VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/perlasm/x86_64-xlate.pl@ 92014

Last change on this file since 92014 was 91772, checked in by vboxsync, 3 years ago

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

  • Property svn:executable set to *
File size: 43.8 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
11#
12# Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
13# format is way easier to parse. Because it's simpler to "gear" from
14# Unix ABI to Windows one [see cross-reference "card" at the end of
15# file]. Because Linux targets were available first...
16#
17# In addition the script also "distills" code suitable for GNU
18# assembler, so that it can be compiled with more rigid assemblers,
19# such as Solaris /usr/ccs/bin/as.
20#
21# This translator is not designed to convert *arbitrary* assembler
22# code from AT&T format to MASM one. It's designed to convert just
23# enough to provide for dual-ABI OpenSSL modules development...
24# There *are* limitations and you might have to modify your assembler
25# code or this script to achieve the desired result...
26#
27# Currently recognized limitations:
28#
29# - can't use multiple ops per line;
30#
31# Dual-ABI styling rules.
32#
33# 1. Adhere to Unix register and stack layout [see cross-reference
34# ABI "card" at the end for explanation].
35# 2. Forget about "red zone," stick to more traditional blended
36# stack frame allocation. If volatile storage is actually required
37# that is. If not, just leave the stack as is.
38# 3. Functions tagged with ".type name,@function" get crafted with
39# unified Win64 prologue and epilogue automatically. If you want
40# to take care of ABI differences yourself, tag functions as
41# ".type name,@abi-omnipotent" instead.
42# 4. To optimize the Win64 prologue you can specify number of input
43# arguments as ".type name,@function,N." Keep in mind that if N is
44# larger than 6, then you *have to* write "abi-omnipotent" code,
45# because >6 cases can't be addressed with unified prologue.
46# 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
47# (sorry about latter).
48# 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
49# required to identify the spots, where to inject Win64 epilogue!
50# But on the pros, it's then prefixed with rep automatically:-)
51# 7. Stick to explicit ip-relative addressing. If you have to use
52# GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
53# Both are recognized and translated to proper Win64 addressing
54# modes.
55#
56# 8. In order to provide for structured exception handling unified
57# Win64 prologue copies %rsp value to %rax. For further details
58# see SEH paragraph at the end.
59# 9. .init segment is allowed to contain calls to functions only.
60# a. If function accepts more than 4 arguments *and* >4th argument
61# is declared as non 64-bit value, do clear its upper part.
62
63
64
65use strict;
66
67my $flavour = shift;
68my $output = shift;
69if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
70
71open STDOUT,">$output" || die "can't open $output: $!"
72 if (defined($output));
73
74my $gas=1; $gas=0 if ($output =~ /\.asm$/);
75my $elf=1; $elf=0 if (!$gas);
76my $win64=0;
77my $prefix="";
78my $decor=".L";
79
80my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005
81my $masm=0;
82my $PTR=" PTR";
83
84my $nasmref=2.03;
85my $nasm=0;
86
87if ($flavour eq "mingw64") { $gas=1; $elf=0; $win64=1;
88 $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
89 $prefix =~ s|\R$||; # Better chomp
90 }
91elsif ($flavour eq "macosx") { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
92elsif ($flavour eq "masm") { $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
93elsif ($flavour eq "nasm") { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
94elsif (!$gas)
95{ if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i)
96 { $nasm = $1 + $2*0.01; $PTR=""; }
97 elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
98 { $masm = $1 + $2*2**-16 + $4*2**-32; }
99 die "no assembler found on %PATH%" if (!($nasm || $masm));
100 $win64=1;
101 $elf=0;
102 $decor="\$L\$";
103}
104
105my $current_segment;
106my $current_function;
107my %globals;
108
109{ package opcode; # pick up opcodes
110 sub re {
111 my ($class, $line) = @_;
112 my $self = {};
113 my $ret;
114
115 if ($$line =~ /^([a-z][a-z0-9]*)/i) {
116 bless $self,$class;
117 $self->{op} = $1;
118 $ret = $self;
119 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
120
121 undef $self->{sz};
122 if ($self->{op} =~ /^(movz)x?([bw]).*/) { # movz is pain...
123 $self->{op} = $1;
124 $self->{sz} = $2;
125 } elsif ($self->{op} =~ /call|jmp/) {
126 $self->{sz} = "";
127 } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
128 $self->{sz} = "";
129 } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
130 $self->{sz} = "";
131 } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
132 $self->{sz} = "";
133 } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
134 $self->{op} = $1;
135 $self->{sz} = $2;
136 }
137 }
138 $ret;
139 }
140 sub size {
141 my ($self, $sz) = @_;
142 $self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
143 $self->{sz};
144 }
145 sub out {
146 my $self = shift;
147 if ($gas) {
148 if ($self->{op} eq "movz") { # movz is pain...
149 sprintf "%s%s%s",$self->{op},$self->{sz},shift;
150 } elsif ($self->{op} =~ /^set/) {
151 "$self->{op}";
152 } elsif ($self->{op} eq "ret") {
153 my $epilogue = "";
154 if ($win64 && $current_function->{abi} eq "svr4") {
155 $epilogue = "movq 8(%rsp),%rdi\n\t" .
156 "movq 16(%rsp),%rsi\n\t";
157 }
158 $epilogue . ".byte 0xf3,0xc3";
159 } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
160 ".p2align\t3\n\t.quad";
161 } else {
162 "$self->{op}$self->{sz}";
163 }
164 } else {
165 $self->{op} =~ s/^movz/movzx/;
166 if ($self->{op} eq "ret") {
167 $self->{op} = "";
168 if ($win64 && $current_function->{abi} eq "svr4") {
169 $self->{op} = "mov rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
170 "mov rsi,QWORD$PTR\[16+rsp\]\n\t";
171 }
172 $self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
173 } elsif ($self->{op} =~ /^(pop|push)f/) {
174 $self->{op} .= $self->{sz};
175 } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
176 $self->{op} = "\tDQ";
177 }
178 $self->{op};
179 }
180 }
181 sub mnemonic {
182 my ($self, $op) = @_;
183 $self->{op}=$op if (defined($op));
184 $self->{op};
185 }
186}
187{ package const; # pick up constants, which start with $
188 sub re {
189 my ($class, $line) = @_;
190 my $self = {};
191 my $ret;
192
193 if ($$line =~ /^\$([^,]+)/) {
194 bless $self, $class;
195 $self->{value} = $1;
196 $ret = $self;
197 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
198 }
199 $ret;
200 }
201 sub out {
202 my $self = shift;
203
204 $self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
205 if ($gas) {
206 # Solaris /usr/ccs/bin/as can't handle multiplications
207 # in $self->{value}
208 my $value = $self->{value};
209 no warnings; # oct might complain about overflow, ignore here...
210 $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
211 if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
212 $self->{value} = $value;
213 }
214 sprintf "\$%s",$self->{value};
215 } else {
216 my $value = $self->{value};
217 $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
218 sprintf "%s",$value;
219 }
220 }
221}
222{ package ea; # pick up effective addresses: expr(%reg,%reg,scale)
223
224 my %szmap = ( b=>"BYTE$PTR", w=>"WORD$PTR",
225 l=>"DWORD$PTR", d=>"DWORD$PTR",
226 q=>"QWORD$PTR", o=>"OWORD$PTR",
227 x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
228 z=>"ZMMWORD$PTR" ) if (!$gas);
229
230 sub re {
231 my ($class, $line, $opcode) = @_;
232 my $self = {};
233 my $ret;
234
235 # optional * ----vvv--- appears in indirect jmp/call
236 if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
237 bless $self, $class;
238 $self->{asterisk} = $1;
239 $self->{label} = $2;
240 ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
241 $self->{scale} = 1 if (!defined($self->{scale}));
242 $self->{opmask} = $4;
243 $ret = $self;
244 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
245
246 if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
247 die if ($opcode->mnemonic() ne "mov");
248 $opcode->mnemonic("lea");
249 }
250 $self->{base} =~ s/^%//;
251 $self->{index} =~ s/^%// if (defined($self->{index}));
252 $self->{opcode} = $opcode;
253 }
254 $ret;
255 }
256 sub size {}
257 sub out {
258 my ($self, $sz) = @_;
259
260 $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
261 $self->{label} =~ s/\.L/$decor/g;
262
263 # Silently convert all EAs to 64-bit. This is required for
264 # elder GNU assembler and results in more compact code,
265 # *but* most importantly AES module depends on this feature!
266 $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
267 $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
268
269 # Solaris /usr/ccs/bin/as can't handle multiplications
270 # in $self->{label}...
271 use integer;
272 $self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
273 $self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
274
275 # Some assemblers insist on signed presentation of 32-bit
276 # offsets, but sign extension is a tricky business in perl...
277 if ((1<<31)<<1) {
278 $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
279 } else {
280 $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
281 }
282
283 # if base register is %rbp or %r13, see if it's possible to
284 # flip base and index registers [for better performance]
285 if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
286 $self->{base} =~ /(rbp|r13)/) {
287 $self->{base} = $self->{index}; $self->{index} = $1;
288 }
289
290 if ($gas) {
291 $self->{label} =~ s/^___imp_/__imp__/ if ($flavour eq "mingw64");
292
293 if (defined($self->{index})) {
294 sprintf "%s%s(%s,%%%s,%d)%s",
295 $self->{asterisk},$self->{label},
296 $self->{base}?"%$self->{base}":"",
297 $self->{index},$self->{scale},
298 $self->{opmask};
299 } else {
300 sprintf "%s%s(%%%s)%s", $self->{asterisk},$self->{label},
301 $self->{base},$self->{opmask};
302 }
303 } else {
304 $self->{label} =~ s/\./\$/g;
305 $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
306 $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
307
308 my $mnemonic = $self->{opcode}->mnemonic();
309 ($self->{asterisk}) && ($sz="q") ||
310 ($mnemonic =~ /^v?mov([qd])$/) && ($sz=$1) ||
311 ($mnemonic =~ /^v?pinsr([qdwb])$/) && ($sz=$1) ||
312 ($mnemonic =~ /^vpbroadcast([qdwb])$/) && ($sz=$1) ||
313 ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/) && ($sz="x");
314
315 $self->{opmask} =~ s/%(k[0-7])/$1/;
316
317 if (defined($self->{index})) {
318 sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
319 $self->{label}?"$self->{label}+":"",
320 $self->{index},$self->{scale},
321 $self->{base}?"+$self->{base}":"",
322 $self->{opmask};
323 } elsif ($self->{base} eq "rip") {
324 sprintf "%s[%s]",$szmap{$sz},$self->{label};
325 } else {
326 sprintf "%s[%s%s]%s", $szmap{$sz},
327 $self->{label}?"$self->{label}+":"",
328 $self->{base},$self->{opmask};
329 }
330 }
331 }
332}
333{ package register; # pick up registers, which start with %.
334 sub re {
335 my ($class, $line, $opcode) = @_;
336 my $self = {};
337 my $ret;
338
339 # optional * ----vvv--- appears in indirect jmp/call
340 if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
341 bless $self,$class;
342 $self->{asterisk} = $1;
343 $self->{value} = $2;
344 $self->{opmask} = $3;
345 $opcode->size($self->size());
346 $ret = $self;
347 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
348 }
349 $ret;
350 }
351 sub size {
352 my $self = shift;
353 my $ret;
354
355 if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; }
356 elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; }
357 elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; }
358 elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; }
359 elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
360 elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; }
361 elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; }
362 elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
363
364 $ret;
365 }
366 sub out {
367 my $self = shift;
368 if ($gas) { sprintf "%s%%%s%s", $self->{asterisk},
369 $self->{value},
370 $self->{opmask}; }
371 else { $self->{opmask} =~ s/%(k[0-7])/$1/;
372 $self->{value}.$self->{opmask}; }
373 }
374}
375{ package label; # pick up labels, which end with :
376 sub re {
377 my ($class, $line) = @_;
378 my $self = {};
379 my $ret;
380
381 if ($$line =~ /(^[\.\w]+)\:/) {
382 bless $self,$class;
383 $self->{value} = $1;
384 $ret = $self;
385 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
386
387 $self->{value} =~ s/^\.L/$decor/;
388 }
389 $ret;
390 }
391 sub out {
392 my $self = shift;
393
394 if ($gas) {
395 my $func = ($globals{$self->{value}} or $self->{value}) . ":";
396 if ($win64 && $current_function->{name} eq $self->{value}
397 && $current_function->{abi} eq "svr4") {
398 $func .= "\n";
399 $func .= " movq %rdi,8(%rsp)\n";
400 $func .= " movq %rsi,16(%rsp)\n";
401 $func .= " movq %rsp,%rax\n";
402 $func .= "${decor}SEH_begin_$current_function->{name}:\n";
403 my $narg = $current_function->{narg};
404 $narg=6 if (!defined($narg));
405 $func .= " movq %rcx,%rdi\n" if ($narg>0);
406 $func .= " movq %rdx,%rsi\n" if ($narg>1);
407 $func .= " movq %r8,%rdx\n" if ($narg>2);
408 $func .= " movq %r9,%rcx\n" if ($narg>3);
409 $func .= " movq 40(%rsp),%r8\n" if ($narg>4);
410 $func .= " movq 48(%rsp),%r9\n" if ($narg>5);
411 }
412 $func;
413 } elsif ($self->{value} ne "$current_function->{name}") {
414 # Make all labels in masm global.
415 $self->{value} .= ":" if ($masm);
416 $self->{value} . ":";
417 } elsif ($win64 && $current_function->{abi} eq "svr4") {
418 my $func = "$current_function->{name}" .
419 ($nasm ? ":" : "\tPROC $current_function->{scope}") .
420 "\n";
421 $func .= " mov QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
422 $func .= " mov QWORD$PTR\[16+rsp\],rsi\n";
423 $func .= " mov rax,rsp\n";
424 $func .= "${decor}SEH_begin_$current_function->{name}:";
425 $func .= ":" if ($masm);
426 $func .= "\n";
427 my $narg = $current_function->{narg};
428 $narg=6 if (!defined($narg));
429 $func .= " mov rdi,rcx\n" if ($narg>0);
430 $func .= " mov rsi,rdx\n" if ($narg>1);
431 $func .= " mov rdx,r8\n" if ($narg>2);
432 $func .= " mov rcx,r9\n" if ($narg>3);
433 $func .= " mov r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
434 $func .= " mov r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
435 $func .= "\n";
436 } else {
437 "$current_function->{name}".
438 ($nasm ? ":" : "\tPROC $current_function->{scope}");
439 }
440 }
441}
442{ package expr; # pick up expressions
443 sub re {
444 my ($class, $line, $opcode) = @_;
445 my $self = {};
446 my $ret;
447
448 if ($$line =~ /(^[^,]+)/) {
449 bless $self,$class;
450 $self->{value} = $1;
451 $ret = $self;
452 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
453
454 $self->{value} =~ s/\@PLT// if (!$elf);
455 $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
456 $self->{value} =~ s/\.L/$decor/g;
457 $self->{opcode} = $opcode;
458 }
459 $ret;
460 }
461 sub out {
462 my $self = shift;
463 if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
464 "NEAR ".$self->{value};
465 } else {
466 $self->{value};
467 }
468 }
469}
470{ package cfi_directive;
471 # CFI directives annotate instructions that are significant for
472 # stack unwinding procedure compliant with DWARF specification,
473 # see http://dwarfstd.org/. Besides naturally expected for this
474 # script platform-specific filtering function, this module adds
475 # three auxiliary synthetic directives not recognized by [GNU]
476 # assembler:
477 #
478 # - .cfi_push to annotate push instructions in prologue, which
479 # translates to .cfi_adjust_cfa_offset (if needed) and
480 # .cfi_offset;
481 # - .cfi_pop to annotate pop instructions in epilogue, which
482 # translates to .cfi_adjust_cfa_offset (if needed) and
483 # .cfi_restore;
484 # - [and most notably] .cfi_cfa_expression which encodes
485 # DW_CFA_def_cfa_expression and passes it to .cfi_escape as
486 # byte vector;
487 #
488 # CFA expressions were introduced in DWARF specification version
489 # 3 and describe how to deduce CFA, Canonical Frame Address. This
490 # becomes handy if your stack frame is variable and you can't
491 # spare register for [previous] frame pointer. Suggested directive
492 # syntax is made-up mix of DWARF operator suffixes [subset of]
493 # and references to registers with optional bias. Following example
494 # describes offloaded *original* stack pointer at specific offset
495 # from *current* stack pointer:
496 #
497 # .cfi_cfa_expression %rsp+40,deref,+8
498 #
499 # Final +8 has everything to do with the fact that CFA is defined
500 # as reference to top of caller's stack, and on x86_64 call to
501 # subroutine pushes 8-byte return address. In other words original
502 # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
503
504 # Below constants are taken from "DWARF Expressions" section of the
505 # DWARF specification, section is numbered 7.7 in versions 3 and 4.
506 my %DW_OP_simple = ( # no-arg operators, mapped directly
507 deref => 0x06, dup => 0x12,
508 drop => 0x13, over => 0x14,
509 pick => 0x15, swap => 0x16,
510 rot => 0x17, xderef => 0x18,
511
512 abs => 0x19, and => 0x1a,
513 div => 0x1b, minus => 0x1c,
514 mod => 0x1d, mul => 0x1e,
515 neg => 0x1f, not => 0x20,
516 or => 0x21, plus => 0x22,
517 shl => 0x24, shr => 0x25,
518 shra => 0x26, xor => 0x27,
519 );
520
521 my %DW_OP_complex = ( # used in specific subroutines
522 constu => 0x10, # uleb128
523 consts => 0x11, # sleb128
524 plus_uconst => 0x23, # uleb128
525 lit0 => 0x30, # add 0-31 to opcode
526 reg0 => 0x50, # add 0-31 to opcode
527 breg0 => 0x70, # add 0-31 to opcole, sleb128
528 regx => 0x90, # uleb28
529 fbreg => 0x91, # sleb128
530 bregx => 0x92, # uleb128, sleb128
531 piece => 0x93, # uleb128
532 );
533
534 # Following constants are defined in x86_64 ABI supplement, for
535 # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf,
536 # see section 3.7 "Stack Unwind Algorithm".
537 my %DW_reg_idx = (
538 "%rax"=>0, "%rdx"=>1, "%rcx"=>2, "%rbx"=>3,
539 "%rsi"=>4, "%rdi"=>5, "%rbp"=>6, "%rsp"=>7,
540 "%r8" =>8, "%r9" =>9, "%r10"=>10, "%r11"=>11,
541 "%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
542 );
543
544 my ($cfa_reg, $cfa_rsp);
545 my @cfa_stack;
546
547 # [us]leb128 format is variable-length integer representation base
548 # 2^128, with most significant bit of each byte being 0 denoting
549 # *last* most significant digit. See "Variable Length Data" in the
550 # DWARF specification, numbered 7.6 at least in versions 3 and 4.
551 sub sleb128 {
552 use integer; # get right shift extend sign
553
554 my $val = shift;
555 my $sign = ($val < 0) ? -1 : 0;
556 my @ret = ();
557
558 while(1) {
559 push @ret, $val&0x7f;
560
561 # see if remaining bits are same and equal to most
562 # significant bit of the current digit, if so, it's
563 # last digit...
564 last if (($val>>6) == $sign);
565
566 @ret[-1] |= 0x80;
567 $val >>= 7;
568 }
569
570 return @ret;
571 }
572 sub uleb128 {
573 my $val = shift;
574 my @ret = ();
575
576 while(1) {
577 push @ret, $val&0x7f;
578
579 # see if it's last significant digit...
580 last if (($val >>= 7) == 0);
581
582 @ret[-1] |= 0x80;
583 }
584
585 return @ret;
586 }
587 sub const {
588 my $val = shift;
589
590 if ($val >= 0 && $val < 32) {
591 return ($DW_OP_complex{lit0}+$val);
592 }
593 return ($DW_OP_complex{consts}, sleb128($val));
594 }
595 sub reg {
596 my $val = shift;
597
598 return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
599
600 my $reg = $DW_reg_idx{$1};
601 my $off = eval ("0 $2 $3");
602
603 return (($DW_OP_complex{breg0} + $reg), sleb128($off));
604 # Yes, we use DW_OP_bregX+0 to push register value and not
605 # DW_OP_regX, because latter would require even DW_OP_piece,
606 # which would be a waste under the circumstances. If you have
607 # to use DWP_OP_reg, use "regx:N"...
608 }
609 sub cfa_expression {
610 my $line = shift;
611 my @ret;
612
613 foreach my $token (split(/,\s*/,$line)) {
614 if ($token =~ /^%r/) {
615 push @ret,reg($token);
616 } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
617 push @ret,reg("$2+$1");
618 } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
619 my $i = 1*eval($2);
620 push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
621 } elsif (my $i = 1*eval($token) or $token eq "0") {
622 if ($token =~ /^\+/) {
623 push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
624 } else {
625 push @ret,const($i);
626 }
627 } else {
628 push @ret,$DW_OP_simple{$token};
629 }
630 }
631
632 # Finally we return DW_CFA_def_cfa_expression, 15, followed by
633 # length of the expression and of course the expression itself.
634 return (15,scalar(@ret),@ret);
635 }
636 sub re {
637 my ($class, $line) = @_;
638 my $self = {};
639 my $ret;
640
641 if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
642 bless $self,$class;
643 $ret = $self;
644 undef $self->{value};
645 my $dir = $1;
646
647 SWITCH: for ($dir) {
648 # What is $cfa_rsp? Effectively it's difference between %rsp
649 # value and current CFA, Canonical Frame Address, which is
650 # why it starts with -8. Recall that CFA is top of caller's
651 # stack...
652 /startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
653 /endproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", 0);
654 # .cfi_remember_state directives that are not
655 # matched with .cfi_restore_state are
656 # unnecessary.
657 die "unpaired .cfi_remember_state" if (@cfa_stack);
658 last;
659 };
660 /def_cfa_register/
661 && do { $cfa_reg = $$line; last; };
662 /def_cfa_offset/
663 && do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
664 last;
665 };
666 /adjust_cfa_offset/
667 && do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
668 last;
669 };
670 /def_cfa/ && do { if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
671 $cfa_reg = $1;
672 $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
673 }
674 last;
675 };
676 /push/ && do { $dir = undef;
677 $cfa_rsp -= 8;
678 if ($cfa_reg eq "%rsp") {
679 $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
680 }
681 $self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
682 last;
683 };
684 /pop/ && do { $dir = undef;
685 $cfa_rsp += 8;
686 if ($cfa_reg eq "%rsp") {
687 $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
688 }
689 $self->{value} .= ".cfi_restore\t$$line";
690 last;
691 };
692 /cfa_expression/
693 && do { $dir = undef;
694 $self->{value} = ".cfi_escape\t" .
695 join(",", map(sprintf("0x%02x", $_),
696 cfa_expression($$line)));
697 last;
698 };
699 /remember_state/
700 && do { push @cfa_stack, [$cfa_reg, $cfa_rsp];
701 last;
702 };
703 /restore_state/
704 && do { ($cfa_reg, $cfa_rsp) = @{pop @cfa_stack};
705 last;
706 };
707 }
708
709 $self->{value} = ".cfi_$dir\t$$line" if ($dir);
710
711 $$line = "";
712 }
713
714 return $ret;
715 }
716 sub out {
717 my $self = shift;
718 return ($elf ? $self->{value} : undef);
719 }
720}
721{ package directive; # pick up directives, which start with .
722 sub re {
723 my ($class, $line) = @_;
724 my $self = {};
725 my $ret;
726 my $dir;
727
728 # chain-call to cfi_directive
729 $ret = cfi_directive->re($line) and return $ret;
730
731 if ($$line =~ /^\s*(\.\w+)/) {
732 bless $self,$class;
733 $dir = $1;
734 $ret = $self;
735 undef $self->{value};
736 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
737
738 SWITCH: for ($dir) {
739 /\.global|\.globl|\.extern/
740 && do { $globals{$$line} = $prefix . $$line;
741 $$line = $globals{$$line} if ($prefix);
742 last;
743 };
744 /\.type/ && do { my ($sym,$type,$narg) = split(',',$$line);
745 if ($type eq "\@function") {
746 undef $current_function;
747 $current_function->{name} = $sym;
748 $current_function->{abi} = "svr4";
749 $current_function->{narg} = $narg;
750 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
751 } elsif ($type eq "\@abi-omnipotent") {
752 undef $current_function;
753 $current_function->{name} = $sym;
754 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
755 }
756 $$line =~ s/\@abi\-omnipotent/\@function/;
757 $$line =~ s/\@function.*/\@function/;
758 last;
759 };
760 /\.asciz/ && do { if ($$line =~ /^"(.*)"$/) {
761 $dir = ".byte";
762 $$line = join(",",unpack("C*",$1),0);
763 }
764 last;
765 };
766 /\.rva|\.long|\.quad/
767 && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
768 $$line =~ s/\.L/$decor/g;
769 last;
770 };
771 }
772
773 if ($gas) {
774 $self->{value} = $dir . "\t" . $$line;
775
776 if ($dir =~ /\.extern/) {
777 $self->{value} = ""; # swallow extern
778 } elsif (!$elf && $dir =~ /\.type/) {
779 $self->{value} = "";
780 $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
781 (defined($globals{$1})?".scl 2;":".scl 3;") .
782 "\t.type 32;\t.endef"
783 if ($win64 && $$line =~ /([^,]+),\@function/);
784 } elsif (!$elf && $dir =~ /\.size/) {
785 $self->{value} = "";
786 if (defined($current_function)) {
787 $self->{value} .= "${decor}SEH_end_$current_function->{name}:"
788 if ($win64 && $current_function->{abi} eq "svr4");
789 undef $current_function;
790 }
791 } elsif (!$elf && $dir =~ /\.align/) {
792 $self->{value} = ".p2align\t" . (log($$line)/log(2));
793 } elsif ($dir eq ".section") {
794 $current_segment=$$line;
795 if (!$elf && $current_segment eq ".init") {
796 if ($flavour eq "macosx") { $self->{value} = ".mod_init_func"; }
797 elsif ($flavour eq "mingw64") { $self->{value} = ".section\t.ctors"; }
798 }
799 } elsif ($dir =~ /\.(text|data)/) {
800 $current_segment=".$1";
801 } elsif ($dir =~ /\.hidden/) {
802 if ($flavour eq "macosx") { $self->{value} = ".private_extern\t$prefix$$line"; }
803 elsif ($flavour eq "mingw64") { $self->{value} = ""; }
804 } elsif ($dir =~ /\.comm/) {
805 $self->{value} = "$dir\t$prefix$$line";
806 $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
807 }
808 $$line = "";
809 return $self;
810 }
811
812 # non-gas case or nasm/masm
813 SWITCH: for ($dir) {
814 /\.text/ && do { my $v=undef;
815 if ($nasm) {
816 $v="section .text code align=64\n";
817 } else {
818 $v="$current_segment\tENDS\n" if ($current_segment);
819 $current_segment = ".text\$";
820 $v.="$current_segment\tSEGMENT ";
821 $v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
822 $v.=" 'CODE'";
823 }
824 $self->{value} = $v;
825 last;
826 };
827 /\.data/ && do { my $v=undef;
828 if ($nasm) {
829 $v="section .data data align=8\n";
830 } else {
831 $v="$current_segment\tENDS\n" if ($current_segment);
832 $current_segment = "_DATA";
833 $v.="$current_segment\tSEGMENT";
834 }
835 $self->{value} = $v;
836 last;
837 };
838 /\.section/ && do { my $v=undef;
839 $$line =~ s/([^,]*).*/$1/;
840 $$line = ".CRT\$XCU" if ($$line eq ".init");
841 if ($nasm) {
842 $v="section $$line";
843 if ($$line=~/\.([px])data/) {
844 $v.=" rdata align=";
845 $v.=$1 eq "p"? 4 : 8;
846 } elsif ($$line=~/\.CRT\$/i) {
847 $v.=" rdata align=8";
848 }
849 } else {
850 $v="$current_segment\tENDS\n" if ($current_segment);
851 $v.="$$line\tSEGMENT";
852 if ($$line=~/\.([px])data/) {
853 $v.=" READONLY";
854 $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
855 } elsif ($$line=~/\.CRT\$/i) {
856 $v.=" READONLY ";
857 $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
858 }
859 }
860 $current_segment = $$line;
861 $self->{value} = $v;
862 last;
863 };
864 /\.extern/ && do { $self->{value} = "EXTERN\t".$$line;
865 $self->{value} .= ":NEAR" if ($masm);
866 last;
867 };
868 /\.globl|.global/
869 && do { $self->{value} = $masm?"PUBLIC":"global";
870 $self->{value} .= "\t".$$line;
871 last;
872 };
873 /\.size/ && do { if (defined($current_function)) {
874 undef $self->{value};
875 if ($current_function->{abi} eq "svr4") {
876 $self->{value}="${decor}SEH_end_$current_function->{name}:";
877 $self->{value}.=":\n" if($masm);
878 }
879 $self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
880 undef $current_function;
881 }
882 last;
883 };
884 /\.align/ && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
885 $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
886 last;
887 };
888 /\.(value|long|rva|quad)/
889 && do { my $sz = substr($1,0,1);
890 my @arr = split(/,\s*/,$$line);
891 my $last = pop(@arr);
892 my $conv = sub { my $var=shift;
893 $var=~s/^(0b[0-1]+)/oct($1)/eig;
894 $var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
895 if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
896 { $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
897 $var;
898 };
899
900 $sz =~ tr/bvlrq/BWDDQ/;
901 $self->{value} = "\tD$sz\t";
902 for (@arr) { $self->{value} .= &$conv($_).","; }
903 $self->{value} .= &$conv($last);
904 last;
905 };
906 /\.byte/ && do { my @str=split(/,\s*/,$$line);
907 map(s/(0b[0-1]+)/oct($1)/eig,@str);
908 map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
909 while ($#str>15) {
910 $self->{value}.="DB\t"
911 .join(",",@str[0..15])."\n";
912 foreach (0..15) { shift @str; }
913 }
914 $self->{value}.="DB\t"
915 .join(",",@str) if (@str);
916 last;
917 };
918 /\.comm/ && do { my @str=split(/,\s*/,$$line);
919 my $v=undef;
920 if ($nasm) {
921 $v.="common $prefix@str[0] @str[1]";
922 } else {
923 $v="$current_segment\tENDS\n" if ($current_segment);
924 $current_segment = "_DATA";
925 $v.="$current_segment\tSEGMENT\n";
926 $v.="COMM @str[0]:DWORD:".@str[1]/4;
927 }
928 $self->{value} = $v;
929 last;
930 };
931 }
932 $$line = "";
933 }
934
935 $ret;
936 }
937 sub out {
938 my $self = shift;
939 $self->{value};
940 }
941}
942
943# Upon initial x86_64 introduction SSE>2 extensions were not introduced
944# yet. In order not to be bothered by tracing exact assembler versions,
945# but at the same time to provide a bare security minimum of AES-NI, we
946# hard-code some instructions. Extensions past AES-NI on the other hand
947# are traced by examining assembler version in individual perlasm
948# modules...
949
950my %regrm = ( "%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
951 "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7 );
952
953sub rex {
954 my $opcode=shift;
955 my ($dst,$src,$rex)=@_;
956
957 $rex|=0x04 if($dst>=8);
958 $rex|=0x01 if($src>=8);
959 push @$opcode,($rex|0x40) if ($rex);
960}
961
962my $movq = sub { # elderly gas can't handle inter-register movq
963 my $arg = shift;
964 my @opcode=(0x66);
965 if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
966 my ($src,$dst)=($1,$2);
967 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
968 rex(\@opcode,$src,$dst,0x8);
969 push @opcode,0x0f,0x7e;
970 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
971 @opcode;
972 } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
973 my ($src,$dst)=($2,$1);
974 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
975 rex(\@opcode,$src,$dst,0x8);
976 push @opcode,0x0f,0x6e;
977 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
978 @opcode;
979 } else {
980 ();
981 }
982};
983
984my $pextrd = sub {
985 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
986 my @opcode=(0x66);
987 my $imm=$1;
988 my $src=$2;
989 my $dst=$3;
990 if ($dst =~ /%r([0-9]+)d/) { $dst = $1; }
991 elsif ($dst =~ /%e/) { $dst = $regrm{$dst}; }
992 rex(\@opcode,$src,$dst);
993 push @opcode,0x0f,0x3a,0x16;
994 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
995 push @opcode,$imm;
996 @opcode;
997 } else {
998 ();
999 }
1000};
1001
1002my $pinsrd = sub {
1003 if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
1004 my @opcode=(0x66);
1005 my $imm=$1;
1006 my $src=$2;
1007 my $dst=$3;
1008 if ($src =~ /%r([0-9]+)/) { $src = $1; }
1009 elsif ($src =~ /%e/) { $src = $regrm{$src}; }
1010 rex(\@opcode,$dst,$src);
1011 push @opcode,0x0f,0x3a,0x22;
1012 push @opcode,0xc0|(($dst&7)<<3)|($src&7); # ModR/M
1013 push @opcode,$imm;
1014 @opcode;
1015 } else {
1016 ();
1017 }
1018};
1019
1020my $pshufb = sub {
1021 if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1022 my @opcode=(0x66);
1023 rex(\@opcode,$2,$1);
1024 push @opcode,0x0f,0x38,0x00;
1025 push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
1026 @opcode;
1027 } else {
1028 ();
1029 }
1030};
1031
1032my $palignr = sub {
1033 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1034 my @opcode=(0x66);
1035 rex(\@opcode,$3,$2);
1036 push @opcode,0x0f,0x3a,0x0f;
1037 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1038 push @opcode,$1;
1039 @opcode;
1040 } else {
1041 ();
1042 }
1043};
1044
1045my $pclmulqdq = sub {
1046 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1047 my @opcode=(0x66);
1048 rex(\@opcode,$3,$2);
1049 push @opcode,0x0f,0x3a,0x44;
1050 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1051 my $c=$1;
1052 push @opcode,$c=~/^0/?oct($c):$c;
1053 @opcode;
1054 } else {
1055 ();
1056 }
1057};
1058
1059my $rdrand = sub {
1060 if (shift =~ /%[er](\w+)/) {
1061 my @opcode=();
1062 my $dst=$1;
1063 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1064 rex(\@opcode,0,$dst,8);
1065 push @opcode,0x0f,0xc7,0xf0|($dst&7);
1066 @opcode;
1067 } else {
1068 ();
1069 }
1070};
1071
1072my $rdseed = sub {
1073 if (shift =~ /%[er](\w+)/) {
1074 my @opcode=();
1075 my $dst=$1;
1076 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1077 rex(\@opcode,0,$dst,8);
1078 push @opcode,0x0f,0xc7,0xf8|($dst&7);
1079 @opcode;
1080 } else {
1081 ();
1082 }
1083};
1084
1085# Not all AVX-capable assemblers recognize AMD XOP extension. Since we
1086# are using only two instructions hand-code them in order to be excused
1087# from chasing assembler versions...
1088
1089sub rxb {
1090 my $opcode=shift;
1091 my ($dst,$src1,$src2,$rxb)=@_;
1092
1093 $rxb|=0x7<<5;
1094 $rxb&=~(0x04<<5) if($dst>=8);
1095 $rxb&=~(0x01<<5) if($src1>=8);
1096 $rxb&=~(0x02<<5) if($src2>=8);
1097 push @$opcode,$rxb;
1098}
1099
1100my $vprotd = sub {
1101 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1102 my @opcode=(0x8f);
1103 rxb(\@opcode,$3,$2,-1,0x08);
1104 push @opcode,0x78,0xc2;
1105 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1106 my $c=$1;
1107 push @opcode,$c=~/^0/?oct($c):$c;
1108 @opcode;
1109 } else {
1110 ();
1111 }
1112};
1113
1114my $vprotq = sub {
1115 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1116 my @opcode=(0x8f);
1117 rxb(\@opcode,$3,$2,-1,0x08);
1118 push @opcode,0x78,0xc3;
1119 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1120 my $c=$1;
1121 push @opcode,$c=~/^0/?oct($c):$c;
1122 @opcode;
1123 } else {
1124 ();
1125 }
1126};
1127
1128# Intel Control-flow Enforcement Technology extension. All functions and
1129# indirect branch targets will have to start with this instruction...
1130
1131my $endbranch = sub {
1132 (0xf3,0x0f,0x1e,0xfa);
1133};
1134
1135########################################################################
1136
1137if ($nasm) {
1138 print <<___;
1139default rel
1140%define XMMWORD
1141%define YMMWORD
1142%define ZMMWORD
1143___
1144} elsif ($masm) {
1145 print <<___;
1146OPTION DOTNAME
1147___
1148}
1149while(defined(my $line=<>)) {
1150
1151 $line =~ s|\R$||; # Better chomp
1152
1153 $line =~ s|[#!].*$||; # get rid of asm-style comments...
1154 $line =~ s|/\*.*\*/||; # ... and C-style comments...
1155 $line =~ s|^\s+||; # ... and skip white spaces in beginning
1156 $line =~ s|\s+$||; # ... and at the end
1157
1158 if (my $label=label->re(\$line)) { print $label->out(); }
1159
1160 if (my $directive=directive->re(\$line)) {
1161 printf "%s",$directive->out();
1162 } elsif (my $opcode=opcode->re(\$line)) {
1163 my $asm = eval("\$".$opcode->mnemonic());
1164
1165 if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
1166 print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
1167 next;
1168 }
1169
1170 my @args;
1171 ARGUMENT: while (1) {
1172 my $arg;
1173
1174 ($arg=register->re(\$line, $opcode))||
1175 ($arg=const->re(\$line)) ||
1176 ($arg=ea->re(\$line, $opcode)) ||
1177 ($arg=expr->re(\$line, $opcode)) ||
1178 last ARGUMENT;
1179
1180 push @args,$arg;
1181
1182 last ARGUMENT if ($line !~ /^,/);
1183
1184 $line =~ s/^,\s*//;
1185 } # ARGUMENT:
1186
1187 if ($#args>=0) {
1188 my $insn;
1189 my $sz=$opcode->size();
1190
1191 if ($gas) {
1192 $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
1193 @args = map($_->out($sz),@args);
1194 printf "\t%s\t%s",$insn,join(",",@args);
1195 } else {
1196 $insn = $opcode->out();
1197 foreach (@args) {
1198 my $arg = $_->out();
1199 # $insn.=$sz compensates for movq, pinsrw, ...
1200 if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
1201 if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
1202 if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
1203 if ($arg =~ /^mm[0-9]+$/) { $insn.=$sz; $sz="q" if(!$sz); last; }
1204 }
1205 @args = reverse(@args);
1206 undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
1207 printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
1208 }
1209 } else {
1210 printf "\t%s",$opcode->out();
1211 }
1212 }
1213
1214 print $line,"\n";
1215}
1216
1217print "\n$current_segment\tENDS\n" if ($current_segment && $masm);
1218print "END\n" if ($masm);
1219
1220close STDOUT or die "error closing STDOUT: $!";
1221
1222
1223#################################################
1224# Cross-reference x86_64 ABI "card"
1225#
1226# Unix Win64
1227# %rax * *
1228# %rbx - -
1229# %rcx #4 #1
1230# %rdx #3 #2
1231# %rsi #2 -
1232# %rdi #1 -
1233# %rbp - -
1234# %rsp - -
1235# %r8 #5 #3
1236# %r9 #6 #4
1237# %r10 * *
1238# %r11 * *
1239# %r12 - -
1240# %r13 - -
1241# %r14 - -
1242# %r15 - -
1243#
1244# (*) volatile register
1245# (-) preserved by callee
1246# (#) Nth argument, volatile
1247#
1248# In Unix terms top of stack is argument transfer area for arguments
1249# which could not be accommodated in registers. Or in other words 7th
1250# [integer] argument resides at 8(%rsp) upon function entry point.
1251# 128 bytes above %rsp constitute a "red zone" which is not touched
1252# by signal handlers and can be used as temporal storage without
1253# allocating a frame.
1254#
1255# In Win64 terms N*8 bytes on top of stack is argument transfer area,
1256# which belongs to/can be overwritten by callee. N is the number of
1257# arguments passed to callee, *but* not less than 4! This means that
1258# upon function entry point 5th argument resides at 40(%rsp), as well
1259# as that 32 bytes from 8(%rsp) can always be used as temporal
1260# storage [without allocating a frame]. One can actually argue that
1261# one can assume a "red zone" above stack pointer under Win64 as well.
1262# Point is that at apparently no occasion Windows kernel would alter
1263# the area above user stack pointer in true asynchronous manner...
1264#
1265# All the above means that if assembler programmer adheres to Unix
1266# register and stack layout, but disregards the "red zone" existence,
1267# it's possible to use following prologue and epilogue to "gear" from
1268# Unix to Win64 ABI in leaf functions with not more than 6 arguments.
1269#
1270# omnipotent_function:
1271# ifdef WIN64
1272# movq %rdi,8(%rsp)
1273# movq %rsi,16(%rsp)
1274# movq %rcx,%rdi ; if 1st argument is actually present
1275# movq %rdx,%rsi ; if 2nd argument is actually ...
1276# movq %r8,%rdx ; if 3rd argument is ...
1277# movq %r9,%rcx ; if 4th argument ...
1278# movq 40(%rsp),%r8 ; if 5th ...
1279# movq 48(%rsp),%r9 ; if 6th ...
1280# endif
1281# ...
1282# ifdef WIN64
1283# movq 8(%rsp),%rdi
1284# movq 16(%rsp),%rsi
1285# endif
1286# ret
1287#
1288
1289#################################################
1290# Win64 SEH, Structured Exception Handling.
1291#
1292# Unlike on Unix systems(*) lack of Win64 stack unwinding information
1293# has undesired side-effect at run-time: if an exception is raised in
1294# assembler subroutine such as those in question (basically we're
1295# referring to segmentation violations caused by malformed input
1296# parameters), the application is briskly terminated without invoking
1297# any exception handlers, most notably without generating memory dump
1298# or any user notification whatsoever. This poses a problem. It's
1299# possible to address it by registering custom language-specific
1300# handler that would restore processor context to the state at
1301# subroutine entry point and return "exception is not handled, keep
1302# unwinding" code. Writing such handler can be a challenge... But it's
1303# doable, though requires certain coding convention. Consider following
1304# snippet:
1305#
1306# .type function,@function
1307# function:
1308# movq %rsp,%rax # copy rsp to volatile register
1309# pushq %r15 # save non-volatile registers
1310# pushq %rbx
1311# pushq %rbp
1312# movq %rsp,%r11
1313# subq %rdi,%r11 # prepare [variable] stack frame
1314# andq $-64,%r11
1315# movq %rax,0(%r11) # check for exceptions
1316# movq %r11,%rsp # allocate [variable] stack frame
1317# movq %rax,0(%rsp) # save original rsp value
1318# magic_point:
1319# ...
1320# movq 0(%rsp),%rcx # pull original rsp value
1321# movq -24(%rcx),%rbp # restore non-volatile registers
1322# movq -16(%rcx),%rbx
1323# movq -8(%rcx),%r15
1324# movq %rcx,%rsp # restore original rsp
1325# magic_epilogue:
1326# ret
1327# .size function,.-function
1328#
1329# The key is that up to magic_point copy of original rsp value remains
1330# in chosen volatile register and no non-volatile register, except for
1331# rsp, is modified. While past magic_point rsp remains constant till
1332# the very end of the function. In this case custom language-specific
1333# exception handler would look like this:
1334#
1335# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1336# CONTEXT *context,DISPATCHER_CONTEXT *disp)
1337# { ULONG64 *rsp = (ULONG64 *)context->Rax;
1338# ULONG64 rip = context->Rip;
1339#
1340# if (rip >= magic_point)
1341# { rsp = (ULONG64 *)context->Rsp;
1342# if (rip < magic_epilogue)
1343# { rsp = (ULONG64 *)rsp[0];
1344# context->Rbp = rsp[-3];
1345# context->Rbx = rsp[-2];
1346# context->R15 = rsp[-1];
1347# }
1348# }
1349# context->Rsp = (ULONG64)rsp;
1350# context->Rdi = rsp[1];
1351# context->Rsi = rsp[2];
1352#
1353# memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
1354# RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
1355# dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
1356# &disp->HandlerData,&disp->EstablisherFrame,NULL);
1357# return ExceptionContinueSearch;
1358# }
1359#
1360# It's appropriate to implement this handler in assembler, directly in
1361# function's module. In order to do that one has to know members'
1362# offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
1363# values. Here they are:
1364#
1365# CONTEXT.Rax 120
1366# CONTEXT.Rcx 128
1367# CONTEXT.Rdx 136
1368# CONTEXT.Rbx 144
1369# CONTEXT.Rsp 152
1370# CONTEXT.Rbp 160
1371# CONTEXT.Rsi 168
1372# CONTEXT.Rdi 176
1373# CONTEXT.R8 184
1374# CONTEXT.R9 192
1375# CONTEXT.R10 200
1376# CONTEXT.R11 208
1377# CONTEXT.R12 216
1378# CONTEXT.R13 224
1379# CONTEXT.R14 232
1380# CONTEXT.R15 240
1381# CONTEXT.Rip 248
1382# CONTEXT.Xmm6 512
1383# sizeof(CONTEXT) 1232
1384# DISPATCHER_CONTEXT.ControlPc 0
1385# DISPATCHER_CONTEXT.ImageBase 8
1386# DISPATCHER_CONTEXT.FunctionEntry 16
1387# DISPATCHER_CONTEXT.EstablisherFrame 24
1388# DISPATCHER_CONTEXT.TargetIp 32
1389# DISPATCHER_CONTEXT.ContextRecord 40
1390# DISPATCHER_CONTEXT.LanguageHandler 48
1391# DISPATCHER_CONTEXT.HandlerData 56
1392# UNW_FLAG_NHANDLER 0
1393# ExceptionContinueSearch 1
1394#
1395# In order to tie the handler to the function one has to compose
1396# couple of structures: one for .xdata segment and one for .pdata.
1397#
1398# UNWIND_INFO structure for .xdata segment would be
1399#
1400# function_unwind_info:
1401# .byte 9,0,0,0
1402# .rva handler
1403#
1404# This structure designates exception handler for a function with
1405# zero-length prologue, no stack frame or frame register.
1406#
1407# To facilitate composing of .pdata structures, auto-generated "gear"
1408# prologue copies rsp value to rax and denotes next instruction with
1409# .LSEH_begin_{function_name} label. This essentially defines the SEH
1410# styling rule mentioned in the beginning. Position of this label is
1411# chosen in such manner that possible exceptions raised in the "gear"
1412# prologue would be accounted to caller and unwound from latter's frame.
1413# End of function is marked with respective .LSEH_end_{function_name}
1414# label. To summarize, .pdata segment would contain
1415#
1416# .rva .LSEH_begin_function
1417# .rva .LSEH_end_function
1418# .rva function_unwind_info
1419#
1420# Reference to function_unwind_info from .xdata segment is the anchor.
1421# In case you wonder why references are 32-bit .rvas and not 64-bit
1422# .quads. References put into these two segments are required to be
1423# *relative* to the base address of the current binary module, a.k.a.
1424# image base. No Win64 module, be it .exe or .dll, can be larger than
1425# 2GB and thus such relative references can be and are accommodated in
1426# 32 bits.
1427#
1428# Having reviewed the example function code, one can argue that "movq
1429# %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1430# rax would contain an undefined value. If this "offends" you, use
1431# another register and refrain from modifying rax till magic_point is
1432# reached, i.e. as if it was a non-volatile register. If more registers
1433# are required prior [variable] frame setup is completed, note that
1434# nobody says that you can have only one "magic point." You can
1435# "liberate" non-volatile registers by denoting last stack off-load
1436# instruction and reflecting it in finer grade unwind logic in handler.
1437# After all, isn't it why it's called *language-specific* handler...
1438#
1439# SE handlers are also involved in unwinding stack when executable is
1440# profiled or debugged. Profiling implies additional limitations that
1441# are too subtle to discuss here. For now it's sufficient to say that
1442# in order to simplify handlers one should either a) offload original
1443# %rsp to stack (like discussed above); or b) if you have a register to
1444# spare for frame pointer, choose volatile one.
1445#
1446# (*) Note that we're talking about run-time, not debug-time. Lack of
1447# unwind information makes debugging hard on both Windows and
1448# Unix. "Unlike" refers to the fact that on Unix signal handler
1449# will always be invoked, core dumped and appropriate exit code
1450# returned to parent (for user notification).
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette