1 | /*
|
---|
2 | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stddef.h>
|
---|
11 | #include <stdio.h>
|
---|
12 | #include <string.h>
|
---|
13 | #include <openssl/evp.h>
|
---|
14 | #include <openssl/err.h>
|
---|
15 | #include "internal/numbers.h"
|
---|
16 |
|
---|
17 | #ifndef OPENSSL_NO_SCRYPT
|
---|
18 |
|
---|
19 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
|
---|
20 | static void salsa208_word_specification(uint32_t inout[16])
|
---|
21 | {
|
---|
22 | int i;
|
---|
23 | uint32_t x[16];
|
---|
24 | memcpy(x, inout, sizeof(x));
|
---|
25 | for (i = 8; i > 0; i -= 2) {
|
---|
26 | x[4] ^= R(x[0] + x[12], 7);
|
---|
27 | x[8] ^= R(x[4] + x[0], 9);
|
---|
28 | x[12] ^= R(x[8] + x[4], 13);
|
---|
29 | x[0] ^= R(x[12] + x[8], 18);
|
---|
30 | x[9] ^= R(x[5] + x[1], 7);
|
---|
31 | x[13] ^= R(x[9] + x[5], 9);
|
---|
32 | x[1] ^= R(x[13] + x[9], 13);
|
---|
33 | x[5] ^= R(x[1] + x[13], 18);
|
---|
34 | x[14] ^= R(x[10] + x[6], 7);
|
---|
35 | x[2] ^= R(x[14] + x[10], 9);
|
---|
36 | x[6] ^= R(x[2] + x[14], 13);
|
---|
37 | x[10] ^= R(x[6] + x[2], 18);
|
---|
38 | x[3] ^= R(x[15] + x[11], 7);
|
---|
39 | x[7] ^= R(x[3] + x[15], 9);
|
---|
40 | x[11] ^= R(x[7] + x[3], 13);
|
---|
41 | x[15] ^= R(x[11] + x[7], 18);
|
---|
42 | x[1] ^= R(x[0] + x[3], 7);
|
---|
43 | x[2] ^= R(x[1] + x[0], 9);
|
---|
44 | x[3] ^= R(x[2] + x[1], 13);
|
---|
45 | x[0] ^= R(x[3] + x[2], 18);
|
---|
46 | x[6] ^= R(x[5] + x[4], 7);
|
---|
47 | x[7] ^= R(x[6] + x[5], 9);
|
---|
48 | x[4] ^= R(x[7] + x[6], 13);
|
---|
49 | x[5] ^= R(x[4] + x[7], 18);
|
---|
50 | x[11] ^= R(x[10] + x[9], 7);
|
---|
51 | x[8] ^= R(x[11] + x[10], 9);
|
---|
52 | x[9] ^= R(x[8] + x[11], 13);
|
---|
53 | x[10] ^= R(x[9] + x[8], 18);
|
---|
54 | x[12] ^= R(x[15] + x[14], 7);
|
---|
55 | x[13] ^= R(x[12] + x[15], 9);
|
---|
56 | x[14] ^= R(x[13] + x[12], 13);
|
---|
57 | x[15] ^= R(x[14] + x[13], 18);
|
---|
58 | }
|
---|
59 | for (i = 0; i < 16; ++i)
|
---|
60 | inout[i] += x[i];
|
---|
61 | OPENSSL_cleanse(x, sizeof(x));
|
---|
62 | }
|
---|
63 |
|
---|
64 | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
|
---|
65 | {
|
---|
66 | uint64_t i, j;
|
---|
67 | uint32_t X[16], *pB;
|
---|
68 |
|
---|
69 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
|
---|
70 | pB = B;
|
---|
71 | for (i = 0; i < r * 2; i++) {
|
---|
72 | for (j = 0; j < 16; j++)
|
---|
73 | X[j] ^= *pB++;
|
---|
74 | salsa208_word_specification(X);
|
---|
75 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
|
---|
76 | }
|
---|
77 | OPENSSL_cleanse(X, sizeof(X));
|
---|
78 | }
|
---|
79 |
|
---|
80 | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
|
---|
81 | uint32_t *X, uint32_t *T, uint32_t *V)
|
---|
82 | {
|
---|
83 | unsigned char *pB;
|
---|
84 | uint32_t *pV;
|
---|
85 | uint64_t i, k;
|
---|
86 |
|
---|
87 | /* Convert from little endian input */
|
---|
88 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
|
---|
89 | *pV = *pB++;
|
---|
90 | *pV |= *pB++ << 8;
|
---|
91 | *pV |= *pB++ << 16;
|
---|
92 | *pV |= (uint32_t)*pB++ << 24;
|
---|
93 | }
|
---|
94 |
|
---|
95 | for (i = 1; i < N; i++, pV += 32 * r)
|
---|
96 | scryptBlockMix(pV, pV - 32 * r, r);
|
---|
97 |
|
---|
98 | scryptBlockMix(X, V + (N - 1) * 32 * r, r);
|
---|
99 |
|
---|
100 | for (i = 0; i < N; i++) {
|
---|
101 | uint32_t j;
|
---|
102 | j = X[16 * (2 * r - 1)] % N;
|
---|
103 | pV = V + 32 * r * j;
|
---|
104 | for (k = 0; k < 32 * r; k++)
|
---|
105 | T[k] = X[k] ^ *pV++;
|
---|
106 | scryptBlockMix(X, T, r);
|
---|
107 | }
|
---|
108 | /* Convert output to little endian */
|
---|
109 | for (i = 0, pB = B; i < 32 * r; i++) {
|
---|
110 | uint32_t xtmp = X[i];
|
---|
111 | *pB++ = xtmp & 0xff;
|
---|
112 | *pB++ = (xtmp >> 8) & 0xff;
|
---|
113 | *pB++ = (xtmp >> 16) & 0xff;
|
---|
114 | *pB++ = (xtmp >> 24) & 0xff;
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | #ifndef SIZE_MAX
|
---|
119 | # define SIZE_MAX ((size_t)-1)
|
---|
120 | #endif
|
---|
121 |
|
---|
122 | /*
|
---|
123 | * Maximum power of two that will fit in uint64_t: this should work on
|
---|
124 | * most (all?) platforms.
|
---|
125 | */
|
---|
126 |
|
---|
127 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1)
|
---|
128 |
|
---|
129 | /*
|
---|
130 | * Maximum value of p * r:
|
---|
131 | * p <= ((2^32-1) * hLen) / MFLen =>
|
---|
132 | * p <= ((2^32-1) * 32) / (128 * r) =>
|
---|
133 | * p * r <= (2^30-1)
|
---|
134 | *
|
---|
135 | */
|
---|
136 |
|
---|
137 | #define SCRYPT_PR_MAX ((1 << 30) - 1)
|
---|
138 |
|
---|
139 | /*
|
---|
140 | * Maximum permitted memory allow this to be overridden with Configuration
|
---|
141 | * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible.
|
---|
142 | */
|
---|
143 |
|
---|
144 | #ifdef SCRYPT_MAX_MEM
|
---|
145 | # if SCRYPT_MAX_MEM == 0
|
---|
146 | # undef SCRYPT_MAX_MEM
|
---|
147 | /*
|
---|
148 | * Although we could theoretically allocate SIZE_MAX memory that would leave
|
---|
149 | * no memory available for anything else so set limit as half that.
|
---|
150 | */
|
---|
151 | # define SCRYPT_MAX_MEM (SIZE_MAX/2)
|
---|
152 | # endif
|
---|
153 | #else
|
---|
154 | /* Default memory limit: 32 MB */
|
---|
155 | # define SCRYPT_MAX_MEM (1024 * 1024 * 32)
|
---|
156 | #endif
|
---|
157 |
|
---|
158 | int EVP_PBE_scrypt(const char *pass, size_t passlen,
|
---|
159 | const unsigned char *salt, size_t saltlen,
|
---|
160 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
|
---|
161 | unsigned char *key, size_t keylen)
|
---|
162 | {
|
---|
163 | int rv = 0;
|
---|
164 | unsigned char *B;
|
---|
165 | uint32_t *X, *V, *T;
|
---|
166 | uint64_t i, Blen, Vlen;
|
---|
167 |
|
---|
168 | /* Sanity check parameters */
|
---|
169 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
|
---|
170 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
|
---|
171 | return 0;
|
---|
172 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
|
---|
173 | if (p > SCRYPT_PR_MAX / r) {
|
---|
174 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
175 | return 0;
|
---|
176 | }
|
---|
177 |
|
---|
178 | /*
|
---|
179 | * Need to check N: if 2^(128 * r / 8) overflows limit this is
|
---|
180 | * automatically satisfied since N <= UINT64_MAX.
|
---|
181 | */
|
---|
182 |
|
---|
183 | if (16 * r <= LOG2_UINT64_MAX) {
|
---|
184 | if (N >= (((uint64_t)1) << (16 * r))) {
|
---|
185 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
186 | return 0;
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | /* Memory checks: check total allocated buffer size fits in uint64_t */
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * B size in section 5 step 1.S
|
---|
194 | * Note: we know p * 128 * r < UINT64_MAX because we already checked
|
---|
195 | * p * r < SCRYPT_PR_MAX
|
---|
196 | */
|
---|
197 | Blen = p * 128 * r;
|
---|
198 | /*
|
---|
199 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would
|
---|
200 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.]
|
---|
201 | */
|
---|
202 | if (Blen > INT_MAX) {
|
---|
203 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
204 | return 0;
|
---|
205 | }
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t
|
---|
209 | * This is combined size V, X and T (section 4)
|
---|
210 | */
|
---|
211 | i = UINT64_MAX / (32 * sizeof(uint32_t));
|
---|
212 | if (N + 2 > i / r) {
|
---|
213 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
214 | return 0;
|
---|
215 | }
|
---|
216 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t);
|
---|
217 |
|
---|
218 | /* check total allocated size fits in uint64_t */
|
---|
219 | if (Blen > UINT64_MAX - Vlen) {
|
---|
220 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
221 | return 0;
|
---|
222 | }
|
---|
223 |
|
---|
224 | if (maxmem == 0)
|
---|
225 | maxmem = SCRYPT_MAX_MEM;
|
---|
226 |
|
---|
227 | /* Check that the maximum memory doesn't exceed a size_t limits */
|
---|
228 | if (maxmem > SIZE_MAX)
|
---|
229 | maxmem = SIZE_MAX;
|
---|
230 |
|
---|
231 | if (Blen + Vlen > maxmem) {
|
---|
232 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
|
---|
233 | return 0;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /* If no key return to indicate parameters are OK */
|
---|
237 | if (key == NULL)
|
---|
238 | return 1;
|
---|
239 |
|
---|
240 | B = OPENSSL_malloc((size_t)(Blen + Vlen));
|
---|
241 | if (B == NULL) {
|
---|
242 | EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE);
|
---|
243 | return 0;
|
---|
244 | }
|
---|
245 | X = (uint32_t *)(B + Blen);
|
---|
246 | T = X + 32 * r;
|
---|
247 | V = T + 32 * r;
|
---|
248 | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
|
---|
249 | (int)Blen, B) == 0)
|
---|
250 | goto err;
|
---|
251 |
|
---|
252 | for (i = 0; i < p; i++)
|
---|
253 | scryptROMix(B + 128 * r * i, r, N, X, T, V);
|
---|
254 |
|
---|
255 | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(),
|
---|
256 | keylen, key) == 0)
|
---|
257 | goto err;
|
---|
258 | rv = 1;
|
---|
259 | err:
|
---|
260 | if (rv == 0)
|
---|
261 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR);
|
---|
262 |
|
---|
263 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen));
|
---|
264 | return rv;
|
---|
265 | }
|
---|
266 | #endif
|
---|