1 | /*
|
---|
2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #ifndef _GNU_SOURCE
|
---|
11 | # define _GNU_SOURCE
|
---|
12 | #endif
|
---|
13 | #include "e_os.h"
|
---|
14 | #include <stdio.h>
|
---|
15 | #include "internal/cryptlib.h"
|
---|
16 | #include <openssl/rand.h>
|
---|
17 | #include <openssl/crypto.h>
|
---|
18 | #include "rand_local.h"
|
---|
19 | #include "crypto/rand.h"
|
---|
20 | #include <stdio.h>
|
---|
21 | #include "internal/dso.h"
|
---|
22 | #ifdef __linux
|
---|
23 | # include <sys/syscall.h>
|
---|
24 | # ifdef DEVRANDOM_WAIT
|
---|
25 | # include <sys/shm.h>
|
---|
26 | # include <sys/utsname.h>
|
---|
27 | # endif
|
---|
28 | #endif
|
---|
29 | #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
|
---|
30 | # include <sys/types.h>
|
---|
31 | # include <sys/sysctl.h>
|
---|
32 | # include <sys/param.h>
|
---|
33 | #endif
|
---|
34 | #if defined(__OpenBSD__)
|
---|
35 | # include <sys/param.h>
|
---|
36 | #endif
|
---|
37 | #if defined(__APPLE__)
|
---|
38 | # include <CommonCrypto/CommonRandom.h>
|
---|
39 | #endif
|
---|
40 |
|
---|
41 | #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
|
---|
42 | # include <sys/types.h>
|
---|
43 | # include <sys/stat.h>
|
---|
44 | # include <fcntl.h>
|
---|
45 | # include <unistd.h>
|
---|
46 | # include <sys/time.h>
|
---|
47 |
|
---|
48 | static uint64_t get_time_stamp(void);
|
---|
49 | static uint64_t get_timer_bits(void);
|
---|
50 |
|
---|
51 | /* Macro to convert two thirty two bit values into a sixty four bit one */
|
---|
52 | # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
|
---|
53 |
|
---|
54 | /*
|
---|
55 | * Check for the existence and support of POSIX timers. The standard
|
---|
56 | * says that the _POSIX_TIMERS macro will have a positive value if they
|
---|
57 | * are available.
|
---|
58 | *
|
---|
59 | * However, we want an additional constraint: that the timer support does
|
---|
60 | * not require an extra library dependency. Early versions of glibc
|
---|
61 | * require -lrt to be specified on the link line to access the timers,
|
---|
62 | * so this needs to be checked for.
|
---|
63 | *
|
---|
64 | * It is worse because some libraries define __GLIBC__ but don't
|
---|
65 | * support the version testing macro (e.g. uClibc). This means
|
---|
66 | * an extra check is needed.
|
---|
67 | *
|
---|
68 | * The final condition is:
|
---|
69 | * "have posix timers and either not glibc or glibc without -lrt"
|
---|
70 | *
|
---|
71 | * The nested #if sequences are required to avoid using a parameterised
|
---|
72 | * macro that might be undefined.
|
---|
73 | */
|
---|
74 | # undef OSSL_POSIX_TIMER_OKAY
|
---|
75 | # if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
|
---|
76 | # if defined(__GLIBC__)
|
---|
77 | # if defined(__GLIBC_PREREQ)
|
---|
78 | # if __GLIBC_PREREQ(2, 17)
|
---|
79 | # define OSSL_POSIX_TIMER_OKAY
|
---|
80 | # endif
|
---|
81 | # endif
|
---|
82 | # else
|
---|
83 | # define OSSL_POSIX_TIMER_OKAY
|
---|
84 | # endif
|
---|
85 | # endif
|
---|
86 | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
|
---|
87 | || defined(__DJGPP__) */
|
---|
88 |
|
---|
89 | #if defined(OPENSSL_RAND_SEED_NONE)
|
---|
90 | /* none means none. this simplifies the following logic */
|
---|
91 | # undef OPENSSL_RAND_SEED_OS
|
---|
92 | # undef OPENSSL_RAND_SEED_GETRANDOM
|
---|
93 | # undef OPENSSL_RAND_SEED_LIBRANDOM
|
---|
94 | # undef OPENSSL_RAND_SEED_DEVRANDOM
|
---|
95 | # undef OPENSSL_RAND_SEED_RDTSC
|
---|
96 | # undef OPENSSL_RAND_SEED_RDCPU
|
---|
97 | # undef OPENSSL_RAND_SEED_EGD
|
---|
98 | #endif
|
---|
99 |
|
---|
100 | #if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
|
---|
101 | !defined(OPENSSL_RAND_SEED_NONE)
|
---|
102 | # error "UEFI and VXWorks only support seeding NONE"
|
---|
103 | #endif
|
---|
104 |
|
---|
105 | #if defined(OPENSSL_SYS_VXWORKS)
|
---|
106 | /* empty implementation */
|
---|
107 | int rand_pool_init(void)
|
---|
108 | {
|
---|
109 | return 1;
|
---|
110 | }
|
---|
111 |
|
---|
112 | void rand_pool_cleanup(void)
|
---|
113 | {
|
---|
114 | }
|
---|
115 |
|
---|
116 | void rand_pool_keep_random_devices_open(int keep)
|
---|
117 | {
|
---|
118 | }
|
---|
119 |
|
---|
120 | size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
---|
121 | {
|
---|
122 | return rand_pool_entropy_available(pool);
|
---|
123 | }
|
---|
124 | #endif
|
---|
125 |
|
---|
126 | #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|
---|
127 | || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|
---|
128 | || defined(OPENSSL_SYS_UEFI))
|
---|
129 |
|
---|
130 | # if defined(OPENSSL_SYS_VOS)
|
---|
131 |
|
---|
132 | # ifndef OPENSSL_RAND_SEED_OS
|
---|
133 | # error "Unsupported seeding method configured; must be os"
|
---|
134 | # endif
|
---|
135 |
|
---|
136 | # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
|
---|
137 | # error "Unsupported HP-PA and IA32 at the same time."
|
---|
138 | # endif
|
---|
139 | # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
|
---|
140 | # error "Must have one of HP-PA or IA32"
|
---|
141 | # endif
|
---|
142 |
|
---|
143 | /*
|
---|
144 | * The following algorithm repeatedly samples the real-time clock (RTC) to
|
---|
145 | * generate a sequence of unpredictable data. The algorithm relies upon the
|
---|
146 | * uneven execution speed of the code (due to factors such as cache misses,
|
---|
147 | * interrupts, bus activity, and scheduling) and upon the rather large
|
---|
148 | * relative difference between the speed of the clock and the rate at which
|
---|
149 | * it can be read. If it is ported to an environment where execution speed
|
---|
150 | * is more constant or where the RTC ticks at a much slower rate, or the
|
---|
151 | * clock can be read with fewer instructions, it is likely that the results
|
---|
152 | * would be far more predictable. This should only be used for legacy
|
---|
153 | * platforms.
|
---|
154 | *
|
---|
155 | * As a precaution, we assume only 2 bits of entropy per byte.
|
---|
156 | */
|
---|
157 | size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
---|
158 | {
|
---|
159 | short int code;
|
---|
160 | int i, k;
|
---|
161 | size_t bytes_needed;
|
---|
162 | struct timespec ts;
|
---|
163 | unsigned char v;
|
---|
164 | # ifdef OPENSSL_SYS_VOS_HPPA
|
---|
165 | long duration;
|
---|
166 | extern void s$sleep(long *_duration, short int *_code);
|
---|
167 | # else
|
---|
168 | long long duration;
|
---|
169 | extern void s$sleep2(long long *_duration, short int *_code);
|
---|
170 | # endif
|
---|
171 |
|
---|
172 | bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
|
---|
173 |
|
---|
174 | for (i = 0; i < bytes_needed; i++) {
|
---|
175 | /*
|
---|
176 | * burn some cpu; hope for interrupts, cache collisions, bus
|
---|
177 | * interference, etc.
|
---|
178 | */
|
---|
179 | for (k = 0; k < 99; k++)
|
---|
180 | ts.tv_nsec = random();
|
---|
181 |
|
---|
182 | # ifdef OPENSSL_SYS_VOS_HPPA
|
---|
183 | /* sleep for 1/1024 of a second (976 us). */
|
---|
184 | duration = 1;
|
---|
185 | s$sleep(&duration, &code);
|
---|
186 | # else
|
---|
187 | /* sleep for 1/65536 of a second (15 us). */
|
---|
188 | duration = 1;
|
---|
189 | s$sleep2(&duration, &code);
|
---|
190 | # endif
|
---|
191 |
|
---|
192 | /* Get wall clock time, take 8 bits. */
|
---|
193 | clock_gettime(CLOCK_REALTIME, &ts);
|
---|
194 | v = (unsigned char)(ts.tv_nsec & 0xFF);
|
---|
195 | rand_pool_add(pool, arg, &v, sizeof(v) , 2);
|
---|
196 | }
|
---|
197 | return rand_pool_entropy_available(pool);
|
---|
198 | }
|
---|
199 |
|
---|
200 | void rand_pool_cleanup(void)
|
---|
201 | {
|
---|
202 | }
|
---|
203 |
|
---|
204 | void rand_pool_keep_random_devices_open(int keep)
|
---|
205 | {
|
---|
206 | }
|
---|
207 |
|
---|
208 | # else
|
---|
209 |
|
---|
210 | # if defined(OPENSSL_RAND_SEED_EGD) && \
|
---|
211 | (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
|
---|
212 | # error "Seeding uses EGD but EGD is turned off or no device given"
|
---|
213 | # endif
|
---|
214 |
|
---|
215 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
|
---|
216 | # error "Seeding uses urandom but DEVRANDOM is not configured"
|
---|
217 | # endif
|
---|
218 |
|
---|
219 | # if defined(OPENSSL_RAND_SEED_OS)
|
---|
220 | # if !defined(DEVRANDOM)
|
---|
221 | # error "OS seeding requires DEVRANDOM to be configured"
|
---|
222 | # endif
|
---|
223 | # define OPENSSL_RAND_SEED_GETRANDOM
|
---|
224 | # define OPENSSL_RAND_SEED_DEVRANDOM
|
---|
225 | # endif
|
---|
226 |
|
---|
227 | # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
---|
228 | # error "librandom not (yet) supported"
|
---|
229 | # endif
|
---|
230 |
|
---|
231 | # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
---|
232 | /*
|
---|
233 | * sysctl_random(): Use sysctl() to read a random number from the kernel
|
---|
234 | * Returns the number of bytes returned in buf on success, -1 on failure.
|
---|
235 | */
|
---|
236 | static ssize_t sysctl_random(char *buf, size_t buflen)
|
---|
237 | {
|
---|
238 | int mib[2];
|
---|
239 | size_t done = 0;
|
---|
240 | size_t len;
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * Note: sign conversion between size_t and ssize_t is safe even
|
---|
244 | * without a range check, see comment in syscall_random()
|
---|
245 | */
|
---|
246 |
|
---|
247 | /*
|
---|
248 | * On FreeBSD old implementations returned longs, newer versions support
|
---|
249 | * variable sizes up to 256 byte. The code below would not work properly
|
---|
250 | * when the sysctl returns long and we want to request something not a
|
---|
251 | * multiple of longs, which should never be the case.
|
---|
252 | */
|
---|
253 | #if defined(__FreeBSD__)
|
---|
254 | if (!ossl_assert(buflen % sizeof(long) == 0)) {
|
---|
255 | errno = EINVAL;
|
---|
256 | return -1;
|
---|
257 | }
|
---|
258 | #endif
|
---|
259 |
|
---|
260 | /*
|
---|
261 | * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
|
---|
262 | * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
|
---|
263 | * it returns a variable number of bytes with the current version supporting
|
---|
264 | * up to 256 bytes.
|
---|
265 | * Just return an error on older NetBSD versions.
|
---|
266 | */
|
---|
267 | #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
|
---|
268 | errno = ENOSYS;
|
---|
269 | return -1;
|
---|
270 | #endif
|
---|
271 |
|
---|
272 | mib[0] = CTL_KERN;
|
---|
273 | mib[1] = KERN_ARND;
|
---|
274 |
|
---|
275 | do {
|
---|
276 | len = buflen > 256 ? 256 : buflen;
|
---|
277 | if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
|
---|
278 | return done > 0 ? done : -1;
|
---|
279 | done += len;
|
---|
280 | buf += len;
|
---|
281 | buflen -= len;
|
---|
282 | } while (buflen > 0);
|
---|
283 |
|
---|
284 | return done;
|
---|
285 | }
|
---|
286 | # endif
|
---|
287 |
|
---|
288 | # if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
289 |
|
---|
290 | # if defined(__linux) && !defined(__NR_getrandom)
|
---|
291 | # if defined(__arm__)
|
---|
292 | # define __NR_getrandom (__NR_SYSCALL_BASE+384)
|
---|
293 | # elif defined(__i386__)
|
---|
294 | # define __NR_getrandom 355
|
---|
295 | # elif defined(__x86_64__)
|
---|
296 | # if defined(__ILP32__)
|
---|
297 | # define __NR_getrandom (__X32_SYSCALL_BIT + 318)
|
---|
298 | # else
|
---|
299 | # define __NR_getrandom 318
|
---|
300 | # endif
|
---|
301 | # elif defined(__xtensa__)
|
---|
302 | # define __NR_getrandom 338
|
---|
303 | # elif defined(__s390__) || defined(__s390x__)
|
---|
304 | # define __NR_getrandom 349
|
---|
305 | # elif defined(__bfin__)
|
---|
306 | # define __NR_getrandom 389
|
---|
307 | # elif defined(__powerpc__)
|
---|
308 | # define __NR_getrandom 359
|
---|
309 | # elif defined(__mips__) || defined(__mips64)
|
---|
310 | # if _MIPS_SIM == _MIPS_SIM_ABI32
|
---|
311 | # define __NR_getrandom (__NR_Linux + 353)
|
---|
312 | # elif _MIPS_SIM == _MIPS_SIM_ABI64
|
---|
313 | # define __NR_getrandom (__NR_Linux + 313)
|
---|
314 | # elif _MIPS_SIM == _MIPS_SIM_NABI32
|
---|
315 | # define __NR_getrandom (__NR_Linux + 317)
|
---|
316 | # endif
|
---|
317 | # elif defined(__hppa__)
|
---|
318 | # define __NR_getrandom (__NR_Linux + 339)
|
---|
319 | # elif defined(__sparc__)
|
---|
320 | # define __NR_getrandom 347
|
---|
321 | # elif defined(__ia64__)
|
---|
322 | # define __NR_getrandom 1339
|
---|
323 | # elif defined(__alpha__)
|
---|
324 | # define __NR_getrandom 511
|
---|
325 | # elif defined(__sh__)
|
---|
326 | # if defined(__SH5__)
|
---|
327 | # define __NR_getrandom 373
|
---|
328 | # else
|
---|
329 | # define __NR_getrandom 384
|
---|
330 | # endif
|
---|
331 | # elif defined(__avr32__)
|
---|
332 | # define __NR_getrandom 317
|
---|
333 | # elif defined(__microblaze__)
|
---|
334 | # define __NR_getrandom 385
|
---|
335 | # elif defined(__m68k__)
|
---|
336 | # define __NR_getrandom 352
|
---|
337 | # elif defined(__cris__)
|
---|
338 | # define __NR_getrandom 356
|
---|
339 | # elif defined(__aarch64__)
|
---|
340 | # define __NR_getrandom 278
|
---|
341 | # else /* generic */
|
---|
342 | # define __NR_getrandom 278
|
---|
343 | # endif
|
---|
344 | # endif
|
---|
345 |
|
---|
346 | /*
|
---|
347 | * syscall_random(): Try to get random data using a system call
|
---|
348 | * returns the number of bytes returned in buf, or < 0 on error.
|
---|
349 | */
|
---|
350 | static ssize_t syscall_random(void *buf, size_t buflen)
|
---|
351 | {
|
---|
352 | /*
|
---|
353 | * Note: 'buflen' equals the size of the buffer which is used by the
|
---|
354 | * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
|
---|
355 | *
|
---|
356 | * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
|
---|
357 | *
|
---|
358 | * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
|
---|
359 | * between size_t and ssize_t is safe even without a range check.
|
---|
360 | */
|
---|
361 |
|
---|
362 | /*
|
---|
363 | * Do runtime detection to find getentropy().
|
---|
364 | *
|
---|
365 | * Known OSs that should support this:
|
---|
366 | * - Darwin since 16 (OSX 10.12, IOS 10.0).
|
---|
367 | * - Solaris since 11.3
|
---|
368 | * - OpenBSD since 5.6
|
---|
369 | * - Linux since 3.17 with glibc 2.25
|
---|
370 | * - FreeBSD since 12.0 (1200061)
|
---|
371 | *
|
---|
372 | * Note: Sometimes getentropy() can be provided but not implemented
|
---|
373 | * internally. So we need to check errno for ENOSYS
|
---|
374 | */
|
---|
375 | # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
|
---|
376 | extern int getentropy(void *buffer, size_t length) __attribute__((weak));
|
---|
377 |
|
---|
378 | if (getentropy != NULL) {
|
---|
379 | if (getentropy(buf, buflen) == 0)
|
---|
380 | return (ssize_t)buflen;
|
---|
381 | if (errno != ENOSYS)
|
---|
382 | return -1;
|
---|
383 | }
|
---|
384 | # elif defined(__APPLE__)
|
---|
385 | if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
|
---|
386 | return (ssize_t)buflen;
|
---|
387 |
|
---|
388 | return -1;
|
---|
389 | # else
|
---|
390 | union {
|
---|
391 | void *p;
|
---|
392 | int (*f)(void *buffer, size_t length);
|
---|
393 | } p_getentropy;
|
---|
394 |
|
---|
395 | /*
|
---|
396 | * We could cache the result of the lookup, but we normally don't
|
---|
397 | * call this function often.
|
---|
398 | */
|
---|
399 | ERR_set_mark();
|
---|
400 | p_getentropy.p = DSO_global_lookup("getentropy");
|
---|
401 | ERR_pop_to_mark();
|
---|
402 | if (p_getentropy.p != NULL)
|
---|
403 | return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
---|
404 | # endif
|
---|
405 |
|
---|
406 | /* Linux supports this since version 3.17 */
|
---|
407 | # if defined(__linux) && defined(__NR_getrandom)
|
---|
408 | return syscall(__NR_getrandom, buf, buflen, 0);
|
---|
409 | # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
---|
410 | return sysctl_random(buf, buflen);
|
---|
411 | # else
|
---|
412 | errno = ENOSYS;
|
---|
413 | return -1;
|
---|
414 | # endif
|
---|
415 | }
|
---|
416 | # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
|
---|
417 |
|
---|
418 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
---|
419 | static const char *random_device_paths[] = { DEVRANDOM };
|
---|
420 | static struct random_device {
|
---|
421 | int fd;
|
---|
422 | dev_t dev;
|
---|
423 | ino_t ino;
|
---|
424 | mode_t mode;
|
---|
425 | dev_t rdev;
|
---|
426 | } random_devices[OSSL_NELEM(random_device_paths)];
|
---|
427 | static int keep_random_devices_open = 1;
|
---|
428 |
|
---|
429 | # if defined(__linux) && defined(DEVRANDOM_WAIT) \
|
---|
430 | && defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
431 | static void *shm_addr;
|
---|
432 |
|
---|
433 | static void cleanup_shm(void)
|
---|
434 | {
|
---|
435 | shmdt(shm_addr);
|
---|
436 | }
|
---|
437 |
|
---|
438 | /*
|
---|
439 | * Ensure that the system randomness source has been adequately seeded.
|
---|
440 | * This is done by having the first start of libcrypto, wait until the device
|
---|
441 | * /dev/random becomes able to supply a byte of entropy. Subsequent starts
|
---|
442 | * of the library and later reseedings do not need to do this.
|
---|
443 | */
|
---|
444 | static int wait_random_seeded(void)
|
---|
445 | {
|
---|
446 | static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
|
---|
447 | static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
|
---|
448 | int kernel[2];
|
---|
449 | int shm_id, fd, r;
|
---|
450 | char c, *p;
|
---|
451 | struct utsname un;
|
---|
452 | fd_set fds;
|
---|
453 |
|
---|
454 | if (!seeded) {
|
---|
455 | /* See if anything has created the global seeded indication */
|
---|
456 | if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
|
---|
457 | /*
|
---|
458 | * Check the kernel's version and fail if it is too recent.
|
---|
459 | *
|
---|
460 | * Linux kernels from 4.8 onwards do not guarantee that
|
---|
461 | * /dev/urandom is properly seeded when /dev/random becomes
|
---|
462 | * readable. However, such kernels support the getentropy(2)
|
---|
463 | * system call and this should always succeed which renders
|
---|
464 | * this alternative but essentially identical source moot.
|
---|
465 | */
|
---|
466 | if (uname(&un) == 0) {
|
---|
467 | kernel[0] = atoi(un.release);
|
---|
468 | p = strchr(un.release, '.');
|
---|
469 | kernel[1] = p == NULL ? 0 : atoi(p + 1);
|
---|
470 | if (kernel[0] > kernel_version[0]
|
---|
471 | || (kernel[0] == kernel_version[0]
|
---|
472 | && kernel[1] >= kernel_version[1])) {
|
---|
473 | return 0;
|
---|
474 | }
|
---|
475 | }
|
---|
476 | /* Open /dev/random and wait for it to be readable */
|
---|
477 | if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
|
---|
478 | if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
|
---|
479 | FD_ZERO(&fds);
|
---|
480 | FD_SET(fd, &fds);
|
---|
481 | while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
|
---|
482 | && errno == EINTR);
|
---|
483 | } else {
|
---|
484 | while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
|
---|
485 | }
|
---|
486 | close(fd);
|
---|
487 | if (r == 1) {
|
---|
488 | seeded = 1;
|
---|
489 | /* Create the shared memory indicator */
|
---|
490 | shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
|
---|
491 | IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 | if (shm_id != -1) {
|
---|
496 | seeded = 1;
|
---|
497 | /*
|
---|
498 | * Map the shared memory to prevent its premature destruction.
|
---|
499 | * If this call fails, it isn't a big problem.
|
---|
500 | */
|
---|
501 | shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
|
---|
502 | if (shm_addr != (void *)-1)
|
---|
503 | OPENSSL_atexit(&cleanup_shm);
|
---|
504 | }
|
---|
505 | }
|
---|
506 | return seeded;
|
---|
507 | }
|
---|
508 | # else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
|
---|
509 | static int wait_random_seeded(void)
|
---|
510 | {
|
---|
511 | return 1;
|
---|
512 | }
|
---|
513 | # endif
|
---|
514 |
|
---|
515 | /*
|
---|
516 | * Verify that the file descriptor associated with the random source is
|
---|
517 | * still valid. The rationale for doing this is the fact that it is not
|
---|
518 | * uncommon for daemons to close all open file handles when daemonizing.
|
---|
519 | * So the handle might have been closed or even reused for opening
|
---|
520 | * another file.
|
---|
521 | */
|
---|
522 | static int check_random_device(struct random_device * rd)
|
---|
523 | {
|
---|
524 | struct stat st;
|
---|
525 |
|
---|
526 | return rd->fd != -1
|
---|
527 | && fstat(rd->fd, &st) != -1
|
---|
528 | && rd->dev == st.st_dev
|
---|
529 | && rd->ino == st.st_ino
|
---|
530 | && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
|
---|
531 | && rd->rdev == st.st_rdev;
|
---|
532 | }
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * Open a random device if required and return its file descriptor or -1 on error
|
---|
536 | */
|
---|
537 | static int get_random_device(size_t n)
|
---|
538 | {
|
---|
539 | struct stat st;
|
---|
540 | struct random_device * rd = &random_devices[n];
|
---|
541 |
|
---|
542 | /* reuse existing file descriptor if it is (still) valid */
|
---|
543 | if (check_random_device(rd))
|
---|
544 | return rd->fd;
|
---|
545 |
|
---|
546 | /* open the random device ... */
|
---|
547 | if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
|
---|
548 | return rd->fd;
|
---|
549 |
|
---|
550 | /* ... and cache its relevant stat(2) data */
|
---|
551 | if (fstat(rd->fd, &st) != -1) {
|
---|
552 | rd->dev = st.st_dev;
|
---|
553 | rd->ino = st.st_ino;
|
---|
554 | rd->mode = st.st_mode;
|
---|
555 | rd->rdev = st.st_rdev;
|
---|
556 | } else {
|
---|
557 | close(rd->fd);
|
---|
558 | rd->fd = -1;
|
---|
559 | }
|
---|
560 |
|
---|
561 | return rd->fd;
|
---|
562 | }
|
---|
563 |
|
---|
564 | /*
|
---|
565 | * Close a random device making sure it is a random device
|
---|
566 | */
|
---|
567 | static void close_random_device(size_t n)
|
---|
568 | {
|
---|
569 | struct random_device * rd = &random_devices[n];
|
---|
570 |
|
---|
571 | if (check_random_device(rd))
|
---|
572 | close(rd->fd);
|
---|
573 | rd->fd = -1;
|
---|
574 | }
|
---|
575 |
|
---|
576 | int rand_pool_init(void)
|
---|
577 | {
|
---|
578 | size_t i;
|
---|
579 |
|
---|
580 | for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
---|
581 | random_devices[i].fd = -1;
|
---|
582 |
|
---|
583 | return 1;
|
---|
584 | }
|
---|
585 |
|
---|
586 | void rand_pool_cleanup(void)
|
---|
587 | {
|
---|
588 | size_t i;
|
---|
589 |
|
---|
590 | for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
---|
591 | close_random_device(i);
|
---|
592 | }
|
---|
593 |
|
---|
594 | void rand_pool_keep_random_devices_open(int keep)
|
---|
595 | {
|
---|
596 | if (!keep)
|
---|
597 | rand_pool_cleanup();
|
---|
598 |
|
---|
599 | keep_random_devices_open = keep;
|
---|
600 | }
|
---|
601 |
|
---|
602 | # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
---|
603 |
|
---|
604 | int rand_pool_init(void)
|
---|
605 | {
|
---|
606 | return 1;
|
---|
607 | }
|
---|
608 |
|
---|
609 | void rand_pool_cleanup(void)
|
---|
610 | {
|
---|
611 | }
|
---|
612 |
|
---|
613 | void rand_pool_keep_random_devices_open(int keep)
|
---|
614 | {
|
---|
615 | }
|
---|
616 |
|
---|
617 | # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
---|
618 |
|
---|
619 | /*
|
---|
620 | * Try the various seeding methods in turn, exit when successful.
|
---|
621 | *
|
---|
622 | * TODO(DRBG): If more than one entropy source is available, is it
|
---|
623 | * preferable to stop as soon as enough entropy has been collected
|
---|
624 | * (as favored by @rsalz) or should one rather be defensive and add
|
---|
625 | * more entropy than requested and/or from different sources?
|
---|
626 | *
|
---|
627 | * Currently, the user can select multiple entropy sources in the
|
---|
628 | * configure step, yet in practice only the first available source
|
---|
629 | * will be used. A more flexible solution has been requested, but
|
---|
630 | * currently it is not clear how this can be achieved without
|
---|
631 | * overengineering the problem. There are many parameters which
|
---|
632 | * could be taken into account when selecting the order and amount
|
---|
633 | * of input from the different entropy sources (trust, quality,
|
---|
634 | * possibility of blocking).
|
---|
635 | */
|
---|
636 | size_t rand_pool_acquire_entropy(RAND_POOL *pool)
|
---|
637 | {
|
---|
638 | # if defined(OPENSSL_RAND_SEED_NONE)
|
---|
639 | return rand_pool_entropy_available(pool);
|
---|
640 | # else
|
---|
641 | size_t entropy_available;
|
---|
642 |
|
---|
643 | # if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
644 | {
|
---|
645 | size_t bytes_needed;
|
---|
646 | unsigned char *buffer;
|
---|
647 | ssize_t bytes;
|
---|
648 | /* Maximum allowed number of consecutive unsuccessful attempts */
|
---|
649 | int attempts = 3;
|
---|
650 |
|
---|
651 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
652 | while (bytes_needed != 0 && attempts-- > 0) {
|
---|
653 | buffer = rand_pool_add_begin(pool, bytes_needed);
|
---|
654 | bytes = syscall_random(buffer, bytes_needed);
|
---|
655 | if (bytes > 0) {
|
---|
656 | rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
657 | bytes_needed -= bytes;
|
---|
658 | attempts = 3; /* reset counter after successful attempt */
|
---|
659 | } else if (bytes < 0 && errno != EINTR) {
|
---|
660 | break;
|
---|
661 | }
|
---|
662 | }
|
---|
663 | }
|
---|
664 | entropy_available = rand_pool_entropy_available(pool);
|
---|
665 | if (entropy_available > 0)
|
---|
666 | return entropy_available;
|
---|
667 | # endif
|
---|
668 |
|
---|
669 | # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
---|
670 | {
|
---|
671 | /* Not yet implemented. */
|
---|
672 | }
|
---|
673 | # endif
|
---|
674 |
|
---|
675 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
---|
676 | if (wait_random_seeded()) {
|
---|
677 | size_t bytes_needed;
|
---|
678 | unsigned char *buffer;
|
---|
679 | size_t i;
|
---|
680 |
|
---|
681 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
682 | for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
|
---|
683 | i++) {
|
---|
684 | ssize_t bytes = 0;
|
---|
685 | /* Maximum number of consecutive unsuccessful attempts */
|
---|
686 | int attempts = 3;
|
---|
687 | const int fd = get_random_device(i);
|
---|
688 |
|
---|
689 | if (fd == -1)
|
---|
690 | continue;
|
---|
691 |
|
---|
692 | while (bytes_needed != 0 && attempts-- > 0) {
|
---|
693 | buffer = rand_pool_add_begin(pool, bytes_needed);
|
---|
694 | bytes = read(fd, buffer, bytes_needed);
|
---|
695 |
|
---|
696 | if (bytes > 0) {
|
---|
697 | rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
698 | bytes_needed -= bytes;
|
---|
699 | attempts = 3; /* reset counter on successful attempt */
|
---|
700 | } else if (bytes < 0 && errno != EINTR) {
|
---|
701 | break;
|
---|
702 | }
|
---|
703 | }
|
---|
704 | if (bytes < 0 || !keep_random_devices_open)
|
---|
705 | close_random_device(i);
|
---|
706 |
|
---|
707 | bytes_needed = rand_pool_bytes_needed(pool, 1);
|
---|
708 | }
|
---|
709 | entropy_available = rand_pool_entropy_available(pool);
|
---|
710 | if (entropy_available > 0)
|
---|
711 | return entropy_available;
|
---|
712 | }
|
---|
713 | # endif
|
---|
714 |
|
---|
715 | # if defined(OPENSSL_RAND_SEED_RDTSC)
|
---|
716 | entropy_available = rand_acquire_entropy_from_tsc(pool);
|
---|
717 | if (entropy_available > 0)
|
---|
718 | return entropy_available;
|
---|
719 | # endif
|
---|
720 |
|
---|
721 | # if defined(OPENSSL_RAND_SEED_RDCPU)
|
---|
722 | entropy_available = rand_acquire_entropy_from_cpu(pool);
|
---|
723 | if (entropy_available > 0)
|
---|
724 | return entropy_available;
|
---|
725 | # endif
|
---|
726 |
|
---|
727 | # if defined(OPENSSL_RAND_SEED_EGD)
|
---|
728 | {
|
---|
729 | static const char *paths[] = { DEVRANDOM_EGD, NULL };
|
---|
730 | size_t bytes_needed;
|
---|
731 | unsigned char *buffer;
|
---|
732 | int i;
|
---|
733 |
|
---|
734 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
735 | for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
|
---|
736 | size_t bytes = 0;
|
---|
737 | int num;
|
---|
738 |
|
---|
739 | buffer = rand_pool_add_begin(pool, bytes_needed);
|
---|
740 | num = RAND_query_egd_bytes(paths[i],
|
---|
741 | buffer, (int)bytes_needed);
|
---|
742 | if (num == (int)bytes_needed)
|
---|
743 | bytes = bytes_needed;
|
---|
744 |
|
---|
745 | rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
746 | bytes_needed = rand_pool_bytes_needed(pool, 1);
|
---|
747 | }
|
---|
748 | entropy_available = rand_pool_entropy_available(pool);
|
---|
749 | if (entropy_available > 0)
|
---|
750 | return entropy_available;
|
---|
751 | }
|
---|
752 | # endif
|
---|
753 |
|
---|
754 | return rand_pool_entropy_available(pool);
|
---|
755 | # endif
|
---|
756 | }
|
---|
757 | # endif
|
---|
758 | #endif
|
---|
759 |
|
---|
760 | #if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
|
---|
761 | int rand_pool_add_nonce_data(RAND_POOL *pool)
|
---|
762 | {
|
---|
763 | struct {
|
---|
764 | pid_t pid;
|
---|
765 | CRYPTO_THREAD_ID tid;
|
---|
766 | uint64_t time;
|
---|
767 | } data = { 0 };
|
---|
768 |
|
---|
769 | /*
|
---|
770 | * Add process id, thread id, and a high resolution timestamp to
|
---|
771 | * ensure that the nonce is unique with high probability for
|
---|
772 | * different process instances.
|
---|
773 | */
|
---|
774 | data.pid = getpid();
|
---|
775 | data.tid = CRYPTO_THREAD_get_current_id();
|
---|
776 | data.time = get_time_stamp();
|
---|
777 |
|
---|
778 | return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
---|
779 | }
|
---|
780 |
|
---|
781 | int rand_pool_add_additional_data(RAND_POOL *pool)
|
---|
782 | {
|
---|
783 | struct {
|
---|
784 | int fork_id;
|
---|
785 | CRYPTO_THREAD_ID tid;
|
---|
786 | uint64_t time;
|
---|
787 | } data = { 0 };
|
---|
788 |
|
---|
789 | /*
|
---|
790 | * Add some noise from the thread id and a high resolution timer.
|
---|
791 | * The fork_id adds some extra fork-safety.
|
---|
792 | * The thread id adds a little randomness if the drbg is accessed
|
---|
793 | * concurrently (which is the case for the <master> drbg).
|
---|
794 | */
|
---|
795 | data.fork_id = openssl_get_fork_id();
|
---|
796 | data.tid = CRYPTO_THREAD_get_current_id();
|
---|
797 | data.time = get_timer_bits();
|
---|
798 |
|
---|
799 | return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
---|
800 | }
|
---|
801 |
|
---|
802 |
|
---|
803 | /*
|
---|
804 | * Get the current time with the highest possible resolution
|
---|
805 | *
|
---|
806 | * The time stamp is added to the nonce, so it is optimized for not repeating.
|
---|
807 | * The current time is ideal for this purpose, provided the computer's clock
|
---|
808 | * is synchronized.
|
---|
809 | */
|
---|
810 | static uint64_t get_time_stamp(void)
|
---|
811 | {
|
---|
812 | # if defined(OSSL_POSIX_TIMER_OKAY)
|
---|
813 | {
|
---|
814 | struct timespec ts;
|
---|
815 |
|
---|
816 | if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
|
---|
817 | return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
---|
818 | }
|
---|
819 | # endif
|
---|
820 | # if defined(__unix__) \
|
---|
821 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
---|
822 | {
|
---|
823 | struct timeval tv;
|
---|
824 |
|
---|
825 | if (gettimeofday(&tv, NULL) == 0)
|
---|
826 | return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
---|
827 | }
|
---|
828 | # endif
|
---|
829 | return time(NULL);
|
---|
830 | }
|
---|
831 |
|
---|
832 | /*
|
---|
833 | * Get an arbitrary timer value of the highest possible resolution
|
---|
834 | *
|
---|
835 | * The timer value is added as random noise to the additional data,
|
---|
836 | * which is not considered a trusted entropy sourec, so any result
|
---|
837 | * is acceptable.
|
---|
838 | */
|
---|
839 | static uint64_t get_timer_bits(void)
|
---|
840 | {
|
---|
841 | uint64_t res = OPENSSL_rdtsc();
|
---|
842 |
|
---|
843 | if (res != 0)
|
---|
844 | return res;
|
---|
845 |
|
---|
846 | # if defined(__sun) || defined(__hpux)
|
---|
847 | return gethrtime();
|
---|
848 | # elif defined(_AIX)
|
---|
849 | {
|
---|
850 | timebasestruct_t t;
|
---|
851 |
|
---|
852 | read_wall_time(&t, TIMEBASE_SZ);
|
---|
853 | return TWO32TO64(t.tb_high, t.tb_low);
|
---|
854 | }
|
---|
855 | # elif defined(OSSL_POSIX_TIMER_OKAY)
|
---|
856 | {
|
---|
857 | struct timespec ts;
|
---|
858 |
|
---|
859 | # ifdef CLOCK_BOOTTIME
|
---|
860 | # define CLOCK_TYPE CLOCK_BOOTTIME
|
---|
861 | # elif defined(_POSIX_MONOTONIC_CLOCK)
|
---|
862 | # define CLOCK_TYPE CLOCK_MONOTONIC
|
---|
863 | # else
|
---|
864 | # define CLOCK_TYPE CLOCK_REALTIME
|
---|
865 | # endif
|
---|
866 |
|
---|
867 | if (clock_gettime(CLOCK_TYPE, &ts) == 0)
|
---|
868 | return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
---|
869 | }
|
---|
870 | # endif
|
---|
871 | # if defined(__unix__) \
|
---|
872 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
---|
873 | {
|
---|
874 | struct timeval tv;
|
---|
875 |
|
---|
876 | if (gettimeofday(&tv, NULL) == 0)
|
---|
877 | return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
---|
878 | }
|
---|
879 | # endif
|
---|
880 | return time(NULL);
|
---|
881 | }
|
---|
882 | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
|
---|
883 | || defined(__DJGPP__) */
|
---|