VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/modes/asm/ghash-x86.pl@ 91772

Last change on this file since 91772 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

File size: 40.6 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# March, May, June 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that it
21# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
22# code paths: vanilla x86 and vanilla SSE. Former will be executed on
23# 486 and Pentium, latter on all others. SSE GHASH features so called
24# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
25# of per-key storage [+512 bytes shared table]. Performance results
26# are for streamed GHASH subroutine and are expressed in cycles per
27# processed byte, less is better:
28#
29# gcc 2.95.3(*) SSE assembler x86 assembler
30#
31# Pentium 105/111(**) - 50
32# PIII 68 /75 12.2 24
33# P4 125/125 17.8 84(***)
34# Opteron 66 /70 10.1 30
35# Core2 54 /67 8.4 18
36# Atom 105/105 16.8 53
37# VIA Nano 69 /71 13.0 27
38#
39# (*) gcc 3.4.x was observed to generate few percent slower code,
40# which is one of reasons why 2.95.3 results were chosen,
41# another reason is lack of 3.4.x results for older CPUs;
42# comparison with SSE results is not completely fair, because C
43# results are for vanilla "256B" implementation, while
44# assembler results are for "528B";-)
45# (**) second number is result for code compiled with -fPIC flag,
46# which is actually more relevant, because assembler code is
47# position-independent;
48# (***) see comment in non-MMX routine for further details;
49#
50# To summarize, it's >2-5 times faster than gcc-generated code. To
51# anchor it to something else SHA1 assembler processes one byte in
52# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
53# in particular, see comment at the end of the file...
54
55# May 2010
56#
57# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
58# The question is how close is it to theoretical limit? The pclmulqdq
59# instruction latency appears to be 14 cycles and there can't be more
60# than 2 of them executing at any given time. This means that single
61# Karatsuba multiplication would take 28 cycles *plus* few cycles for
62# pre- and post-processing. Then multiplication has to be followed by
63# modulo-reduction. Given that aggregated reduction method [see
64# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
65# white paper by Intel] allows you to perform reduction only once in
66# a while we can assume that asymptotic performance can be estimated
67# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
68# and Naggr is the aggregation factor.
69#
70# Before we proceed to this implementation let's have closer look at
71# the best-performing code suggested by Intel in their white paper.
72# By tracing inter-register dependencies Tmod is estimated as ~19
73# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
74# processed byte. As implied, this is quite optimistic estimate,
75# because it does not account for Karatsuba pre- and post-processing,
76# which for a single multiplication is ~5 cycles. Unfortunately Intel
77# does not provide performance data for GHASH alone. But benchmarking
78# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
79# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
80# the result accounts even for pre-computing of degrees of the hash
81# key H, but its portion is negligible at 16KB buffer size.
82#
83# Moving on to the implementation in question. Tmod is estimated as
84# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
85# 2.16. How is it possible that measured performance is better than
86# optimistic theoretical estimate? There is one thing Intel failed
87# to recognize. By serializing GHASH with CTR in same subroutine
88# former's performance is really limited to above (Tmul + Tmod/Naggr)
89# equation. But if GHASH procedure is detached, the modulo-reduction
90# can be interleaved with Naggr-1 multiplications at instruction level
91# and under ideal conditions even disappear from the equation. So that
92# optimistic theoretical estimate for this implementation is ...
93# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
94# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
95# where Tproc is time required for Karatsuba pre- and post-processing,
96# is more realistic estimate. In this case it gives ... 1.91 cycles.
97# Or in other words, depending on how well we can interleave reduction
98# and one of the two multiplications the performance should be between
99# 1.91 and 2.16. As already mentioned, this implementation processes
100# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
101# - in 2.02. x86_64 performance is better, because larger register
102# bank allows to interleave reduction and multiplication better.
103#
104# Does it make sense to increase Naggr? To start with it's virtually
105# impossible in 32-bit mode, because of limited register bank
106# capacity. Otherwise improvement has to be weighed against slower
107# setup, as well as code size and complexity increase. As even
108# optimistic estimate doesn't promise 30% performance improvement,
109# there are currently no plans to increase Naggr.
110#
111# Special thanks to David Woodhouse for providing access to a
112# Westmere-based system on behalf of Intel Open Source Technology Centre.
113
114# January 2010
115#
116# Tweaked to optimize transitions between integer and FP operations
117# on same XMM register, PCLMULQDQ subroutine was measured to process
118# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
119# The minor regression on Westmere is outweighed by ~15% improvement
120# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
121# similar manner resulted in almost 20% degradation on Sandy Bridge,
122# where original 64-bit code processes one byte in 1.95 cycles.
123
124#####################################################################
125# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
126# 32-bit mode and 1.89 in 64-bit.
127
128# February 2013
129#
130# Overhaul: aggregate Karatsuba post-processing, improve ILP in
131# reduction_alg9. Resulting performance is 1.96 cycles per byte on
132# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
133
134$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
135push(@INC,"${dir}","${dir}../../perlasm");
136require "x86asm.pl";
137
138$output=pop;
139open STDOUT,">$output";
140
141&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
142
143$sse2=0;
144for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
145
146($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
147$inp = "edi";
148$Htbl = "esi";
149
150
151$unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse
152 # than unrolled, which has to be weighted against
153 # 2.5x x86-specific code size reduction.
154
155sub x86_loop {
156 my $off = shift;
157 my $rem = "eax";
158
159 &mov ($Zhh,&DWP(4,$Htbl,$Zll));
160 &mov ($Zhl,&DWP(0,$Htbl,$Zll));
161 &mov ($Zlh,&DWP(12,$Htbl,$Zll));
162 &mov ($Zll,&DWP(8,$Htbl,$Zll));
163 &xor ($rem,$rem); # avoid partial register stalls on PIII
164
165 # shrd practically kills P4, 2.5x deterioration, but P4 has
166 # MMX code-path to execute. shrd runs tad faster [than twice
167 # the shifts, move's and or's] on pre-MMX Pentium (as well as
168 # PIII and Core2), *but* minimizes code size, spares register
169 # and thus allows to fold the loop...
170 if (!$unroll) {
171 my $cnt = $inp;
172 &mov ($cnt,15);
173 &jmp (&label("x86_loop"));
174 &set_label("x86_loop",16);
175 for($i=1;$i<=2;$i++) {
176 &mov (&LB($rem),&LB($Zll));
177 &shrd ($Zll,$Zlh,4);
178 &and (&LB($rem),0xf);
179 &shrd ($Zlh,$Zhl,4);
180 &shrd ($Zhl,$Zhh,4);
181 &shr ($Zhh,4);
182 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
183
184 &mov (&LB($rem),&BP($off,"esp",$cnt));
185 if ($i&1) {
186 &and (&LB($rem),0xf0);
187 } else {
188 &shl (&LB($rem),4);
189 }
190
191 &xor ($Zll,&DWP(8,$Htbl,$rem));
192 &xor ($Zlh,&DWP(12,$Htbl,$rem));
193 &xor ($Zhl,&DWP(0,$Htbl,$rem));
194 &xor ($Zhh,&DWP(4,$Htbl,$rem));
195
196 if ($i&1) {
197 &dec ($cnt);
198 &js (&label("x86_break"));
199 } else {
200 &jmp (&label("x86_loop"));
201 }
202 }
203 &set_label("x86_break",16);
204 } else {
205 for($i=1;$i<32;$i++) {
206 &comment($i);
207 &mov (&LB($rem),&LB($Zll));
208 &shrd ($Zll,$Zlh,4);
209 &and (&LB($rem),0xf);
210 &shrd ($Zlh,$Zhl,4);
211 &shrd ($Zhl,$Zhh,4);
212 &shr ($Zhh,4);
213 &xor ($Zhh,&DWP($off+16,"esp",$rem,4));
214
215 if ($i&1) {
216 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
217 &and (&LB($rem),0xf0);
218 } else {
219 &mov (&LB($rem),&BP($off+15-($i>>1),"esp"));
220 &shl (&LB($rem),4);
221 }
222
223 &xor ($Zll,&DWP(8,$Htbl,$rem));
224 &xor ($Zlh,&DWP(12,$Htbl,$rem));
225 &xor ($Zhl,&DWP(0,$Htbl,$rem));
226 &xor ($Zhh,&DWP(4,$Htbl,$rem));
227 }
228 }
229 &bswap ($Zll);
230 &bswap ($Zlh);
231 &bswap ($Zhl);
232 if (!$x86only) {
233 &bswap ($Zhh);
234 } else {
235 &mov ("eax",$Zhh);
236 &bswap ("eax");
237 &mov ($Zhh,"eax");
238 }
239}
240
241if ($unroll) {
242 &function_begin_B("_x86_gmult_4bit_inner");
243 &x86_loop(4);
244 &ret ();
245 &function_end_B("_x86_gmult_4bit_inner");
246}
247
248sub deposit_rem_4bit {
249 my $bias = shift;
250
251 &mov (&DWP($bias+0, "esp"),0x0000<<16);
252 &mov (&DWP($bias+4, "esp"),0x1C20<<16);
253 &mov (&DWP($bias+8, "esp"),0x3840<<16);
254 &mov (&DWP($bias+12,"esp"),0x2460<<16);
255 &mov (&DWP($bias+16,"esp"),0x7080<<16);
256 &mov (&DWP($bias+20,"esp"),0x6CA0<<16);
257 &mov (&DWP($bias+24,"esp"),0x48C0<<16);
258 &mov (&DWP($bias+28,"esp"),0x54E0<<16);
259 &mov (&DWP($bias+32,"esp"),0xE100<<16);
260 &mov (&DWP($bias+36,"esp"),0xFD20<<16);
261 &mov (&DWP($bias+40,"esp"),0xD940<<16);
262 &mov (&DWP($bias+44,"esp"),0xC560<<16);
263 &mov (&DWP($bias+48,"esp"),0x9180<<16);
264 &mov (&DWP($bias+52,"esp"),0x8DA0<<16);
265 &mov (&DWP($bias+56,"esp"),0xA9C0<<16);
266 &mov (&DWP($bias+60,"esp"),0xB5E0<<16);
267}
268
269
270$suffix = $x86only ? "" : "_x86";
271
272&function_begin("gcm_gmult_4bit".$suffix);
273 &stack_push(16+4+1); # +1 for stack alignment
274 &mov ($inp,&wparam(0)); # load Xi
275 &mov ($Htbl,&wparam(1)); # load Htable
276
277 &mov ($Zhh,&DWP(0,$inp)); # load Xi[16]
278 &mov ($Zhl,&DWP(4,$inp));
279 &mov ($Zlh,&DWP(8,$inp));
280 &mov ($Zll,&DWP(12,$inp));
281
282 &deposit_rem_4bit(16);
283
284 &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack
285 &mov (&DWP(4,"esp"),$Zhl);
286 &mov (&DWP(8,"esp"),$Zlh);
287 &mov (&DWP(12,"esp"),$Zll);
288 &shr ($Zll,20);
289 &and ($Zll,0xf0);
290
291 if ($unroll) {
292 &call ("_x86_gmult_4bit_inner");
293 } else {
294 &x86_loop(0);
295 &mov ($inp,&wparam(0));
296 }
297
298 &mov (&DWP(12,$inp),$Zll);
299 &mov (&DWP(8,$inp),$Zlh);
300 &mov (&DWP(4,$inp),$Zhl);
301 &mov (&DWP(0,$inp),$Zhh);
302 &stack_pop(16+4+1);
303&function_end("gcm_gmult_4bit".$suffix);
304
305&function_begin("gcm_ghash_4bit".$suffix);
306 &stack_push(16+4+1); # +1 for 64-bit alignment
307 &mov ($Zll,&wparam(0)); # load Xi
308 &mov ($Htbl,&wparam(1)); # load Htable
309 &mov ($inp,&wparam(2)); # load in
310 &mov ("ecx",&wparam(3)); # load len
311 &add ("ecx",$inp);
312 &mov (&wparam(3),"ecx");
313
314 &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16]
315 &mov ($Zhl,&DWP(4,$Zll));
316 &mov ($Zlh,&DWP(8,$Zll));
317 &mov ($Zll,&DWP(12,$Zll));
318
319 &deposit_rem_4bit(16);
320
321 &set_label("x86_outer_loop",16);
322 &xor ($Zll,&DWP(12,$inp)); # xor with input
323 &xor ($Zlh,&DWP(8,$inp));
324 &xor ($Zhl,&DWP(4,$inp));
325 &xor ($Zhh,&DWP(0,$inp));
326 &mov (&DWP(12,"esp"),$Zll); # dump it on stack
327 &mov (&DWP(8,"esp"),$Zlh);
328 &mov (&DWP(4,"esp"),$Zhl);
329 &mov (&DWP(0,"esp"),$Zhh);
330
331 &shr ($Zll,20);
332 &and ($Zll,0xf0);
333
334 if ($unroll) {
335 &call ("_x86_gmult_4bit_inner");
336 } else {
337 &x86_loop(0);
338 &mov ($inp,&wparam(2));
339 }
340 &lea ($inp,&DWP(16,$inp));
341 &cmp ($inp,&wparam(3));
342 &mov (&wparam(2),$inp) if (!$unroll);
343 &jb (&label("x86_outer_loop"));
344
345 &mov ($inp,&wparam(0)); # load Xi
346 &mov (&DWP(12,$inp),$Zll);
347 &mov (&DWP(8,$inp),$Zlh);
348 &mov (&DWP(4,$inp),$Zhl);
349 &mov (&DWP(0,$inp),$Zhh);
350 &stack_pop(16+4+1);
351&function_end("gcm_ghash_4bit".$suffix);
352
353
354if (!$x86only) {{{
355
356&static_label("rem_4bit");
357
358if (!$sse2) {{ # pure-MMX "May" version...
359
360$S=12; # shift factor for rem_4bit
361
362&function_begin_B("_mmx_gmult_4bit_inner");
363# MMX version performs 3.5 times better on P4 (see comment in non-MMX
364# routine for further details), 100% better on Opteron, ~70% better
365# on Core2 and PIII... In other words effort is considered to be well
366# spent... Since initial release the loop was unrolled in order to
367# "liberate" register previously used as loop counter. Instead it's
368# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
369# The path involves move of Z.lo from MMX to integer register,
370# effective address calculation and finally merge of value to Z.hi.
371# Reference to rem_4bit is scheduled so late that I had to >>4
372# rem_4bit elements. This resulted in 20-45% procent improvement
373# on contemporary µ-archs.
374{
375 my $cnt;
376 my $rem_4bit = "eax";
377 my @rem = ($Zhh,$Zll);
378 my $nhi = $Zhl;
379 my $nlo = $Zlh;
380
381 my ($Zlo,$Zhi) = ("mm0","mm1");
382 my $tmp = "mm2";
383
384 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
385 &mov ($nhi,$Zll);
386 &mov (&LB($nlo),&LB($nhi));
387 &shl (&LB($nlo),4);
388 &and ($nhi,0xf0);
389 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
390 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
391 &movd ($rem[0],$Zlo);
392
393 for ($cnt=28;$cnt>=-2;$cnt--) {
394 my $odd = $cnt&1;
395 my $nix = $odd ? $nlo : $nhi;
396
397 &shl (&LB($nlo),4) if ($odd);
398 &psrlq ($Zlo,4);
399 &movq ($tmp,$Zhi);
400 &psrlq ($Zhi,4);
401 &pxor ($Zlo,&QWP(8,$Htbl,$nix));
402 &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0);
403 &psllq ($tmp,60);
404 &and ($nhi,0xf0) if ($odd);
405 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
406 &and ($rem[0],0xf);
407 &pxor ($Zhi,&QWP(0,$Htbl,$nix));
408 &mov ($nhi,$nlo) if (!$odd && $cnt>=0);
409 &movd ($rem[1],$Zlo);
410 &pxor ($Zlo,$tmp);
411
412 push (@rem,shift(@rem)); # "rotate" registers
413 }
414
415 &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem]
416
417 &psrlq ($Zlo,32); # lower part of Zlo is already there
418 &movd ($Zhl,$Zhi);
419 &psrlq ($Zhi,32);
420 &movd ($Zlh,$Zlo);
421 &movd ($Zhh,$Zhi);
422 &shl ($inp,4); # compensate for rem_4bit[i] being >>4
423
424 &bswap ($Zll);
425 &bswap ($Zhl);
426 &bswap ($Zlh);
427 &xor ($Zhh,$inp);
428 &bswap ($Zhh);
429
430 &ret ();
431}
432&function_end_B("_mmx_gmult_4bit_inner");
433
434&function_begin("gcm_gmult_4bit_mmx");
435 &mov ($inp,&wparam(0)); # load Xi
436 &mov ($Htbl,&wparam(1)); # load Htable
437
438 &call (&label("pic_point"));
439 &set_label("pic_point");
440 &blindpop("eax");
441 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
442
443 &movz ($Zll,&BP(15,$inp));
444
445 &call ("_mmx_gmult_4bit_inner");
446
447 &mov ($inp,&wparam(0)); # load Xi
448 &emms ();
449 &mov (&DWP(12,$inp),$Zll);
450 &mov (&DWP(4,$inp),$Zhl);
451 &mov (&DWP(8,$inp),$Zlh);
452 &mov (&DWP(0,$inp),$Zhh);
453&function_end("gcm_gmult_4bit_mmx");
454
455
456# Streamed version performs 20% better on P4, 7% on Opteron,
457# 10% on Core2 and PIII...
458&function_begin("gcm_ghash_4bit_mmx");
459 &mov ($Zhh,&wparam(0)); # load Xi
460 &mov ($Htbl,&wparam(1)); # load Htable
461 &mov ($inp,&wparam(2)); # load in
462 &mov ($Zlh,&wparam(3)); # load len
463
464 &call (&label("pic_point"));
465 &set_label("pic_point");
466 &blindpop("eax");
467 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
468
469 &add ($Zlh,$inp);
470 &mov (&wparam(3),$Zlh); # len to point at the end of input
471 &stack_push(4+1); # +1 for stack alignment
472
473 &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16]
474 &mov ($Zhl,&DWP(4,$Zhh));
475 &mov ($Zlh,&DWP(8,$Zhh));
476 &mov ($Zhh,&DWP(0,$Zhh));
477 &jmp (&label("mmx_outer_loop"));
478
479 &set_label("mmx_outer_loop",16);
480 &xor ($Zll,&DWP(12,$inp));
481 &xor ($Zhl,&DWP(4,$inp));
482 &xor ($Zlh,&DWP(8,$inp));
483 &xor ($Zhh,&DWP(0,$inp));
484 &mov (&wparam(2),$inp);
485 &mov (&DWP(12,"esp"),$Zll);
486 &mov (&DWP(4,"esp"),$Zhl);
487 &mov (&DWP(8,"esp"),$Zlh);
488 &mov (&DWP(0,"esp"),$Zhh);
489
490 &mov ($inp,"esp");
491 &shr ($Zll,24);
492
493 &call ("_mmx_gmult_4bit_inner");
494
495 &mov ($inp,&wparam(2));
496 &lea ($inp,&DWP(16,$inp));
497 &cmp ($inp,&wparam(3));
498 &jb (&label("mmx_outer_loop"));
499
500 &mov ($inp,&wparam(0)); # load Xi
501 &emms ();
502 &mov (&DWP(12,$inp),$Zll);
503 &mov (&DWP(4,$inp),$Zhl);
504 &mov (&DWP(8,$inp),$Zlh);
505 &mov (&DWP(0,$inp),$Zhh);
506
507 &stack_pop(4+1);
508&function_end("gcm_ghash_4bit_mmx");
509
510
511}} else {{ # "June" MMX version...
512 # ... has slower "April" gcm_gmult_4bit_mmx with folded
513 # loop. This is done to conserve code size...
514$S=16; # shift factor for rem_4bit
515
516sub mmx_loop() {
517# MMX version performs 2.8 times better on P4 (see comment in non-MMX
518# routine for further details), 40% better on Opteron and Core2, 50%
519# better on PIII... In other words effort is considered to be well
520# spent...
521 my $inp = shift;
522 my $rem_4bit = shift;
523 my $cnt = $Zhh;
524 my $nhi = $Zhl;
525 my $nlo = $Zlh;
526 my $rem = $Zll;
527
528 my ($Zlo,$Zhi) = ("mm0","mm1");
529 my $tmp = "mm2";
530
531 &xor ($nlo,$nlo); # avoid partial register stalls on PIII
532 &mov ($nhi,$Zll);
533 &mov (&LB($nlo),&LB($nhi));
534 &mov ($cnt,14);
535 &shl (&LB($nlo),4);
536 &and ($nhi,0xf0);
537 &movq ($Zlo,&QWP(8,$Htbl,$nlo));
538 &movq ($Zhi,&QWP(0,$Htbl,$nlo));
539 &movd ($rem,$Zlo);
540 &jmp (&label("mmx_loop"));
541
542 &set_label("mmx_loop",16);
543 &psrlq ($Zlo,4);
544 &and ($rem,0xf);
545 &movq ($tmp,$Zhi);
546 &psrlq ($Zhi,4);
547 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
548 &mov (&LB($nlo),&BP(0,$inp,$cnt));
549 &psllq ($tmp,60);
550 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
551 &dec ($cnt);
552 &movd ($rem,$Zlo);
553 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
554 &mov ($nhi,$nlo);
555 &pxor ($Zlo,$tmp);
556 &js (&label("mmx_break"));
557
558 &shl (&LB($nlo),4);
559 &and ($rem,0xf);
560 &psrlq ($Zlo,4);
561 &and ($nhi,0xf0);
562 &movq ($tmp,$Zhi);
563 &psrlq ($Zhi,4);
564 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
565 &psllq ($tmp,60);
566 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
567 &movd ($rem,$Zlo);
568 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
569 &pxor ($Zlo,$tmp);
570 &jmp (&label("mmx_loop"));
571
572 &set_label("mmx_break",16);
573 &shl (&LB($nlo),4);
574 &and ($rem,0xf);
575 &psrlq ($Zlo,4);
576 &and ($nhi,0xf0);
577 &movq ($tmp,$Zhi);
578 &psrlq ($Zhi,4);
579 &pxor ($Zlo,&QWP(8,$Htbl,$nlo));
580 &psllq ($tmp,60);
581 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
582 &movd ($rem,$Zlo);
583 &pxor ($Zhi,&QWP(0,$Htbl,$nlo));
584 &pxor ($Zlo,$tmp);
585
586 &psrlq ($Zlo,4);
587 &and ($rem,0xf);
588 &movq ($tmp,$Zhi);
589 &psrlq ($Zhi,4);
590 &pxor ($Zlo,&QWP(8,$Htbl,$nhi));
591 &psllq ($tmp,60);
592 &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8));
593 &movd ($rem,$Zlo);
594 &pxor ($Zhi,&QWP(0,$Htbl,$nhi));
595 &pxor ($Zlo,$tmp);
596
597 &psrlq ($Zlo,32); # lower part of Zlo is already there
598 &movd ($Zhl,$Zhi);
599 &psrlq ($Zhi,32);
600 &movd ($Zlh,$Zlo);
601 &movd ($Zhh,$Zhi);
602
603 &bswap ($Zll);
604 &bswap ($Zhl);
605 &bswap ($Zlh);
606 &bswap ($Zhh);
607}
608
609&function_begin("gcm_gmult_4bit_mmx");
610 &mov ($inp,&wparam(0)); # load Xi
611 &mov ($Htbl,&wparam(1)); # load Htable
612
613 &call (&label("pic_point"));
614 &set_label("pic_point");
615 &blindpop("eax");
616 &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
617
618 &movz ($Zll,&BP(15,$inp));
619
620 &mmx_loop($inp,"eax");
621
622 &emms ();
623 &mov (&DWP(12,$inp),$Zll);
624 &mov (&DWP(4,$inp),$Zhl);
625 &mov (&DWP(8,$inp),$Zlh);
626 &mov (&DWP(0,$inp),$Zhh);
627&function_end("gcm_gmult_4bit_mmx");
628
629
630######################################################################
631# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
632# (see gcm128.c for details). It provides further 20-40% performance
633# improvement over above mentioned "May" version.
634
635&static_label("rem_8bit");
636
637&function_begin("gcm_ghash_4bit_mmx");
638{ my ($Zlo,$Zhi) = ("mm7","mm6");
639 my $rem_8bit = "esi";
640 my $Htbl = "ebx";
641
642 # parameter block
643 &mov ("eax",&wparam(0)); # Xi
644 &mov ("ebx",&wparam(1)); # Htable
645 &mov ("ecx",&wparam(2)); # inp
646 &mov ("edx",&wparam(3)); # len
647 &mov ("ebp","esp"); # original %esp
648 &call (&label("pic_point"));
649 &set_label ("pic_point");
650 &blindpop ($rem_8bit);
651 &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
652
653 &sub ("esp",512+16+16); # allocate stack frame...
654 &and ("esp",-64); # ...and align it
655 &sub ("esp",16); # place for (u8)(H[]<<4)
656
657 &add ("edx","ecx"); # pointer to the end of input
658 &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi
659 &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len
660 &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp
661
662 { my @lo = ("mm0","mm1","mm2");
663 my @hi = ("mm3","mm4","mm5");
664 my @tmp = ("mm6","mm7");
665 my ($off1,$off2,$i) = (0,0,);
666
667 &add ($Htbl,128); # optimize for size
668 &lea ("edi",&DWP(16+128,"esp"));
669 &lea ("ebp",&DWP(16+256+128,"esp"));
670
671 # decompose Htable (low and high parts are kept separately),
672 # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
673 for ($i=0;$i<18;$i++) {
674
675 &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16);
676 &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16);
677 &psllq ($tmp[1],60) if ($i>1);
678 &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16);
679 &por ($lo[2],$tmp[1]) if ($i>1);
680 &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17);
681 &psrlq ($lo[1],4) if ($i>0 && $i<17);
682 &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17);
683 &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17);
684 &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1);
685 &psrlq ($hi[1],4) if ($i>0 && $i<17);
686 &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1);
687 &shl ("edx",4) if ($i<16);
688 &mov (&BP($i,"esp"),&LB("edx")) if ($i<16);
689
690 unshift (@lo,pop(@lo)); # "rotate" registers
691 unshift (@hi,pop(@hi));
692 unshift (@tmp,pop(@tmp));
693 $off1 += 8 if ($i>0);
694 $off2 += 8 if ($i>1);
695 }
696 }
697
698 &movq ($Zhi,&QWP(0,"eax"));
699 &mov ("ebx",&DWP(8,"eax"));
700 &mov ("edx",&DWP(12,"eax")); # load Xi
701
702&set_label("outer",16);
703 { my $nlo = "eax";
704 my $dat = "edx";
705 my @nhi = ("edi","ebp");
706 my @rem = ("ebx","ecx");
707 my @red = ("mm0","mm1","mm2");
708 my $tmp = "mm3";
709
710 &xor ($dat,&DWP(12,"ecx")); # merge input data
711 &xor ("ebx",&DWP(8,"ecx"));
712 &pxor ($Zhi,&QWP(0,"ecx"));
713 &lea ("ecx",&DWP(16,"ecx")); # inp+=16
714 #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi
715 &mov (&DWP(528+8,"esp"),"ebx");
716 &movq (&QWP(528+0,"esp"),$Zhi);
717 &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp
718
719 &xor ($nlo,$nlo);
720 &rol ($dat,8);
721 &mov (&LB($nlo),&LB($dat));
722 &mov ($nhi[1],$nlo);
723 &and (&LB($nlo),0x0f);
724 &shr ($nhi[1],4);
725 &pxor ($red[0],$red[0]);
726 &rol ($dat,8); # next byte
727 &pxor ($red[1],$red[1]);
728 &pxor ($red[2],$red[2]);
729
730 # Just like in "May" version modulo-schedule for critical path in
731 # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
732 # is scheduled so late that rem_8bit[] has to be shifted *right*
733 # by 16, which is why last argument to pinsrw is 2, which
734 # corresponds to <<32=<<48>>16...
735 for ($j=11,$i=0;$i<15;$i++) {
736
737 if ($i>0) {
738 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
739 &rol ($dat,8); # next byte
740 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
741
742 &pxor ($Zlo,$tmp);
743 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
744 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
745 } else {
746 &movq ($Zlo,&QWP(16,"esp",$nlo,8));
747 &movq ($Zhi,&QWP(16+128,"esp",$nlo,8));
748 }
749
750 &mov (&LB($nlo),&LB($dat));
751 &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0);
752
753 &movd ($rem[0],$Zlo);
754 &movz ($rem[1],&LB($rem[1])) if ($i>0);
755 &psrlq ($Zlo,8); # Z>>=8
756
757 &movq ($tmp,$Zhi);
758 &mov ($nhi[0],$nlo);
759 &psrlq ($Zhi,8);
760
761 &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4
762 &and (&LB($nlo),0x0f);
763 &psllq ($tmp,56);
764
765 &pxor ($Zhi,$red[1]) if ($i>1);
766 &shr ($nhi[0],4);
767 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0);
768
769 unshift (@red,pop(@red)); # "rotate" registers
770 unshift (@rem,pop(@rem));
771 unshift (@nhi,pop(@nhi));
772 }
773
774 &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo]
775 &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8));
776 &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4)
777
778 &pxor ($Zlo,$tmp);
779 &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
780 &movz ($rem[1],&LB($rem[1]));
781
782 &pxor ($red[2],$red[2]); # clear 2nd word
783 &psllq ($red[1],4);
784
785 &movd ($rem[0],$Zlo);
786 &psrlq ($Zlo,4); # Z>>=4
787
788 &movq ($tmp,$Zhi);
789 &psrlq ($Zhi,4);
790 &shl ($rem[0],4); # rem<<4
791
792 &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi]
793 &psllq ($tmp,60);
794 &movz ($rem[0],&LB($rem[0]));
795
796 &pxor ($Zlo,$tmp);
797 &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8));
798
799 &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
800 &pxor ($Zhi,$red[1]);
801
802 &movd ($dat,$Zlo);
803 &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48
804
805 &psllq ($red[0],12); # correct by <<16>>4
806 &pxor ($Zhi,$red[0]);
807 &psrlq ($Zlo,32);
808 &pxor ($Zhi,$red[2]);
809
810 &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp
811 &movd ("ebx",$Zlo);
812 &movq ($tmp,$Zhi); # 01234567
813 &psllw ($Zhi,8); # 1.3.5.7.
814 &psrlw ($tmp,8); # .0.2.4.6
815 &por ($Zhi,$tmp); # 10325476
816 &bswap ($dat);
817 &pshufw ($Zhi,$Zhi,0b00011011); # 76543210
818 &bswap ("ebx");
819
820 &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done?
821 &jne (&label("outer"));
822 }
823
824 &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi
825 &mov (&DWP(12,"eax"),"edx");
826 &mov (&DWP(8,"eax"),"ebx");
827 &movq (&QWP(0,"eax"),$Zhi);
828
829 &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp
830 &emms ();
831}
832&function_end("gcm_ghash_4bit_mmx");
833}}
834
835
836if ($sse2) {{
837######################################################################
838# PCLMULQDQ version.
839
840$Xip="eax";
841$Htbl="edx";
842$const="ecx";
843$inp="esi";
844$len="ebx";
845
846($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2";
847($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
848($Xn,$Xhn)=("xmm6","xmm7");
849
850&static_label("bswap");
851
852sub clmul64x64_T2 { # minimal "register" pressure
853my ($Xhi,$Xi,$Hkey,$HK)=@_;
854
855 &movdqa ($Xhi,$Xi); #
856 &pshufd ($T1,$Xi,0b01001110);
857 &pshufd ($T2,$Hkey,0b01001110) if (!defined($HK));
858 &pxor ($T1,$Xi); #
859 &pxor ($T2,$Hkey) if (!defined($HK));
860 $HK=$T2 if (!defined($HK));
861
862 &pclmulqdq ($Xi,$Hkey,0x00); #######
863 &pclmulqdq ($Xhi,$Hkey,0x11); #######
864 &pclmulqdq ($T1,$HK,0x00); #######
865 &xorps ($T1,$Xi); #
866 &xorps ($T1,$Xhi); #
867
868 &movdqa ($T2,$T1); #
869 &psrldq ($T1,8);
870 &pslldq ($T2,8); #
871 &pxor ($Xhi,$T1);
872 &pxor ($Xi,$T2); #
873}
874
875sub clmul64x64_T3 {
876# Even though this subroutine offers visually better ILP, it
877# was empirically found to be a tad slower than above version.
878# At least in gcm_ghash_clmul context. But it's just as well,
879# because loop modulo-scheduling is possible only thanks to
880# minimized "register" pressure...
881my ($Xhi,$Xi,$Hkey)=@_;
882
883 &movdqa ($T1,$Xi); #
884 &movdqa ($Xhi,$Xi);
885 &pclmulqdq ($Xi,$Hkey,0x00); #######
886 &pclmulqdq ($Xhi,$Hkey,0x11); #######
887 &pshufd ($T2,$T1,0b01001110); #
888 &pshufd ($T3,$Hkey,0b01001110);
889 &pxor ($T2,$T1); #
890 &pxor ($T3,$Hkey);
891 &pclmulqdq ($T2,$T3,0x00); #######
892 &pxor ($T2,$Xi); #
893 &pxor ($T2,$Xhi); #
894
895 &movdqa ($T3,$T2); #
896 &psrldq ($T2,8);
897 &pslldq ($T3,8); #
898 &pxor ($Xhi,$T2);
899 &pxor ($Xi,$T3); #
900}
901
902
903if (1) { # Algorithm 9 with <<1 twist.
904 # Reduction is shorter and uses only two
905 # temporary registers, which makes it better
906 # candidate for interleaving with 64x64
907 # multiplication. Pre-modulo-scheduled loop
908 # was found to be ~20% faster than Algorithm 5
909 # below. Algorithm 9 was therefore chosen for
910 # further optimization...
911
912sub reduction_alg9 { # 17/11 times faster than Intel version
913my ($Xhi,$Xi) = @_;
914
915 # 1st phase
916 &movdqa ($T2,$Xi); #
917 &movdqa ($T1,$Xi);
918 &psllq ($Xi,5);
919 &pxor ($T1,$Xi); #
920 &psllq ($Xi,1);
921 &pxor ($Xi,$T1); #
922 &psllq ($Xi,57); #
923 &movdqa ($T1,$Xi); #
924 &pslldq ($Xi,8);
925 &psrldq ($T1,8); #
926 &pxor ($Xi,$T2);
927 &pxor ($Xhi,$T1); #
928
929 # 2nd phase
930 &movdqa ($T2,$Xi);
931 &psrlq ($Xi,1);
932 &pxor ($Xhi,$T2); #
933 &pxor ($T2,$Xi);
934 &psrlq ($Xi,5);
935 &pxor ($Xi,$T2); #
936 &psrlq ($Xi,1); #
937 &pxor ($Xi,$Xhi) #
938}
939
940&function_begin_B("gcm_init_clmul");
941 &mov ($Htbl,&wparam(0));
942 &mov ($Xip,&wparam(1));
943
944 &call (&label("pic"));
945&set_label("pic");
946 &blindpop ($const);
947 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
948
949 &movdqu ($Hkey,&QWP(0,$Xip));
950 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
951
952 # <<1 twist
953 &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword
954 &movdqa ($T1,$Hkey);
955 &psllq ($Hkey,1);
956 &pxor ($T3,$T3); #
957 &psrlq ($T1,63);
958 &pcmpgtd ($T3,$T2); # broadcast carry bit
959 &pslldq ($T1,8);
960 &por ($Hkey,$T1); # H<<=1
961
962 # magic reduction
963 &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial
964 &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial
965
966 # calculate H^2
967 &movdqa ($Xi,$Hkey);
968 &clmul64x64_T2 ($Xhi,$Xi,$Hkey);
969 &reduction_alg9 ($Xhi,$Xi);
970
971 &pshufd ($T1,$Hkey,0b01001110);
972 &pshufd ($T2,$Xi,0b01001110);
973 &pxor ($T1,$Hkey); # Karatsuba pre-processing
974 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
975 &pxor ($T2,$Xi); # Karatsuba pre-processing
976 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
977 &palignr ($T2,$T1,8); # low part is H.lo^H.hi
978 &movdqu (&QWP(32,$Htbl),$T2); # save Karatsuba "salt"
979
980 &ret ();
981&function_end_B("gcm_init_clmul");
982
983&function_begin_B("gcm_gmult_clmul");
984 &mov ($Xip,&wparam(0));
985 &mov ($Htbl,&wparam(1));
986
987 &call (&label("pic"));
988&set_label("pic");
989 &blindpop ($const);
990 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
991
992 &movdqu ($Xi,&QWP(0,$Xip));
993 &movdqa ($T3,&QWP(0,$const));
994 &movups ($Hkey,&QWP(0,$Htbl));
995 &pshufb ($Xi,$T3);
996 &movups ($T2,&QWP(32,$Htbl));
997
998 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
999 &reduction_alg9 ($Xhi,$Xi);
1000
1001 &pshufb ($Xi,$T3);
1002 &movdqu (&QWP(0,$Xip),$Xi);
1003
1004 &ret ();
1005&function_end_B("gcm_gmult_clmul");
1006
1007&function_begin("gcm_ghash_clmul");
1008 &mov ($Xip,&wparam(0));
1009 &mov ($Htbl,&wparam(1));
1010 &mov ($inp,&wparam(2));
1011 &mov ($len,&wparam(3));
1012
1013 &call (&label("pic"));
1014&set_label("pic");
1015 &blindpop ($const);
1016 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1017
1018 &movdqu ($Xi,&QWP(0,$Xip));
1019 &movdqa ($T3,&QWP(0,$const));
1020 &movdqu ($Hkey,&QWP(0,$Htbl));
1021 &pshufb ($Xi,$T3);
1022
1023 &sub ($len,0x10);
1024 &jz (&label("odd_tail"));
1025
1026 #######
1027 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1028 # [(H*Ii+1) + (H*Xi+1)] mod P =
1029 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1030 #
1031 &movdqu ($T1,&QWP(0,$inp)); # Ii
1032 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1033 &pshufb ($T1,$T3);
1034 &pshufb ($Xn,$T3);
1035 &movdqu ($T3,&QWP(32,$Htbl));
1036 &pxor ($Xi,$T1); # Ii+Xi
1037
1038 &pshufd ($T1,$Xn,0b01001110); # H*Ii+1
1039 &movdqa ($Xhn,$Xn);
1040 &pxor ($T1,$Xn); #
1041 &lea ($inp,&DWP(32,$inp)); # i+=2
1042
1043 &pclmulqdq ($Xn,$Hkey,0x00); #######
1044 &pclmulqdq ($Xhn,$Hkey,0x11); #######
1045 &pclmulqdq ($T1,$T3,0x00); #######
1046 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1047 &nop ();
1048
1049 &sub ($len,0x20);
1050 &jbe (&label("even_tail"));
1051 &jmp (&label("mod_loop"));
1052
1053&set_label("mod_loop",32);
1054 &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
1055 &movdqa ($Xhi,$Xi);
1056 &pxor ($T2,$Xi); #
1057 &nop ();
1058
1059 &pclmulqdq ($Xi,$Hkey,0x00); #######
1060 &pclmulqdq ($Xhi,$Hkey,0x11); #######
1061 &pclmulqdq ($T2,$T3,0x10); #######
1062 &movups ($Hkey,&QWP(0,$Htbl)); # load H
1063
1064 &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1065 &movdqa ($T3,&QWP(0,$const));
1066 &xorps ($Xhi,$Xhn);
1067 &movdqu ($Xhn,&QWP(0,$inp)); # Ii
1068 &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
1069 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1070 &pxor ($T1,$Xhi); #
1071
1072 &pshufb ($Xhn,$T3);
1073 &pxor ($T2,$T1); #
1074
1075 &movdqa ($T1,$T2); #
1076 &psrldq ($T2,8);
1077 &pslldq ($T1,8); #
1078 &pxor ($Xhi,$T2);
1079 &pxor ($Xi,$T1); #
1080 &pshufb ($Xn,$T3);
1081 &pxor ($Xhi,$Xhn); # "Ii+Xi", consume early
1082
1083 &movdqa ($Xhn,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1
1084 &movdqa ($T2,$Xi); #&reduction_alg9($Xhi,$Xi); 1st phase
1085 &movdqa ($T1,$Xi);
1086 &psllq ($Xi,5);
1087 &pxor ($T1,$Xi); #
1088 &psllq ($Xi,1);
1089 &pxor ($Xi,$T1); #
1090 &pclmulqdq ($Xn,$Hkey,0x00); #######
1091 &movups ($T3,&QWP(32,$Htbl));
1092 &psllq ($Xi,57); #
1093 &movdqa ($T1,$Xi); #
1094 &pslldq ($Xi,8);
1095 &psrldq ($T1,8); #
1096 &pxor ($Xi,$T2);
1097 &pxor ($Xhi,$T1); #
1098 &pshufd ($T1,$Xhn,0b01001110);
1099 &movdqa ($T2,$Xi); # 2nd phase
1100 &psrlq ($Xi,1);
1101 &pxor ($T1,$Xhn);
1102 &pxor ($Xhi,$T2); #
1103 &pclmulqdq ($Xhn,$Hkey,0x11); #######
1104 &movups ($Hkey,&QWP(16,$Htbl)); # load H^2
1105 &pxor ($T2,$Xi);
1106 &psrlq ($Xi,5);
1107 &pxor ($Xi,$T2); #
1108 &psrlq ($Xi,1); #
1109 &pxor ($Xi,$Xhi) #
1110 &pclmulqdq ($T1,$T3,0x00); #######
1111
1112 &lea ($inp,&DWP(32,$inp));
1113 &sub ($len,0x20);
1114 &ja (&label("mod_loop"));
1115
1116&set_label("even_tail");
1117 &pshufd ($T2,$Xi,0b01001110); # H^2*(Ii+Xi)
1118 &movdqa ($Xhi,$Xi);
1119 &pxor ($T2,$Xi); #
1120
1121 &pclmulqdq ($Xi,$Hkey,0x00); #######
1122 &pclmulqdq ($Xhi,$Hkey,0x11); #######
1123 &pclmulqdq ($T2,$T3,0x10); #######
1124 &movdqa ($T3,&QWP(0,$const));
1125
1126 &xorps ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1127 &xorps ($Xhi,$Xhn);
1128 &pxor ($T1,$Xi); # aggregated Karatsuba post-processing
1129 &pxor ($T1,$Xhi); #
1130
1131 &pxor ($T2,$T1); #
1132
1133 &movdqa ($T1,$T2); #
1134 &psrldq ($T2,8);
1135 &pslldq ($T1,8); #
1136 &pxor ($Xhi,$T2);
1137 &pxor ($Xi,$T1); #
1138
1139 &reduction_alg9 ($Xhi,$Xi);
1140
1141 &test ($len,$len);
1142 &jnz (&label("done"));
1143
1144 &movups ($Hkey,&QWP(0,$Htbl)); # load H
1145&set_label("odd_tail");
1146 &movdqu ($T1,&QWP(0,$inp)); # Ii
1147 &pshufb ($T1,$T3);
1148 &pxor ($Xi,$T1); # Ii+Xi
1149
1150 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1151 &reduction_alg9 ($Xhi,$Xi);
1152
1153&set_label("done");
1154 &pshufb ($Xi,$T3);
1155 &movdqu (&QWP(0,$Xip),$Xi);
1156&function_end("gcm_ghash_clmul");
1157
1158
1159} else { # Algorithm 5. Kept for reference purposes.
1160
1161sub reduction_alg5 { # 19/16 times faster than Intel version
1162my ($Xhi,$Xi)=@_;
1163
1164 # <<1
1165 &movdqa ($T1,$Xi); #
1166 &movdqa ($T2,$Xhi);
1167 &pslld ($Xi,1);
1168 &pslld ($Xhi,1); #
1169 &psrld ($T1,31);
1170 &psrld ($T2,31); #
1171 &movdqa ($T3,$T1);
1172 &pslldq ($T1,4);
1173 &psrldq ($T3,12); #
1174 &pslldq ($T2,4);
1175 &por ($Xhi,$T3); #
1176 &por ($Xi,$T1);
1177 &por ($Xhi,$T2); #
1178
1179 # 1st phase
1180 &movdqa ($T1,$Xi);
1181 &movdqa ($T2,$Xi);
1182 &movdqa ($T3,$Xi); #
1183 &pslld ($T1,31);
1184 &pslld ($T2,30);
1185 &pslld ($Xi,25); #
1186 &pxor ($T1,$T2);
1187 &pxor ($T1,$Xi); #
1188 &movdqa ($T2,$T1); #
1189 &pslldq ($T1,12);
1190 &psrldq ($T2,4); #
1191 &pxor ($T3,$T1);
1192
1193 # 2nd phase
1194 &pxor ($Xhi,$T3); #
1195 &movdqa ($Xi,$T3);
1196 &movdqa ($T1,$T3);
1197 &psrld ($Xi,1); #
1198 &psrld ($T1,2);
1199 &psrld ($T3,7); #
1200 &pxor ($Xi,$T1);
1201 &pxor ($Xhi,$T2);
1202 &pxor ($Xi,$T3); #
1203 &pxor ($Xi,$Xhi); #
1204}
1205
1206&function_begin_B("gcm_init_clmul");
1207 &mov ($Htbl,&wparam(0));
1208 &mov ($Xip,&wparam(1));
1209
1210 &call (&label("pic"));
1211&set_label("pic");
1212 &blindpop ($const);
1213 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1214
1215 &movdqu ($Hkey,&QWP(0,$Xip));
1216 &pshufd ($Hkey,$Hkey,0b01001110);# dword swap
1217
1218 # calculate H^2
1219 &movdqa ($Xi,$Hkey);
1220 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1221 &reduction_alg5 ($Xhi,$Xi);
1222
1223 &movdqu (&QWP(0,$Htbl),$Hkey); # save H
1224 &movdqu (&QWP(16,$Htbl),$Xi); # save H^2
1225
1226 &ret ();
1227&function_end_B("gcm_init_clmul");
1228
1229&function_begin_B("gcm_gmult_clmul");
1230 &mov ($Xip,&wparam(0));
1231 &mov ($Htbl,&wparam(1));
1232
1233 &call (&label("pic"));
1234&set_label("pic");
1235 &blindpop ($const);
1236 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1237
1238 &movdqu ($Xi,&QWP(0,$Xip));
1239 &movdqa ($Xn,&QWP(0,$const));
1240 &movdqu ($Hkey,&QWP(0,$Htbl));
1241 &pshufb ($Xi,$Xn);
1242
1243 &clmul64x64_T3 ($Xhi,$Xi,$Hkey);
1244 &reduction_alg5 ($Xhi,$Xi);
1245
1246 &pshufb ($Xi,$Xn);
1247 &movdqu (&QWP(0,$Xip),$Xi);
1248
1249 &ret ();
1250&function_end_B("gcm_gmult_clmul");
1251
1252&function_begin("gcm_ghash_clmul");
1253 &mov ($Xip,&wparam(0));
1254 &mov ($Htbl,&wparam(1));
1255 &mov ($inp,&wparam(2));
1256 &mov ($len,&wparam(3));
1257
1258 &call (&label("pic"));
1259&set_label("pic");
1260 &blindpop ($const);
1261 &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1262
1263 &movdqu ($Xi,&QWP(0,$Xip));
1264 &movdqa ($T3,&QWP(0,$const));
1265 &movdqu ($Hkey,&QWP(0,$Htbl));
1266 &pshufb ($Xi,$T3);
1267
1268 &sub ($len,0x10);
1269 &jz (&label("odd_tail"));
1270
1271 #######
1272 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1273 # [(H*Ii+1) + (H*Xi+1)] mod P =
1274 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
1275 #
1276 &movdqu ($T1,&QWP(0,$inp)); # Ii
1277 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1278 &pshufb ($T1,$T3);
1279 &pshufb ($Xn,$T3);
1280 &pxor ($Xi,$T1); # Ii+Xi
1281
1282 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1283 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1284
1285 &sub ($len,0x20);
1286 &lea ($inp,&DWP(32,$inp)); # i+=2
1287 &jbe (&label("even_tail"));
1288
1289&set_label("mod_loop");
1290 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1291 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1292
1293 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1294 &pxor ($Xhi,$Xhn);
1295
1296 &reduction_alg5 ($Xhi,$Xi);
1297
1298 #######
1299 &movdqa ($T3,&QWP(0,$const));
1300 &movdqu ($T1,&QWP(0,$inp)); # Ii
1301 &movdqu ($Xn,&QWP(16,$inp)); # Ii+1
1302 &pshufb ($T1,$T3);
1303 &pshufb ($Xn,$T3);
1304 &pxor ($Xi,$T1); # Ii+Xi
1305
1306 &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1
1307 &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2
1308
1309 &sub ($len,0x20);
1310 &lea ($inp,&DWP(32,$inp));
1311 &ja (&label("mod_loop"));
1312
1313&set_label("even_tail");
1314 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi)
1315
1316 &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi)
1317 &pxor ($Xhi,$Xhn);
1318
1319 &reduction_alg5 ($Xhi,$Xi);
1320
1321 &movdqa ($T3,&QWP(0,$const));
1322 &test ($len,$len);
1323 &jnz (&label("done"));
1324
1325 &movdqu ($Hkey,&QWP(0,$Htbl)); # load H
1326&set_label("odd_tail");
1327 &movdqu ($T1,&QWP(0,$inp)); # Ii
1328 &pshufb ($T1,$T3);
1329 &pxor ($Xi,$T1); # Ii+Xi
1330
1331 &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi)
1332 &reduction_alg5 ($Xhi,$Xi);
1333
1334 &movdqa ($T3,&QWP(0,$const));
1335&set_label("done");
1336 &pshufb ($Xi,$T3);
1337 &movdqu (&QWP(0,$Xip),$Xi);
1338&function_end("gcm_ghash_clmul");
1339
1340}
1341
1342
1343&set_label("bswap",64);
1344 &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1345 &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial
1346&set_label("rem_8bit",64);
1347 &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1348 &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1349 &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1350 &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1351 &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1352 &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1353 &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1354 &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1355 &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1356 &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1357 &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1358 &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1359 &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1360 &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1361 &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1362 &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1363 &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1364 &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1365 &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1366 &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1367 &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1368 &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1369 &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1370 &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1371 &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1372 &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1373 &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1374 &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1375 &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1376 &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1377 &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1378 &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1379}} # $sse2
1380
1381&set_label("rem_4bit",64);
1382 &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1383 &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1384 &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1385 &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1386}}} # !$x86only
1387
1388&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1389&asm_finish();
1390
1391close STDOUT or die "error closing STDOUT: $!";
1392
1393# A question was risen about choice of vanilla MMX. Or rather why wasn't
1394# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1395# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1396# performance than *corresponding* SSE2 one even on contemporary CPUs.
1397# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1398# implementation featuring full range of lookup-table sizes, but with
1399# per-invocation lookup table setup. Latter means that table size is
1400# chosen depending on how much data is to be hashed in every given call,
1401# more data - larger table. Best reported result for Core2 is ~4 cycles
1402# per processed byte out of 64KB block. This number accounts even for
1403# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1404# more conservative in respect to lookup table sizes, but how do the
1405# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1406# on same platform. As also discussed in gcm128.c, next in line "8-bit
1407# Shoup's" or "4KB" method should deliver twice the performance of
1408# "256B" one, in other words not worse than ~6 cycles per byte. It
1409# should be also be noted that in SSE2 case improvement can be "super-
1410# linear," i.e. more than twice, mostly because >>8 maps to single
1411# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1412# maps to same amount of instructions in both MMX and SSE2 cases.
1413# Bottom line is that switch to SSE2 is considered to be justifiable
1414# only in case we choose to implement "8-bit" method...
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette