1 | /*
|
---|
2 | * Copyright 2008-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <openssl/crypto.h>
|
---|
11 | #include "modes_local.h"
|
---|
12 | #include <string.h>
|
---|
13 |
|
---|
14 | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
|
---|
15 | typedef size_t size_t_aX __attribute((__aligned__(1)));
|
---|
16 | #else
|
---|
17 | typedef size_t size_t_aX;
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * NOTE: the IV/counter CTR mode is big-endian. The code itself is
|
---|
22 | * endian-neutral.
|
---|
23 | */
|
---|
24 |
|
---|
25 | /* increment counter (128-bit int) by 1 */
|
---|
26 | static void ctr128_inc(unsigned char *counter)
|
---|
27 | {
|
---|
28 | u32 n = 16, c = 1;
|
---|
29 |
|
---|
30 | do {
|
---|
31 | --n;
|
---|
32 | c += counter[n];
|
---|
33 | counter[n] = (u8)c;
|
---|
34 | c >>= 8;
|
---|
35 | } while (n);
|
---|
36 | }
|
---|
37 |
|
---|
38 | #if !defined(OPENSSL_SMALL_FOOTPRINT)
|
---|
39 | static void ctr128_inc_aligned(unsigned char *counter)
|
---|
40 | {
|
---|
41 | size_t *data, c, d, n;
|
---|
42 | const union {
|
---|
43 | long one;
|
---|
44 | char little;
|
---|
45 | } is_endian = {
|
---|
46 | 1
|
---|
47 | };
|
---|
48 |
|
---|
49 | if (is_endian.little || ((size_t)counter % sizeof(size_t)) != 0) {
|
---|
50 | ctr128_inc(counter);
|
---|
51 | return;
|
---|
52 | }
|
---|
53 |
|
---|
54 | data = (size_t *)counter;
|
---|
55 | c = 1;
|
---|
56 | n = 16 / sizeof(size_t);
|
---|
57 | do {
|
---|
58 | --n;
|
---|
59 | d = data[n] += c;
|
---|
60 | /* did addition carry? */
|
---|
61 | c = ((d - c) & ~d) >> (sizeof(size_t) * 8 - 1);
|
---|
62 | } while (n);
|
---|
63 | }
|
---|
64 | #endif
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * The input encrypted as though 128bit counter mode is being used. The
|
---|
68 | * extra state information to record how much of the 128bit block we have
|
---|
69 | * used is contained in *num, and the encrypted counter is kept in
|
---|
70 | * ecount_buf. Both *num and ecount_buf must be initialised with zeros
|
---|
71 | * before the first call to CRYPTO_ctr128_encrypt(). This algorithm assumes
|
---|
72 | * that the counter is in the x lower bits of the IV (ivec), and that the
|
---|
73 | * application has full control over overflow and the rest of the IV. This
|
---|
74 | * implementation takes NO responsibility for checking that the counter
|
---|
75 | * doesn't overflow into the rest of the IV when incremented.
|
---|
76 | */
|
---|
77 | void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out,
|
---|
78 | size_t len, const void *key,
|
---|
79 | unsigned char ivec[16],
|
---|
80 | unsigned char ecount_buf[16], unsigned int *num,
|
---|
81 | block128_f block)
|
---|
82 | {
|
---|
83 | unsigned int n;
|
---|
84 | size_t l = 0;
|
---|
85 |
|
---|
86 | n = *num;
|
---|
87 |
|
---|
88 | #if !defined(OPENSSL_SMALL_FOOTPRINT)
|
---|
89 | if (16 % sizeof(size_t) == 0) { /* always true actually */
|
---|
90 | do {
|
---|
91 | while (n && len) {
|
---|
92 | *(out++) = *(in++) ^ ecount_buf[n];
|
---|
93 | --len;
|
---|
94 | n = (n + 1) % 16;
|
---|
95 | }
|
---|
96 |
|
---|
97 | # if defined(STRICT_ALIGNMENT)
|
---|
98 | if (((size_t)in | (size_t)out | (size_t)ecount_buf)
|
---|
99 | % sizeof(size_t) != 0)
|
---|
100 | break;
|
---|
101 | # endif
|
---|
102 | while (len >= 16) {
|
---|
103 | (*block) (ivec, ecount_buf, key);
|
---|
104 | ctr128_inc_aligned(ivec);
|
---|
105 | for (n = 0; n < 16; n += sizeof(size_t))
|
---|
106 | *(size_t_aX *)(out + n) =
|
---|
107 | *(size_t_aX *)(in + n)
|
---|
108 | ^ *(size_t_aX *)(ecount_buf + n);
|
---|
109 | len -= 16;
|
---|
110 | out += 16;
|
---|
111 | in += 16;
|
---|
112 | n = 0;
|
---|
113 | }
|
---|
114 | if (len) {
|
---|
115 | (*block) (ivec, ecount_buf, key);
|
---|
116 | ctr128_inc_aligned(ivec);
|
---|
117 | while (len--) {
|
---|
118 | out[n] = in[n] ^ ecount_buf[n];
|
---|
119 | ++n;
|
---|
120 | }
|
---|
121 | }
|
---|
122 | *num = n;
|
---|
123 | return;
|
---|
124 | } while (0);
|
---|
125 | }
|
---|
126 | /* the rest would be commonly eliminated by x86* compiler */
|
---|
127 | #endif
|
---|
128 | while (l < len) {
|
---|
129 | if (n == 0) {
|
---|
130 | (*block) (ivec, ecount_buf, key);
|
---|
131 | ctr128_inc(ivec);
|
---|
132 | }
|
---|
133 | out[l] = in[l] ^ ecount_buf[n];
|
---|
134 | ++l;
|
---|
135 | n = (n + 1) % 16;
|
---|
136 | }
|
---|
137 |
|
---|
138 | *num = n;
|
---|
139 | }
|
---|
140 |
|
---|
141 | /* increment upper 96 bits of 128-bit counter by 1 */
|
---|
142 | static void ctr96_inc(unsigned char *counter)
|
---|
143 | {
|
---|
144 | u32 n = 12, c = 1;
|
---|
145 |
|
---|
146 | do {
|
---|
147 | --n;
|
---|
148 | c += counter[n];
|
---|
149 | counter[n] = (u8)c;
|
---|
150 | c >>= 8;
|
---|
151 | } while (n);
|
---|
152 | }
|
---|
153 |
|
---|
154 | void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out,
|
---|
155 | size_t len, const void *key,
|
---|
156 | unsigned char ivec[16],
|
---|
157 | unsigned char ecount_buf[16],
|
---|
158 | unsigned int *num, ctr128_f func)
|
---|
159 | {
|
---|
160 | unsigned int n, ctr32;
|
---|
161 |
|
---|
162 | n = *num;
|
---|
163 |
|
---|
164 | while (n && len) {
|
---|
165 | *(out++) = *(in++) ^ ecount_buf[n];
|
---|
166 | --len;
|
---|
167 | n = (n + 1) % 16;
|
---|
168 | }
|
---|
169 |
|
---|
170 | ctr32 = GETU32(ivec + 12);
|
---|
171 | while (len >= 16) {
|
---|
172 | size_t blocks = len / 16;
|
---|
173 | /*
|
---|
174 | * 1<<28 is just a not-so-small yet not-so-large number...
|
---|
175 | * Below condition is practically never met, but it has to
|
---|
176 | * be checked for code correctness.
|
---|
177 | */
|
---|
178 | if (sizeof(size_t) > sizeof(unsigned int) && blocks > (1U << 28))
|
---|
179 | blocks = (1U << 28);
|
---|
180 | /*
|
---|
181 | * As (*func) operates on 32-bit counter, caller
|
---|
182 | * has to handle overflow. 'if' below detects the
|
---|
183 | * overflow, which is then handled by limiting the
|
---|
184 | * amount of blocks to the exact overflow point...
|
---|
185 | */
|
---|
186 | ctr32 += (u32)blocks;
|
---|
187 | if (ctr32 < blocks) {
|
---|
188 | blocks -= ctr32;
|
---|
189 | ctr32 = 0;
|
---|
190 | }
|
---|
191 | (*func) (in, out, blocks, key, ivec);
|
---|
192 | /* (*ctr) does not update ivec, caller does: */
|
---|
193 | PUTU32(ivec + 12, ctr32);
|
---|
194 | /* ... overflow was detected, propagate carry. */
|
---|
195 | if (ctr32 == 0)
|
---|
196 | ctr96_inc(ivec);
|
---|
197 | blocks *= 16;
|
---|
198 | len -= blocks;
|
---|
199 | out += blocks;
|
---|
200 | in += blocks;
|
---|
201 | }
|
---|
202 | if (len) {
|
---|
203 | memset(ecount_buf, 0, 16);
|
---|
204 | (*func) (ecount_buf, ecount_buf, 1, key, ivec);
|
---|
205 | ++ctr32;
|
---|
206 | PUTU32(ivec + 12, ctr32);
|
---|
207 | if (ctr32 == 0)
|
---|
208 | ctr96_inc(ivec);
|
---|
209 | while (len--) {
|
---|
210 | out[n] = in[n] ^ ecount_buf[n];
|
---|
211 | ++n;
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 | *num = n;
|
---|
216 | }
|
---|