
---|
214 | }
|
---|
215 | if (b != NULL) {
|
---|
216 | if (!group->meth->field_decode(group, b, group->b, ctx))
|
---|
217 | goto err;
|
---|
218 | }
|
---|
219 | } else {
|
---|
220 | if (a != NULL) {
|
---|
221 | if (!BN_copy(a, group->a))
|
---|
222 | goto err;
|
---|
223 | }
|
---|
224 | if (b != NULL) {
|
---|
225 | if (!BN_copy(b, group->b))
|
---|
226 | goto err;
|
---|
227 | }
|
---|
228 | }
|
---|
229 | }
|
---|
230 |
|
---|
231 | ret = 1;
|
---|
232 |
|
---|
233 | err:
|
---|
234 | BN_CTX_free(new_ctx);
|
---|
235 | return ret;
|
---|
236 | }
|
---|
237 |
|
---|
238 | int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
|
---|
239 | {
|
---|
240 | return BN_num_bits(group->field);
|
---|
241 | }
|
---|
242 |
|
---|
243 | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
|
---|
244 | {
|
---|
245 | int ret = 0;
|
---|
246 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
|
---|
247 | const BIGNUM *p = group->field;
|
---|
248 | BN_CTX *new_ctx = NULL;
|
---|
249 |
|
---|
250 | if (ctx == NULL) {
|
---|
251 | ctx = new_ctx = BN_CTX_new();
|
---|
252 | if (ctx == NULL) {
|
---|
253 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
|
---|
254 | ERR_R_MALLOC_FAILURE);
|
---|
255 | goto err;
|
---|
256 | }
|
---|
257 | }
|
---|
258 | BN_CTX_start(ctx);
|
---|
259 | a = BN_CTX_get(ctx);
|
---|
260 | b = BN_CTX_get(ctx);
|
---|
261 | tmp_1 = BN_CTX_get(ctx);
|
---|
262 | tmp_2 = BN_CTX_get(ctx);
|
---|
263 | order = BN_CTX_get(ctx);
|
---|
264 | if (order == NULL)
|
---|
265 | goto err;
|
---|
266 |
|
---|
267 | if (group->meth->field_decode) {
|
---|
268 | if (!group->meth->field_decode(group, a, group->a, ctx))
|
---|
269 | goto err;
|
---|
270 | if (!group->meth->field_decode(group, b, group->b, ctx))
|
---|
271 | goto err;
|
---|
272 | } else {
|
---|
273 | if (!BN_copy(a, group->a))
|
---|
274 | goto err;
|
---|
275 | if (!BN_copy(b, group->b))
|
---|
276 | goto err;
|
---|
277 | }
|
---|
278 |
|
---|
279 | /*-
|
---|
280 | * check the discriminant:
|
---|
281 | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
|
---|
282 | * 0 =< a, b < p
|
---|
283 | */
|
---|
284 | if (BN_is_zero(a)) {
|
---|
285 | if (BN_is_zero(b))
|
---|
286 | goto err;
|
---|
287 | } else if (!BN_is_zero(b)) {
|
---|
288 | if (!BN_mod_sqr(tmp_1, a, p, ctx))
|
---|
289 | goto err;
|
---|
290 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
|
---|
291 | goto err;
|
---|
292 | if (!BN_lshift(tmp_1, tmp_2, 2))
|
---|
293 | goto err;
|
---|
294 | /* tmp_1 = 4*a^3 */
|
---|
295 |
|
---|
296 | if (!BN_mod_sqr(tmp_2, b, p, ctx))
|
---|
297 | goto err;
|
---|
298 | if (!BN_mul_word(tmp_2, 27))
|
---|
299 | goto err;
|
---|
300 | /* tmp_2 = 27*b^2 */
|
---|
301 |
|
---|
302 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
|
---|
303 | goto err;
|
---|
304 | if (BN_is_zero(a))
|
---|
305 | goto err;
|
---|
306 | }
|
---|
307 | ret = 1;
|
---|
308 |
|
---|
309 | err:
|
---|
310 | BN_CTX_end(ctx);
|
---|
311 | BN_CTX_free(new_ctx);
|
---|
312 | return ret;
|
---|
313 | }
|
---|
314 |
|
---|
315 | int ec_GFp_simple_point_init(EC_POINT *point)
|
---|
316 | {
|
---|
317 | point->X = BN_new();
|
---|
318 | point->Y = BN_new();
|
---|
319 | point->Z = BN_new();
|
---|
320 | point->Z_is_one = 0;
|
---|
321 |
|
---|
322 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
|
---|
323 | BN_free(point->X);
|
---|
324 | BN_free(point->Y);
|
---|
325 | BN_free(point->Z);
|
---|
326 | return 0;
|
---|
327 | }
|
---|
328 | return 1;
|
---|
329 | }
|
---|
330 |
|
---|
331 | void ec_GFp_simple_point_finish(EC_POINT *point)
|
---|
332 | {
|
---|
333 | BN_free(point->X);
|
---|
334 | BN_free(point->Y);
|
---|
335 | BN_free(point->Z);
|
---|
336 | }
|
---|
337 |
|
---|
338 | void ec_GFp_simple_point_clear_finish(EC_POINT *point)
|
---|
339 | {
|
---|
340 | BN_clear_free(point->X);
|
---|
341 | BN_clear_free(point->Y);
|
---|
342 | BN_clear_free(point->Z);
|
---|
343 | point->Z_is_one = 0;
|
---|
344 | }
|
---|
345 |
|
---|
346 | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
|
---|
347 | {
|
---|
348 | if (!BN_copy(dest->X, src->X))
|
---|
349 | return 0;
|
---|
350 | if (!BN_copy(dest->Y, src->Y))
|
---|
351 | return 0;
|
---|
352 | if (!BN_copy(dest->Z, src->Z))
|
---|
353 | return 0;
|
---|
354 | dest->Z_is_one = src->Z_is_one;
|
---|
355 | dest->curve_name = src->curve_name;
|
---|
356 |
|
---|
357 | return 1;
|
---|
358 | }
|
---|
359 |
|
---|
360 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
|
---|
361 | EC_POINT *point)
|
---|
362 | {
|
---|
363 | point->Z_is_one = 0;
|
---|
364 | BN_zero(point->Z);
|
---|
365 | return 1;
|
---|
366 | }
|
---|
367 |
|
---|
368 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
---|
369 | EC_POINT *point,
|
---|
370 | const BIGNUM *x,
|
---|
371 | const BIGNUM *y,
|
---|
372 | const BIGNUM *z,
|
---|
373 | BN_CTX *ctx)
|
---|
374 | {
|
---|
375 | BN_CTX *new_ctx = NULL;
|
---|
376 | int ret = 0;
|
---|
377 |
|
---|
378 | if (ctx == NULL) {
|
---|
379 | ctx = new_ctx = BN_CTX_new();
|
---|
380 | if (ctx == NULL)
|
---|
381 | return 0;
|
---|
382 | }
|
---|
383 |
|
---|
384 | if (x != NULL) {
|
---|
385 | if (!BN_nnmod(point->X, x, group->field, ctx))
|
---|
386 | goto err;
|
---|
387 | if (group->meth->field_encode) {
|
---|
388 | if (!group->meth->field_encode(group, point->X, point->X, ctx))
|
---|
389 | goto err;
|
---|
390 | }
|
---|
391 | }
|
---|
392 |
|
---|
393 | if (y != NULL) {
|
---|
394 | if (!BN_nnmod(point->Y, y, group->field, ctx))
|
---|
395 | goto err;
|
---|
396 | if (group->meth->field_encode) {
|
---|
397 | if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
|
---|
398 | goto err;
|
---|
399 | }
|
---|
400 | }
|
---|
401 |
|
---|
402 | if (z != NULL) {
|
---|
403 | int Z_is_one;
|
---|
404 |
|
---|
405 | if (!BN_nnmod(point->Z, z, group->field, ctx))
|
---|
406 | goto err;
|
---|
407 | Z_is_one = BN_is_one(point->Z);
|
---|
408 | if (group->meth->field_encode) {
|
---|
409 | if (Z_is_one && (group->meth->field_set_to_one != 0)) {
|
---|
410 | if (!group->meth->field_set_to_one(group, point->Z, ctx))
|
---|
411 | goto err;
|
---|
412 | } else {
|
---|
413 | if (!group->
|
---|
414 | meth->field_encode(group, point->Z, point->Z, ctx))
|
---|
415 | goto err;
|
---|
416 | }
|
---|
417 | }
|
---|
418 | point->Z_is_one = Z_is_one;
|
---|
419 | }
|
---|
420 |
|
---|
421 | ret = 1;
|
---|
422 |
|
---|
423 | err:
|
---|
424 | BN_CTX_free(new_ctx);
|
---|
425 | return ret;
|
---|
426 | }
|
---|
427 |
|
---|
428 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
|
---|
429 | const EC_POINT *point,
|
---|
430 | BIGNUM *x, BIGNUM *y,
|
---|
431 | BIGNUM *z, BN_CTX *ctx)
|
---|
432 | {
|
---|
433 | BN_CTX *new_ctx = NULL;
|
---|
434 | int ret = 0;
|
---|
435 |
|
---|
436 | if (group->meth->field_decode != 0) {
|
---|
437 | if (ctx == NULL) {
|
---|
438 | ctx = new_ctx = BN_CTX_new();
|
---|
439 | if (ctx == NULL)
|
---|
440 | return 0;
|
---|
441 | }
|
---|
442 |
|
---|
443 | if (x != NULL) {
|
---|
444 | if (!group->meth->field_decode(group, x, point->X, ctx))
|
---|
445 | goto err;
|
---|
446 | }
|
---|
447 | if (y != NULL) {
|
---|
448 | if (!group->meth->field_decode(group, y, point->Y, ctx))
|
---|
449 | goto err;
|
---|
450 | }
|
---|
451 | if (z != NULL) {
|
---|
452 | if (!group->meth->field_decode(group, z, point->Z, ctx))
|
---|
453 | goto err;
|
---|
454 | }
|
---|
455 | } else {
|
---|
456 | if (x != NULL) {
|
---|
457 | if (!BN_copy(x, point->X))
|
---|
458 | goto err;
|
---|
459 | }
|
---|
460 | if (y != NULL) {
|
---|
461 | if (!BN_copy(y, point->Y))
|
---|
462 | goto err;
|
---|
463 | }
|
---|
464 | if (z != NULL) {
|
---|
465 | if (!BN_copy(z, point->Z))
|
---|
466 | goto err;
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | ret = 1;
|
---|
471 |
|
---|
472 | err:
|
---|
473 | BN_CTX_free(new_ctx);
|
---|
474 | return ret;
|
---|
475 | }
|
---|
476 |
|
---|
477 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
---|
478 | EC_POINT *point,
|
---|
479 | const BIGNUM *x,
|
---|
480 | const BIGNUM *y, BN_CTX *ctx)
|
---|
481 | {
|
---|
482 | if (x == NULL || y == NULL) {
|
---|
483 | /*
|
---|
484 | * unlike for projective coordinates, we do not tolerate this
|
---|
485 | */
|
---|
486 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
|
---|
487 | ERR_R_PASSED_NULL_PARAMETER);
|
---|
488 | return 0;
|
---|
489 | }
|
---|
490 |
|
---|
491 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
|
---|
492 | BN_value_one(), ctx);
|
---|
493 | }
|
---|
494 |
|
---|
495 | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
496 | const EC_POINT *point,
|
---|
497 | BIGNUM *x, BIGNUM *y,
|
---|
498 | BN_CTX *ctx)
|
---|
499 | {
|
---|
500 | BN_CTX *new_ctx = NULL;
|
---|
501 | BIGNUM *Z, *Z_1, *Z_2, *Z_3;
|
---|
502 | const BIGNUM *Z_;
|
---|
503 | int ret = 0;
|
---|
504 |
|
---|
505 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
506 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
507 | EC_R_POINT_AT_INFINITY);
|
---|
508 | return 0;
|
---|
509 | }
|
---|
510 |
|
---|
511 | if (ctx == NULL) {
|
---|
512 | ctx = new_ctx = BN_CTX_new();
|
---|
513 | if (ctx == NULL)
|
---|
514 | return 0;
|
---|
515 | }
|
---|
516 |
|
---|
517 | BN_CTX_start(ctx);
|
---|
518 | Z = BN_CTX_get(ctx);
|
---|
519 | Z_1 = BN_CTX_get(ctx);
|
---|
520 | Z_2 = BN_CTX_get(ctx);
|
---|
521 | Z_3 = BN_CTX_get(ctx);
|
---|
522 | if (Z_3 == NULL)
|
---|
523 | goto err;
|
---|
524 |
|
---|
525 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
|
---|
526 |
|
---|
527 | if (group->meth->field_decode) {
|
---|
528 | if (!group->meth->field_decode(group, Z, point->Z, ctx))
|
---|
529 | goto err;
|
---|
530 | Z_ = Z;
|
---|
531 | } else {
|
---|
532 | Z_ = point->Z;
|
---|
533 | }
|
---|
534 |
|
---|
535 | if (BN_is_one(Z_)) {
|
---|
536 | if (group->meth->field_decode) {
|
---|
537 | if (x != NULL) {
|
---|
538 | if (!group->meth->field_decode(group, x, point->X, ctx))
|
---|
539 | goto err;
|
---|
540 | }
|
---|
541 | if (y != NULL) {
|
---|
542 | if (!group->meth->field_decode(group, y, point->Y, ctx))
|
---|
543 | goto err;
|
---|
544 | }
|
---|
545 | } else {
|
---|
546 | if (x != NULL) {
|
---|
547 | if (!BN_copy(x, point->X))
|
---|
548 | goto err;
|
---|
549 | }
|
---|
550 | if (y != NULL) {
|
---|
551 | if (!BN_copy(y, point->Y))
|
---|
552 | goto err;
|
---|
553 | }
|
---|
554 | }
|
---|
555 | } else {
|
---|
556 | if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
|
---|
557 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
|
---|
558 | ERR_R_BN_LIB);
|
---|
559 | goto err;
|
---|
560 | }
|
---|
561 |
|
---|
562 | if (group->meth->field_encode == 0) {
|
---|
563 | /* field_sqr works on standard representation */
|
---|
564 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
|
---|
565 | goto err;
|
---|
566 | } else {
|
---|
567 | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
|
---|
568 | goto err;
|
---|
569 | }
|
---|
570 |
|
---|
571 | if (x != NULL) {
|
---|
572 | /*
|
---|
573 | * in the Montgomery case, field_mul will cancel out Montgomery
|
---|
574 | * factor in X:
|
---|
575 | */
|
---|
576 | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
|
---|
577 | goto err;
|
---|
578 | }
|
---|
579 |
|
---|
580 | if (y != NULL) {
|
---|
581 | if (group->meth->field_encode == 0) {
|
---|
582 | /*
|
---|
583 | * field_mul works on standard representation
|
---|
584 | */
|
---|
585 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
|
---|
586 | goto err;
|
---|
587 | } else {
|
---|
588 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
|
---|
589 | goto err;
|
---|
590 | }
|
---|
591 |
|
---|
592 | /*
|
---|
593 | * in the Montgomery case, field_mul will cancel out Montgomery
|
---|
594 | * factor in Y:
|
---|
595 | */
|
---|
596 | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
|
---|
597 | goto err;
|
---|
598 | }
|
---|
599 | }
|
---|
600 |
|
---|
601 | ret = 1;
|
---|
602 |
|
---|
603 | err:
|
---|
604 | BN_CTX_end(ctx);
|
---|
605 | BN_CTX_free(new_ctx);
|
---|
606 | return ret;
|
---|
607 | }
|
---|
608 |
|
---|
609 | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
610 | const EC_POINT *b, BN_CTX *ctx)
|
---|
611 | {
|
---|
612 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
613 | const BIGNUM *, BN_CTX *);
|
---|
614 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
615 | const BIGNUM *p;
|
---|
616 | BN_CTX *new_ctx = NULL;
|
---|
617 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
|
---|
618 | int ret = 0;
|
---|
619 |
|
---|
620 | if (a == b)
|
---|
621 | return EC_POINT_dbl(group, r, a, ctx);
|
---|
622 | if (EC_POINT_is_at_infinity(group, a))
|
---|
623 | return EC_POINT_copy(r, b);
|
---|
624 | if (EC_POINT_is_at_infinity(group, b))
|
---|
625 | return EC_POINT_copy(r, a);
|
---|
626 |
|
---|
627 | field_mul = group->meth->field_mul;
|
---|
628 | field_sqr = group->meth->field_sqr;
|
---|
629 | p = group->field;
|
---|
630 |
|
---|
631 | if (ctx == NULL) {
|
---|
632 | ctx = new_ctx = BN_CTX_new();
|
---|
633 | if (ctx == NULL)
|
---|
634 | return 0;
|
---|
635 | }
|
---|
636 |
|
---|
637 | BN_CTX_start(ctx);
|
---|
638 | n0 = BN_CTX_get(ctx);
|
---|
639 | n1 = BN_CTX_get(ctx);
|
---|
640 | n2 = BN_CTX_get(ctx);
|
---|
641 | n3 = BN_CTX_get(ctx);
|
---|
642 | n4 = BN_CTX_get(ctx);
|
---|
643 | n5 = BN_CTX_get(ctx);
|
---|
644 | n6 = BN_CTX_get(ctx);
|
---|
645 | if (n6 == NULL)
|
---|
646 | goto end;
|
---|
647 |
|
---|
648 | /*
|
---|
649 | * Note that in this function we must not read components of 'a' or 'b'
|
---|
650 | * once we have written the corresponding components of 'r'. ('r' might
|
---|
651 | * be one of 'a' or 'b'.)
|
---|
652 | */
|
---|
653 |
|
---|
654 | /* n1, n2 */
|
---|
655 | if (b->Z_is_one) {
|
---|
656 | if (!BN_copy(n1, a->X))
|
---|
657 | goto end;
|
---|
658 | if (!BN_copy(n2, a->Y))
|
---|
659 | goto end;
|
---|
660 | /* n1 = X_a */
|
---|
661 | /* n2 = Y_a */
|
---|
662 | } else {
|
---|
663 | if (!field_sqr(group, n0, b->Z, ctx))
|
---|
664 | goto end;
|
---|
665 | if (!field_mul(group, n1, a->X, n0, ctx))
|
---|
666 | goto end;
|
---|
667 | /* n1 = X_a * Z_b^2 */
|
---|
668 |
|
---|
669 | if (!field_mul(group, n0, n0, b->Z, ctx))
|
---|
670 | goto end;
|
---|
671 | if (!field_mul(group, n2, a->Y, n0, ctx))
|
---|
672 | goto end;
|
---|
673 | /* n2 = Y_a * Z_b^3 */
|
---|
674 | }
|
---|
675 |
|
---|
676 | /* n3, n4 */
|
---|
677 | if (a->Z_is_one) {
|
---|
678 | if (!BN_copy(n3, b->X))
|
---|
679 | goto end;
|
---|
680 | if (!BN_copy(n4, b->Y))
|
---|
681 | goto end;
|
---|
682 | /* n3 = X_b */
|
---|
683 | /* n4 = Y_b */
|
---|
684 | } else {
|
---|
685 | if (!field_sqr(group, n0, a->Z, ctx))
|
---|
686 | goto end;
|
---|
687 | if (!field_mul(group, n3, b->X, n0, ctx))
|
---|
688 | goto end;
|
---|
689 | /* n3 = X_b * Z_a^2 */
|
---|
690 |
|
---|
691 | if (!field_mul(group, n0, n0, a->Z, ctx))
|
---|
692 | goto end;
|
---|
693 | if (!field_mul(group, n4, b->Y, n0, ctx))
|
---|
694 | goto end;
|
---|
695 | /* n4 = Y_b * Z_a^3 */
|
---|
696 | }
|
---|
697 |
|
---|
698 | /* n5, n6 */
|
---|
699 | if (!BN_mod_sub_quick(n5, n1, n3, p))
|
---|
700 | goto end;
|
---|
701 | if (!BN_mod_sub_quick(n6, n2, n4, p))
|
---|
702 | goto end;
|
---|
703 | /* n5 = n1 - n3 */
|
---|
704 | /* n6 = n2 - n4 */
|
---|
705 |
|
---|
706 | if (BN_is_zero(n5)) {
|
---|
707 | if (BN_is_zero(n6)) {
|
---|
708 | /* a is the same point as b */
|
---|
709 | BN_CTX_end(ctx);
|
---|
710 | ret = EC_POINT_dbl(group, r, a, ctx);
|
---|
711 | ctx = NULL;
|
---|
712 | goto end;
|
---|
713 | } else {
|
---|
714 | /* a is the inverse of b */
|
---|
715 | BN_zero(r->Z);
|
---|
716 | r->Z_is_one = 0;
|
---|
717 | ret = 1;
|
---|
718 | goto end;
|
---|
719 | }
|
---|
720 | }
|
---|
721 |
|
---|
722 | /* 'n7', 'n8' */
|
---|
723 | if (!BN_mod_add_quick(n1, n1, n3, p))
|
---|
724 | goto end;
|
---|
725 | if (!BN_mod_add_quick(n2, n2, n4, p))
|
---|
726 | goto end;
|
---|
727 | /* 'n7' = n1 + n3 */
|
---|
728 | /* 'n8' = n2 + n4 */
|
---|
729 |
|
---|
730 | /* Z_r */
|
---|
731 | if (a->Z_is_one && b->Z_is_one) {
|
---|
732 | if (!BN_copy(r->Z, n5))
|
---|
733 | goto end;
|
---|
734 | } else {
|
---|
735 | if (a->Z_is_one) {
|
---|
736 | if (!BN_copy(n0, b->Z))
|
---|
737 | goto end;
|
---|
738 | } else if (b->Z_is_one) {
|
---|
739 | if (!BN_copy(n0, a->Z))
|
---|
740 | goto end;
|
---|
741 | } else {
|
---|
742 | if (!field_mul(group, n0, a->Z, b->Z, ctx))
|
---|
743 | goto end;
|
---|
744 | }
|
---|
745 | if (!field_mul(group, r->Z, n0, n5, ctx))
|
---|
746 | goto end;
|
---|
747 | }
|
---|
748 | r->Z_is_one = 0;
|
---|
749 | /* Z_r = Z_a * Z_b * n5 */
|
---|
750 |
|
---|
751 | /* X_r */
|
---|
752 | if (!field_sqr(group, n0, n6, ctx))
|
---|
753 | goto end;
|
---|
754 | if (!field_sqr(group, n4, n5, ctx))
|
---|
755 | goto end;
|
---|
756 | if (!field_mul(group, n3, n1, n4, ctx))
|
---|
757 | goto end;
|
---|
758 | if (!BN_mod_sub_quick(r->X, n0, n3, p))
|
---|
759 | goto end;
|
---|
760 | /* X_r = n6^2 - n5^2 * 'n7' */
|
---|
761 |
|
---|
762 | /* 'n9' */
|
---|
763 | if (!BN_mod_lshift1_quick(n0, r->X, p))
|
---|
764 | goto end;
|
---|
765 | if (!BN_mod_sub_quick(n0, n3, n0, p))
|
---|
766 | goto end;
|
---|
767 | /* n9 = n5^2 * 'n7' - 2 * X_r */
|
---|
768 |
|
---|
769 | /* Y_r */
|
---|
770 | if (!field_mul(group, n0, n0, n6, ctx))
|
---|
771 | goto end;
|
---|
772 | if (!field_mul(group, n5, n4, n5, ctx))
|
---|
773 | goto end; /* now n5 is n5^3 */
|
---|
774 | if (!field_mul(group, n1, n2, n5, ctx))
|
---|
775 | goto end;
|
---|
776 | if (!BN_mod_sub_quick(n0, n0, n1, p))
|
---|
777 | goto end;
|
---|
778 | if (BN_is_odd(n0))
|
---|
779 | if (!BN_add(n0, n0, p))
|
---|
780 | goto end;
|
---|
781 | /* now 0 <= n0 < 2*p, and n0 is even */
|
---|
782 | if (!BN_rshift1(r->Y, n0))
|
---|
783 | goto end;
|
---|
784 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
|
---|
785 |
|
---|
786 | ret = 1;
|
---|
787 |
|
---|
788 | end:
|
---|
789 | BN_CTX_end(ctx);
|
---|
790 | BN_CTX_free(new_ctx);
|
---|
791 | return ret;
|
---|
792 | }
|
---|
793 |
|
---|
794 | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
795 | BN_CTX *ctx)
|
---|
796 | {
|
---|
797 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
798 | const BIGNUM *, BN_CTX *);
|
---|
799 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
800 | const BIGNUM *p;
|
---|
801 | BN_CTX *new_ctx = NULL;
|
---|
802 | BIGNUM *n0, *n1, *n2, *n3;
|
---|
803 | int ret = 0;
|
---|
804 |
|
---|
805 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
806 | BN_zero(r->Z);
|
---|
807 | r->Z_is_one = 0;
|
---|
808 | return 1;
|
---|
809 | }
|
---|
810 |
|
---|
811 | field_mul = group->meth->field_mul;
|
---|
812 | field_sqr = group->meth->field_sqr;
|
---|
813 | p = group->field;
|
---|
814 |
|
---|
815 | if (ctx == NULL) {
|
---|
816 | ctx = new_ctx = BN_CTX_new();
|
---|
817 | if (ctx == NULL)
|
---|
818 | return 0;
|
---|
819 | }
|
---|
820 |
|
---|
821 | BN_CTX_start(ctx);
|
---|
822 | n0 = BN_CTX_get(ctx);
|
---|
823 | n1 = BN_CTX_get(ctx);
|
---|
824 | n2 = BN_CTX_get(ctx);
|
---|
825 | n3 = BN_CTX_get(ctx);
|
---|
826 | if (n3 == NULL)
|
---|
827 | goto err;
|
---|
828 |
|
---|
829 | /*
|
---|
830 | * Note that in this function we must not read components of 'a' once we
|
---|
831 | * have written the corresponding components of 'r'. ('r' might the same
|
---|
832 | * as 'a'.)
|
---|
833 | */
|
---|
834 |
|
---|
835 | /* n1 */
|
---|
836 | if (a->Z_is_one) {
|
---|
837 | if (!field_sqr(group, n0, a->X, ctx))
|
---|
838 | goto err;
|
---|
839 | if (!BN_mod_lshift1_quick(n1, n0, p))
|
---|
840 | goto err;
|
---|
841 | if (!BN_mod_add_quick(n0, n0, n1, p))
|
---|
842 | goto err;
|
---|
843 | if (!BN_mod_add_quick(n1, n0, group->a, p))
|
---|
844 | goto err;
|
---|
845 | /* n1 = 3 * X_a^2 + a_curve */
|
---|
846 | } else if (group->a_is_minus3) {
|
---|
847 | if (!field_sqr(group, n1, a->Z, ctx))
|
---|
848 | goto err;
|
---|
849 | if (!BN_mod_add_quick(n0, a->X, n1, p))
|
---|
850 | goto err;
|
---|
851 | if (!BN_mod_sub_quick(n2, a->X, n1, p))
|
---|
852 | goto err;
|
---|
853 | if (!field_mul(group, n1, n0, n2, ctx))
|
---|
854 | goto err;
|
---|
855 | if (!BN_mod_lshift1_quick(n0, n1, p))
|
---|
856 | goto err;
|
---|
857 | if (!BN_mod_add_quick(n1, n0, n1, p))
|
---|
858 | goto err;
|
---|
859 | /*-
|
---|
860 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
|
---|
861 | * = 3 * X_a^2 - 3 * Z_a^4
|
---|
862 | */
|
---|
863 | } else {
|
---|
864 | if (!field_sqr(group, n0, a->X, ctx))
|
---|
865 | goto err;
|
---|
866 | if (!BN_mod_lshift1_quick(n1, n0, p))
|
---|
867 | goto err;
|
---|
868 | if (!BN_mod_add_quick(n0, n0, n1, p))
|
---|
869 | goto err;
|
---|
870 | if (!field_sqr(group, n1, a->Z, ctx))
|
---|
871 | goto err;
|
---|
872 | if (!field_sqr(group, n1, n1, ctx))
|
---|
873 | goto err;
|
---|
874 | if (!field_mul(group, n1, n1, group->a, ctx))
|
---|
875 | goto err;
|
---|
876 | if (!BN_mod_add_quick(n1, n1, n0, p))
|
---|
877 | goto err;
|
---|
878 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
|
---|
879 | }
|
---|
880 |
|
---|
881 | /* Z_r */
|
---|
882 | if (a->Z_is_one) {
|
---|
883 | if (!BN_copy(n0, a->Y))
|
---|
884 | goto err;
|
---|
885 | } else {
|
---|
886 | if (!field_mul(group, n0, a->Y, a->Z, ctx))
|
---|
887 | goto err;
|
---|
888 | }
|
---|
889 | if (!BN_mod_lshift1_quick(r->Z, n0, p))
|
---|
890 | goto err;
|
---|
891 | r->Z_is_one = 0;
|
---|
892 | /* Z_r = 2 * Y_a * Z_a */
|
---|
893 |
|
---|
894 | /* n2 */
|
---|
895 | if (!field_sqr(group, n3, a->Y, ctx))
|
---|
896 | goto err;
|
---|
897 | if (!field_mul(group, n2, a->X, n3, ctx))
|
---|
898 | goto err;
|
---|
899 | if (!BN_mod_lshift_quick(n2, n2, 2, p))
|
---|
900 | goto err;
|
---|
901 | /* n2 = 4 * X_a * Y_a^2 */
|
---|
902 |
|
---|
903 | /* X_r */
|
---|
904 | if (!BN_mod_lshift1_quick(n0, n2, p))
|
---|
905 | goto err;
|
---|
906 | if (!field_sqr(group, r->X, n1, ctx))
|
---|
907 | goto err;
|
---|
908 | if (!BN_mod_sub_quick(r->X, r->X, n0, p))
|
---|
909 | goto err;
|
---|
910 | /* X_r = n1^2 - 2 * n2 */
|
---|
911 |
|
---|
912 | /* n3 */
|
---|
913 | if (!field_sqr(group, n0, n3, ctx))
|
---|
914 | goto err;
|
---|
915 | if (!BN_mod_lshift_quick(n3, n0, 3, p))
|
---|
916 | goto err;
|
---|
917 | /* n3 = 8 * Y_a^4 */
|
---|
918 |
|
---|
919 | /* Y_r */
|
---|
920 | if (!BN_mod_sub_quick(n0, n2, r->X, p))
|
---|
921 | goto err;
|
---|
922 | if (!field_mul(group, n0, n1, n0, ctx))
|
---|
923 | goto err;
|
---|
924 | if (!BN_mod_sub_quick(r->Y, n0, n3, p))
|
---|
925 | goto err;
|
---|
926 | /* Y_r = n1 * (n2 - X_r) - n3 */
|
---|
927 |
|
---|
928 | ret = 1;
|
---|
929 |
|
---|
930 | err:
|
---|
931 | BN_CTX_end(ctx);
|
---|
932 | BN_CTX_free(new_ctx);
|
---|
933 | return ret;
|
---|
934 | }
|
---|
935 |
|
---|
936 | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
|
---|
937 | {
|
---|
938 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
|
---|
939 | /* point is its own inverse */
|
---|
940 | return 1;
|
---|
941 |
|
---|
942 | return BN_usub(point->Y, group->field, point->Y);
|
---|
943 | }
|
---|
944 |
|
---|
945 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
|
---|
946 | {
|
---|
947 | return BN_is_zero(point->Z);
|
---|
948 | }
|
---|
949 |
|
---|
950 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
---|
951 | BN_CTX *ctx)
|
---|
952 | {
|
---|
953 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
954 | const BIGNUM *, BN_CTX *);
|
---|
955 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
956 | const BIGNUM *p;
|
---|
957 | BN_CTX *new_ctx = NULL;
|
---|
958 | BIGNUM *rh, *tmp, *Z4, *Z6;
|
---|
959 | int ret = -1;
|
---|
960 |
|
---|
961 | if (EC_POINT_is_at_infinity(group, point))
|
---|
962 | return 1;
|
---|
963 |
|
---|
964 | field_mul = group->meth->field_mul;
|
---|
965 | field_sqr = group->meth->field_sqr;
|
---|
966 | p = group->field;
|
---|
967 |
|
---|
968 | if (ctx == NULL) {
|
---|
969 | ctx = new_ctx = BN_CTX_new();
|
---|
970 | if (ctx == NULL)
|
---|
971 | return -1;
|
---|
972 | }
|
---|
973 |
|
---|
974 | BN_CTX_start(ctx);
|
---|
975 | rh = BN_CTX_get(ctx);
|
---|
976 | tmp = BN_CTX_get(ctx);
|
---|
977 | Z4 = BN_CTX_get(ctx);
|
---|
978 | Z6 = BN_CTX_get(ctx);
|
---|
979 | if (Z6 == NULL)
|
---|
980 | goto err;
|
---|
981 |
|
---|
982 | /*-
|
---|
983 | * We have a curve defined by a Weierstrass equation
|
---|
984 | * y^2 = x^3 + a*x + b.
|
---|
985 | * The point to consider is given in Jacobian projective coordinates
|
---|
986 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
|
---|
987 | * Substituting this and multiplying by Z^6 transforms the above equation into
|
---|
988 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
|
---|
989 | * To test this, we add up the right-hand side in 'rh'.
|
---|
990 | */
|
---|
991 |
|
---|
992 | /* rh := X^2 */
|
---|
993 | if (!field_sqr(group, rh, point->X, ctx))
|
---|
994 | goto err;
|
---|
995 |
|
---|
996 | if (!point->Z_is_one) {
|
---|
997 | if (!field_sqr(group, tmp, point->Z, ctx))
|
---|
998 | goto err;
|
---|
999 | if (!field_sqr(group, Z4, tmp, ctx))
|
---|
1000 | goto err;
|
---|
1001 | if (!field_mul(group, Z6, Z4, tmp, ctx))
|
---|
1002 | goto err;
|
---|
1003 |
|
---|
1004 | /* rh := (rh + a*Z^4)*X */
|
---|
1005 | if (group->a_is_minus3) {
|
---|
1006 | if (!BN_mod_lshift1_quick(tmp, Z4, p))
|
---|
1007 | goto err;
|
---|
1008 | if (!BN_mod_add_quick(tmp, tmp, Z4, p))
|
---|
1009 | goto err;
|
---|
1010 | if (!BN_mod_sub_quick(rh, rh, tmp, p))
|
---|
1011 | goto err;
|
---|
1012 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1013 | goto err;
|
---|
1014 | } else {
|
---|
1015 | if (!field_mul(group, tmp, Z4, group->a, ctx))
|
---|
1016 | goto err;
|
---|
1017 | if (!BN_mod_add_quick(rh, rh, tmp, p))
|
---|
1018 | goto err;
|
---|
1019 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1020 | goto err;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | /* rh := rh + b*Z^6 */
|
---|
1024 | if (!field_mul(group, tmp, group->b, Z6, ctx))
|
---|
1025 | goto err;
|
---|
1026 | if (!BN_mod_add_quick(rh, rh, tmp, p))
|
---|
1027 | goto err;
|
---|
1028 | } else {
|
---|
1029 | /* point->Z_is_one */
|
---|
1030 |
|
---|
1031 | /* rh := (rh + a)*X */
|
---|
1032 | if (!BN_mod_add_quick(rh, rh, group->a, p))
|
---|
1033 | goto err;
|
---|
1034 | if (!field_mul(group, rh, rh, point->X, ctx))
|
---|
1035 | goto err;
|
---|
1036 | /* rh := rh + b */
|
---|
1037 | if (!BN_mod_add_quick(rh, rh, group->b, p))
|
---|
1038 | goto err;
|
---|
1039 | }
|
---|
1040 |
|
---|
1041 | /* 'lh' := Y^2 */
|
---|
1042 | if (!field_sqr(group, tmp, point->Y, ctx))
|
---|
1043 | goto err;
|
---|
1044 |
|
---|
1045 | ret = (0 == BN_ucmp(tmp, rh));
|
---|
1046 |
|
---|
1047 | err:
|
---|
1048 | BN_CTX_end(ctx);
|
---|
1049 | BN_CTX_free(new_ctx);
|
---|
1050 | return ret;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
---|
1054 | const EC_POINT *b, BN_CTX *ctx)
|
---|
1055 | {
|
---|
1056 | /*-
|
---|
1057 | * return values:
|
---|
1058 | * -1 error
|
---|
1059 | * 0 equal (in affine coordinates)
|
---|
1060 | * 1 not equal
|
---|
1061 | */
|
---|
1062 |
|
---|
1063 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
1064 | const BIGNUM *, BN_CTX *);
|
---|
1065 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
1066 | BN_CTX *new_ctx = NULL;
|
---|
1067 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
|
---|
1068 | const BIGNUM *tmp1_, *tmp2_;
|
---|
1069 | int ret = -1;
|
---|
1070 |
|
---|
1071 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
1072 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | if (EC_POINT_is_at_infinity(group, b))
|
---|
1076 | return 1;
|
---|
1077 |
|
---|
1078 | if (a->Z_is_one && b->Z_is_one) {
|
---|
1079 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
|
---|
1080 | }
|
---|
1081 |
|
---|
1082 | field_mul = group->meth->field_mul;
|
---|
1083 | field_sqr = group->meth->field_sqr;
|
---|
1084 |
|
---|
1085 | if (ctx == NULL) {
|
---|
1086 | ctx = new_ctx = BN_CTX_new();
|
---|
1087 | if (ctx == NULL)
|
---|
1088 | return -1;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | BN_CTX_start(ctx);
|
---|
1092 | tmp1 = BN_CTX_get(ctx);
|
---|
1093 | tmp2 = BN_CTX_get(ctx);
|
---|
1094 | Za23 = BN_CTX_get(ctx);
|
---|
1095 | Zb23 = BN_CTX_get(ctx);
|
---|
1096 | if (Zb23 == NULL)
|
---|
1097 | goto end;
|
---|
1098 |
|
---|
1099 | /*-
|
---|
1100 | * We have to decide whether
|
---|
1101 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
|
---|
1102 | * or equivalently, whether
|
---|
1103 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
|
---|
1104 | */
|
---|
1105 |
|
---|
1106 | if (!b->Z_is_one) {
|
---|
1107 | if (!field_sqr(group, Zb23, b->Z, ctx))
|
---|
1108 | goto end;
|
---|
1109 | if (!field_mul(group, tmp1, a->X, Zb23, ctx))
|
---|
1110 | goto end;
|
---|
1111 | tmp1_ = tmp1;
|
---|
1112 | } else
|
---|
1113 | tmp1_ = a->X;
|
---|
1114 | if (!a->Z_is_one) {
|
---|
1115 | if (!field_sqr(group, Za23, a->Z, ctx))
|
---|
1116 | goto end;
|
---|
1117 | if (!field_mul(group, tmp2, b->X, Za23, ctx))
|
---|
1118 | goto end;
|
---|
1119 | tmp2_ = tmp2;
|
---|
1120 | } else
|
---|
1121 | tmp2_ = b->X;
|
---|
1122 |
|
---|
1123 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */
|
---|
1124 | if (BN_cmp(tmp1_, tmp2_) != 0) {
|
---|
1125 | ret = 1; /* points differ */
|
---|
1126 | goto end;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | if (!b->Z_is_one) {
|
---|
1130 | if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
|
---|
1131 | goto end;
|
---|
1132 | if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
|
---|
1133 | goto end;
|
---|
1134 | /* tmp1_ = tmp1 */
|
---|
1135 | } else
|
---|
1136 | tmp1_ = a->Y;
|
---|
1137 | if (!a->Z_is_one) {
|
---|
1138 | if (!field_mul(group, Za23, Za23, a->Z, ctx))
|
---|
1139 | goto end;
|
---|
1140 | if (!field_mul(group, tmp2, b->Y, Za23, ctx))
|
---|
1141 | goto end;
|
---|
1142 | /* tmp2_ = tmp2 */
|
---|
1143 | } else
|
---|
1144 | tmp2_ = b->Y;
|
---|
1145 |
|
---|
1146 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
|
---|
1147 | if (BN_cmp(tmp1_, tmp2_) != 0) {
|
---|
1148 | ret = 1; /* points differ */
|
---|
1149 | goto end;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 | /* points are equal */
|
---|
1153 | ret = 0;
|
---|
1154 |
|
---|
1155 | end:
|
---|
1156 | BN_CTX_end(ctx);
|
---|
1157 | BN_CTX_free(new_ctx);
|
---|
1158 | return ret;
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
|
---|
1162 | BN_CTX *ctx)
|
---|
1163 | {
|
---|
1164 | BN_CTX *new_ctx = NULL;
|
---|
1165 | BIGNUM *x, *y;
|
---|
1166 | int ret = 0;
|
---|
1167 |
|
---|
1168 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
|
---|
1169 | return 1;
|
---|
1170 |
|
---|
1171 | if (ctx == NULL) {
|
---|
1172 | ctx = new_ctx = BN_CTX_new();
|
---|
1173 | if (ctx == NULL)
|
---|
1174 | return 0;
|
---|
1175 | }
|
---|
1176 |
|
---|
1177 | BN_CTX_start(ctx);
|
---|
1178 | x = BN_CTX_get(ctx);
|
---|
1179 | y = BN_CTX_get(ctx);
|
---|
1180 | if (y == NULL)
|
---|
1181 | goto err;
|
---|
1182 |
|
---|
1183 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
|
---|
1184 | goto err;
|
---|
1185 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
|
---|
1186 | goto err;
|
---|
1187 | if (!point->Z_is_one) {
|
---|
1188 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
|
---|
1189 | goto err;
|
---|
1190 | }
|
---|
1191 |
|
---|
1192 | ret = 1;
|
---|
1193 |
|
---|
1194 | err:
|
---|
1195 | BN_CTX_end(ctx);
|
---|
1196 | BN_CTX_free(new_ctx);
|
---|
1197 | return ret;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
---|
1201 | EC_POINT *points[], BN_CTX *ctx)
|
---|
1202 | {
|
---|
1203 | BN_CTX *new_ctx = NULL;
|
---|
1204 | BIGNUM *tmp, *tmp_Z;
|
---|
1205 | BIGNUM **prod_Z = NULL;
|
---|
1206 | size_t i;
|
---|
1207 | int ret = 0;
|
---|
1208 |
|
---|
1209 | if (num == 0)
|
---|
1210 | return 1;
|
---|
1211 |
|
---|
1212 | if (ctx == NULL) {
|
---|
1213 | ctx = new_ctx = BN_CTX_new();
|
---|
1214 | if (ctx == NULL)
|
---|
1215 | return 0;
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | BN_CTX_start(ctx);
|
---|
1219 | tmp = BN_CTX_get(ctx);
|
---|
1220 | tmp_Z = BN_CTX_get(ctx);
|
---|
1221 | if (tmp_Z == NULL)
|
---|
1222 | goto err;
|
---|
1223 |
|
---|
1224 | prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
|
---|
1225 | if (prod_Z == NULL)
|
---|
1226 | goto err;
|
---|
1227 | for (i = 0; i < num; i++) {
|
---|
1228 | prod_Z[i] = BN_new();
|
---|
1229 | if (prod_Z[i] == NULL)
|
---|
1230 | goto err;
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
---|
1235 | * skipping any zero-valued inputs (pretend that they're 1).
|
---|
1236 | */
|
---|
1237 |
|
---|
1238 | if (!BN_is_zero(points[0]->Z)) {
|
---|
1239 | if (!BN_copy(prod_Z[0], points[0]->Z))
|
---|
1240 | goto err;
|
---|
1241 | } else {
|
---|
1242 | if (group->meth->field_set_to_one != 0) {
|
---|
1243 | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
|
---|
1244 | goto err;
|
---|
1245 | } else {
|
---|
1246 | if (!BN_one(prod_Z[0]))
|
---|
1247 | goto err;
|
---|
1248 | }
|
---|
1249 | }
|
---|
1250 |
|
---|
1251 | for (i = 1; i < num; i++) {
|
---|
1252 | if (!BN_is_zero(points[i]->Z)) {
|
---|
1253 | if (!group->
|
---|
1254 | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
|
---|
1255 | ctx))
|
---|
1256 | goto err;
|
---|
1257 | } else {
|
---|
1258 | if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
|
---|
1259 | goto err;
|
---|
1260 | }
|
---|
1261 | }
|
---|
1262 |
|
---|
1263 | /*
|
---|
1264 | * Now use a single explicit inversion to replace every non-zero
|
---|
1265 | * points[i]->Z by its inverse.
|
---|
1266 | */
|
---|
1267 |
|
---|
1268 | if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
|
---|
1269 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
|
---|
1270 | goto err;
|
---|
1271 | }
|
---|
1272 | if (group->meth->field_encode != 0) {
|
---|
1273 | /*
|
---|
1274 | * In the Montgomery case, we just turned R*H (representing H) into
|
---|
1275 | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
|
---|
1276 | * multiply by the Montgomery factor twice.
|
---|
1277 | */
|
---|
1278 | if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
---|
1279 | goto err;
|
---|
1280 | if (!group->meth->field_encode(group, tmp, tmp, ctx))
|
---|
1281 | goto err;
|
---|
1282 | }
|
---|
1283 |
|
---|
1284 | for (i = num - 1; i > 0; --i) {
|
---|
1285 | /*
|
---|
1286 | * Loop invariant: tmp is the product of the inverses of points[0]->Z
|
---|
1287 | * .. points[i]->Z (zero-valued inputs skipped).
|
---|
1288 | */
|
---|
1289 | if (!BN_is_zero(points[i]->Z)) {
|
---|
1290 | /*
|
---|
1291 | * Set tmp_Z to the inverse of points[i]->Z (as product of Z
|
---|
1292 | * inverses 0 .. i, Z values 0 .. i - 1).
|
---|
1293 | */
|
---|
1294 | if (!group->
|
---|
1295 | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
|
---|
1296 | goto err;
|
---|
1297 | /*
|
---|
1298 | * Update tmp to satisfy the loop invariant for i - 1.
|
---|
1299 | */
|
---|
1300 | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
|
---|
1301 | goto err;
|
---|
1302 | /* Replace points[i]->Z by its inverse. */
|
---|
1303 | if (!BN_copy(points[i]->Z, tmp_Z))
|
---|
1304 | goto err;
|
---|
1305 | }
|
---|
1306 | }
|
---|
1307 |
|
---|
1308 | if (!BN_is_zero(points[0]->Z)) {
|
---|
1309 | /* Replace points[0]->Z by its inverse. */
|
---|
1310 | if (!BN_copy(points[0]->Z, tmp))
|
---|
1311 | goto err;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /* Finally, fix up the X and Y coordinates for all points. */
|
---|
1315 |
|
---|
1316 | for (i = 0; i < num; i++) {
|
---|
1317 | EC_POINT *p = points[i];
|
---|
1318 |
|
---|
1319 | if (!BN_is_zero(p->Z)) {
|
---|
1320 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
|
---|
1321 |
|
---|
1322 | if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
|
---|
1323 | goto err;
|
---|
1324 | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
|
---|
1325 | goto err;
|
---|
1326 |
|
---|
1327 | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
|
---|
1328 | goto err;
|
---|
1329 | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
|
---|
1330 | goto err;
|
---|
1331 |
|
---|
1332 | if (group->meth->field_set_to_one != 0) {
|
---|
1333 | if (!group->meth->field_set_to_one(group, p->Z, ctx))
|
---|
1334 | goto err;
|
---|
1335 | } else {
|
---|
1336 | if (!BN_one(p->Z))
|
---|
1337 | goto err;
|
---|
1338 | }
|
---|
1339 | p->Z_is_one = 1;
|
---|
1340 | }
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | ret = 1;
|
---|
1344 |
|
---|
1345 | err:
|
---|
1346 | BN_CTX_end(ctx);
|
---|
1347 | BN_CTX_free(new_ctx);
|
---|
1348 | if (prod_Z != NULL) {
|
---|
1349 | for (i = 0; i < num; i++) {
|
---|
1350 | if (prod_Z[i] == NULL)
|
---|
1351 | break;
|
---|
1352 | BN_clear_free(prod_Z[i]);
|
---|
1353 | }
|
---|
1354 | OPENSSL_free(prod_Z);
|
---|
1355 | }
|
---|
1356 | return ret;
|
---|
1357 | }
|
---|
1358 |
|
---|
1359 | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
---|
1360 | const BIGNUM *b, BN_CTX *ctx)
|
---|
1361 | {
|
---|
1362 | return BN_mod_mul(r, a, b, group->field, ctx);
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
---|
1366 | BN_CTX *ctx)
|
---|
1367 | {
|
---|
1368 | return BN_mod_sqr(r, a, group->field, ctx);
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 | /*-
|
---|
1372 | * Computes the multiplicative inverse of a in GF(p), storing the result in r.
|
---|
1373 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
|
---|
1374 | * Since we don't have a Mont structure here, SCA hardening is with blinding.
|
---|
1375 | * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
|
---|
1376 | */
|
---|
1377 | int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
|
---|
1378 | BN_CTX *ctx)
|
---|
1379 | {
|
---|
1380 | BIGNUM *e = NULL;
|
---|
1381 | BN_CTX *new_ctx = NULL;
|
---|
1382 | int ret = 0;
|
---|
1383 |
|
---|
1384 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
|
---|
1385 | return 0;
|
---|
1386 |
|
---|
1387 | BN_CTX_start(ctx);
|
---|
1388 | if ((e = BN_CTX_get(ctx)) == NULL)
|
---|
1389 | goto err;
|
---|
1390 |
|
---|
1391 | do {
|
---|
1392 | if (!BN_priv_rand_range(e, group->field))
|
---|
1393 | goto err;
|
---|
1394 | } while (BN_is_zero(e));
|
---|
1395 |
|
---|
1396 | /* r := a * e */
|
---|
1397 | if (!group->meth->field_mul(group, r, a, e, ctx))
|
---|
1398 | goto err;
|
---|
1399 | /* r := 1/(a * e) */
|
---|
1400 | if (!BN_mod_inverse(r, r, group->field, ctx)) {
|
---|
1401 | ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
|
---|
1402 | goto err;
|
---|
1403 | }
|
---|
1404 | /* r := e/(a * e) = 1/a */
|
---|
1405 | if (!group->meth->field_mul(group, r, r, e, ctx))
|
---|
1406 | goto err;
|
---|
1407 |
|
---|
1408 | ret = 1;
|
---|
1409 |
|
---|
1410 | err:
|
---|
1411 | BN_CTX_end(ctx);
|
---|
1412 | BN_CTX_free(new_ctx);
|
---|
1413 | return ret;
|
---|
1414 | }
|
---|
1415 |
|
---|
1416 | /*-
|
---|
1417 | * Apply randomization of EC point projective coordinates:
|
---|
1418 | *
|
---|
1419 | * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
|
---|
1420 | * lambda = [1,group->field)
|
---|
1421 | *
|
---|
1422 | */
|
---|
1423 | int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
|
---|
1424 | BN_CTX *ctx)
|
---|
1425 | {
|
---|
1426 | int ret = 0;
|
---|
1427 | BIGNUM *lambda = NULL;
|
---|
1428 | BIGNUM *temp = NULL;
|
---|
1429 |
|
---|
1430 | BN_CTX_start(ctx);
|
---|
1431 | lambda = BN_CTX_get(ctx);
|
---|
1432 | temp = BN_CTX_get(ctx);
|
---|
1433 | if (temp == NULL) {
|
---|
1434 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
|
---|
1435 | goto end;
|
---|
1436 | }
|
---|
1437 |
|
---|
1438 | /*-
|
---|
1439 | * Make sure lambda is not zero.
|
---|
1440 | * If the RNG fails, we cannot blind but nevertheless want
|
---|
1441 | * code to continue smoothly and not clobber the error stack.
|
---|
1442 | */
|
---|
1443 | do {
|
---|
1444 | ERR_set_mark();
|
---|
1445 | ret = BN_priv_rand_range(lambda, group->field);
|
---|
1446 | ERR_pop_to_mark();
|
---|
1447 | if (ret == 0) {
|
---|
1448 | ret = 1;
|
---|
1449 | goto end;
|
---|
1450 | }
|
---|
1451 | } while (BN_is_zero(lambda));
|
---|
1452 |
|
---|
1453 | /* if field_encode defined convert between representations */
|
---|
1454 | if ((group->meth->field_encode != NULL
|
---|
1455 | && !group->meth->field_encode(group, lambda, lambda, ctx))
|
---|
1456 | || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
|
---|
1457 | || !group->meth->field_sqr(group, temp, lambda, ctx)
|
---|
1458 | || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
|
---|
1459 | || !group->meth->field_mul(group, temp, temp, lambda, ctx)
|
---|
1460 | || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
|
---|
1461 | goto end;
|
---|
1462 |
|
---|
1463 | p->Z_is_one = 0;
|
---|
1464 | ret = 1;
|
---|
1465 |
|
---|
1466 | end:
|
---|
1467 | BN_CTX_end(ctx);
|
---|
1468 | return ret;
|
---|
1469 | }
|
---|
1470 |
|
---|
1471 | /*-
|
---|
1472 | * Input:
|
---|
1473 | * - p: affine coordinates
|
---|
1474 | *
|
---|
1475 | * Output:
|
---|
1476 | * - s := p, r := 2p: blinded projective (homogeneous) coordinates
|
---|
1477 | *
|
---|
1478 | * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
|
---|
1479 | * multiplication resistant against side channel attacks" appendix, described at
|
---|
1480 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
|
---|
1481 | * simplified for Z1=1.
|
---|
1482 | *
|
---|
1483 | * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
|
---|
1484 | * for any non-zero \lambda that holds for projective (homogeneous) coords.
|
---|
1485 | */
|
---|
1486 | int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
|
---|
1487 | EC_POINT *r, EC_POINT *s,
|
---|
1488 | EC_POINT *p, BN_CTX *ctx)
|
---|
1489 | {
|
---|
1490 | BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
|
---|
1491 |
|
---|
1492 | t1 = s->Z;
|
---|
1493 | t2 = r->Z;
|
---|
1494 | t3 = s->X;
|
---|
1495 | t4 = r->X;
|
---|
1496 | t5 = s->Y;
|
---|
1497 |
|
---|
1498 | if (!p->Z_is_one /* r := 2p */
|
---|
1499 | || !group->meth->field_sqr(group, t3, p->X, ctx)
|
---|
1500 | || !BN_mod_sub_quick(t4, t3, group->a, group->field)
|
---|
1501 | || !group->meth->field_sqr(group, t4, t4, ctx)
|
---|
1502 | || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
|
---|
1503 | || !BN_mod_lshift_quick(t5, t5, 3, group->field)
|
---|
1504 | /* r->X coord output */
|
---|
1505 | || !BN_mod_sub_quick(r->X, t4, t5, group->field)
|
---|
1506 | || !BN_mod_add_quick(t1, t3, group->a, group->field)
|
---|
1507 | || !group->meth->field_mul(group, t2, p->X, t1, ctx)
|
---|
1508 | || !BN_mod_add_quick(t2, group->b, t2, group->field)
|
---|
1509 | /* r->Z coord output */
|
---|
1510 | || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
|
---|
1511 | return 0;
|
---|
1512 |
|
---|
1513 | /* make sure lambda (r->Y here for storage) is not zero */
|
---|
1514 | do {
|
---|
1515 | if (!BN_priv_rand_range(r->Y, group->field))
|
---|
1516 | return 0;
|
---|
1517 | } while (BN_is_zero(r->Y));
|
---|
1518 |
|
---|
1519 | /* make sure lambda (s->Z here for storage) is not zero */
|
---|
1520 | do {
|
---|
1521 | if (!BN_priv_rand_range(s->Z, group->field))
|
---|
1522 | return 0;
|
---|
1523 | } while (BN_is_zero(s->Z));
|
---|
1524 |
|
---|
1525 | /* if field_encode defined convert between representations */
|
---|
1526 | if (group->meth->field_encode != NULL
|
---|
1527 | && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
|
---|
1528 | || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
|
---|
1529 | return 0;
|
---|
1530 |
|
---|
1531 | /* blind r and s independently */
|
---|
1532 | if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
|
---|
1533 | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
|
---|
1534 | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
|
---|
1535 | return 0;
|
---|
1536 |
|
---|
1537 | r->Z_is_one = 0;
|
---|
1538 | s->Z_is_one = 0;
|
---|
1539 |
|
---|
1540 | return 1;
|
---|
1541 | }
|
---|
1542 |
|
---|
1543 | /*-
|
---|
1544 | * Input:
|
---|
1545 | * - s, r: projective (homogeneous) coordinates
|
---|
1546 | * - p: affine coordinates
|
---|
1547 | *
|
---|
1548 | * Output:
|
---|
1549 | * - s := r + s, r := 2r: projective (homogeneous) coordinates
|
---|
1550 | *
|
---|
1551 | * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
|
---|
1552 | * "A fast parallel elliptic curve multiplication resistant against side channel
|
---|
1553 | * attacks", as described at
|
---|
1554 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
|
---|
1555 | */
|
---|
1556 | int ec_GFp_simple_ladder_step(const EC_GROUP *group,
|
---|
1557 | EC_POINT *r, EC_POINT *s,
|
---|
1558 | EC_POINT *p, BN_CTX *ctx)
|
---|
1559 | {
|
---|
1560 | int ret = 0;
|
---|
1561 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
|
---|
1562 |
|
---|
1563 | BN_CTX_start(ctx);
|
---|
1564 | t0 = BN_CTX_get(ctx);
|
---|
1565 | t1 = BN_CTX_get(ctx);
|
---|
1566 | t2 = BN_CTX_get(ctx);
|
---|
1567 | t3 = BN_CTX_get(ctx);
|
---|
1568 | t4 = BN_CTX_get(ctx);
|
---|
1569 | t5 = BN_CTX_get(ctx);
|
---|
1570 | t6 = BN_CTX_get(ctx);
|
---|
1571 |
|
---|
1572 | if (t6 == NULL
|
---|
1573 | || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
|
---|
1574 | || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
|
---|
1575 | || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
|
---|
1576 | || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
|
---|
1577 | || !group->meth->field_mul(group, t5, group->a, t0, ctx)
|
---|
1578 | || !BN_mod_add_quick(t5, t6, t5, group->field)
|
---|
1579 | || !BN_mod_add_quick(t6, t3, t4, group->field)
|
---|
1580 | || !group->meth->field_mul(group, t5, t6, t5, ctx)
|
---|
1581 | || !group->meth->field_sqr(group, t0, t0, ctx)
|
---|
1582 | || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
|
---|
1583 | || !group->meth->field_mul(group, t0, t2, t0, ctx)
|
---|
1584 | || !BN_mod_lshift1_quick(t5, t5, group->field)
|
---|
1585 | || !BN_mod_sub_quick(t3, t4, t3, group->field)
|
---|
1586 | /* s->Z coord output */
|
---|
1587 | || !group->meth->field_sqr(group, s->Z, t3, ctx)
|
---|
1588 | || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
|
---|
1589 | || !BN_mod_add_quick(t0, t0, t5, group->field)
|
---|
1590 | /* s->X coord output */
|
---|
1591 | || !BN_mod_sub_quick(s->X, t0, t4, group->field)
|
---|
1592 | || !group->meth->field_sqr(group, t4, r->X, ctx)
|
---|
1593 | || !group->meth->field_sqr(group, t5, r->Z, ctx)
|
---|
1594 | || !group->meth->field_mul(group, t6, t5, group->a, ctx)
|
---|
1595 | || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
|
---|
1596 | || !group->meth->field_sqr(group, t1, t1, ctx)
|
---|
1597 | || !BN_mod_sub_quick(t1, t1, t4, group->field)
|
---|
1598 | || !BN_mod_sub_quick(t1, t1, t5, group->field)
|
---|
1599 | || !BN_mod_sub_quick(t3, t4, t6, group->field)
|
---|
1600 | || !group->meth->field_sqr(group, t3, t3, ctx)
|
---|
1601 | || !group->meth->field_mul(group, t0, t5, t1, ctx)
|
---|
1602 | || !group->meth->field_mul(group, t0, t2, t0, ctx)
|
---|
1603 | /* r->X coord output */
|
---|
1604 | || !BN_mod_sub_quick(r->X, t3, t0, group->field)
|
---|
1605 | || !BN_mod_add_quick(t3, t4, t6, group->field)
|
---|
1606 | || !group->meth->field_sqr(group, t4, t5, ctx)
|
---|
1607 | || !group->meth->field_mul(group, t4, t4, t2, ctx)
|
---|
1608 | || !group->meth->field_mul(group, t1, t1, t3, ctx)
|
---|
1609 | || !BN_mod_lshift1_quick(t1, t1, group->field)
|
---|
1610 | /* r->Z coord output */
|
---|
1611 | || !BN_mod_add_quick(r->Z, t4, t1, group->field))
|
---|
1612 | goto err;
|
---|
1613 |
|
---|
1614 | ret = 1;
|
---|
1615 |
|
---|
1616 | err:
|
---|
1617 | BN_CTX_end(ctx);
|
---|
1618 | return ret;
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 | /*-
|
---|
1622 | * Input:
|
---|
1623 | * - s, r: projective (homogeneous) coordinates
|
---|
1624 | * - p: affine coordinates
|
---|
1625 | *
|
---|
1626 | * Output:
|
---|
1627 | * - r := (x,y): affine coordinates
|
---|
1628 | *
|
---|
1629 | * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
|
---|
1630 | * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
|
---|
1631 | * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
|
---|
1632 | * coords, and return r in affine coordinates.
|
---|
1633 | *
|
---|
1634 | * X4 = two*Y1*X2*Z3*Z2;
|
---|
1635 | * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
|
---|
1636 | * Z4 = two*Y1*Z3*SQR(Z2);
|
---|
1637 | *
|
---|
1638 | * Z4 != 0 because:
|
---|
1639 | * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
|
---|
1640 | * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
|
---|
1641 | * - Y1==0 implies p has order 2, so either r or s are infinity and handled by
|
---|
1642 | * one of the BN_is_zero(...) branches.
|
---|
1643 | */
|
---|
1644 | int ec_GFp_simple_ladder_post(const EC_GROUP *group,
|
---|
1645 | EC_POINT *r, EC_POINT *s,
|
---|
1646 | EC_POINT *p, BN_CTX *ctx)
|
---|
1647 | {
|
---|
1648 | int ret = 0;
|
---|
1649 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
|
---|
1650 |
|
---|
1651 | if (BN_is_zero(r->Z))
|
---|
1652 | return EC_POINT_set_to_infinity(group, r);
|
---|
1653 |
|
---|
1654 | if (BN_is_zero(s->Z)) {
|
---|
1655 | if (!EC_POINT_copy(r, p)
|
---|
1656 | || !EC_POINT_invert(group, r, ctx))
|
---|
1657 | return 0;
|
---|
1658 | return 1;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | BN_CTX_start(ctx);
|
---|
1662 | t0 = BN_CTX_get(ctx);
|
---|
1663 | t1 = BN_CTX_get(ctx);
|
---|
1664 | t2 = BN_CTX_get(ctx);
|
---|
1665 | t3 = BN_CTX_get(ctx);
|
---|
1666 | t4 = BN_CTX_get(ctx);
|
---|
1667 | t5 = BN_CTX_get(ctx);
|
---|
1668 | t6 = BN_CTX_get(ctx);
|
---|
1669 |
|
---|
1670 | if (t6 == NULL
|
---|
1671 | || !BN_mod_lshift1_quick(t4, p->Y, group->field)
|
---|
1672 | || !group->meth->field_mul(group, t6, r->X, t4, ctx)
|
---|
1673 | || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
|
---|
1674 | || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
|
---|
1675 | || !BN_mod_lshift1_quick(t1, group->b, group->field)
|
---|
1676 | || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
|
---|
1677 | || !group->meth->field_sqr(group, t3, r->Z, ctx)
|
---|
1678 | || !group->meth->field_mul(group, t2, t3, t1, ctx)
|
---|
1679 | || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
|
---|
1680 | || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
|
---|
1681 | || !BN_mod_add_quick(t1, t1, t6, group->field)
|
---|
1682 | || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
|
---|
1683 | || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
|
---|
1684 | || !BN_mod_add_quick(t6, r->X, t0, group->field)
|
---|
1685 | || !group->meth->field_mul(group, t6, t6, t1, ctx)
|
---|
1686 | || !BN_mod_add_quick(t6, t6, t2, group->field)
|
---|
1687 | || !BN_mod_sub_quick(t0, t0, r->X, group->field)
|
---|
1688 | || !group->meth->field_sqr(group, t0, t0, ctx)
|
---|
1689 | || !group->meth->field_mul(group, t0, t0, s->X, ctx)
|
---|
1690 | || !BN_mod_sub_quick(t0, t6, t0, group->field)
|
---|
1691 | || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
|
---|
1692 | || !group->meth->field_mul(group, t1, t3, t1, ctx)
|
---|
1693 | || (group->meth->field_decode != NULL
|
---|
1694 | && !group->meth->field_decode(group, t1, t1, ctx))
|
---|
1695 | || !group->meth->field_inv(group, t1, t1, ctx)
|
---|
1696 | || (group->meth->field_encode != NULL
|
---|
1697 | && !group->meth->field_encode(group, t1, t1, ctx))
|
---|
1698 | || !group->meth->field_mul(group, r->X, t5, t1, ctx)
|
---|
1699 | || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
|
---|
1700 | goto err;
|
---|
1701 |
|
---|
1702 | if (group->meth->field_set_to_one != NULL) {
|
---|
1703 | if (!group->meth->field_set_to_one(group, r->Z, ctx))
|
---|
1704 | goto err;
|
---|
1705 | } else {
|
---|
1706 | if (!BN_one(r->Z))
|
---|
1707 | goto err;
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 | r->Z_is_one = 1;
|
---|
1711 | ret = 1;
|
---|
1712 |
|
---|
1713 | err:
|
---|
1714 | BN_CTX_end(ctx);
|
---|
1715 | return ret;
|
---|
1716 | }
|
---|