1 | #!/usr/bin/env perl
|
---|
2 | # Copyright 2017-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | #
|
---|
4 | # Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | # this file except in compliance with the License. You can obtain a copy
|
---|
6 | # in the file LICENSE in the source distribution or at
|
---|
7 | # https://www.openssl.org/source/license.html
|
---|
8 | #
|
---|
9 | # ====================================================================
|
---|
10 | # Written by Andy Polyakov <[email protected]> for the OpenSSL
|
---|
11 | # project. The module is, however, dual licensed under OpenSSL and
|
---|
12 | # CRYPTOGAMS licenses depending on where you obtain it. For further
|
---|
13 | # details see http://www.openssl.org/~appro/cryptogams/.
|
---|
14 | # ====================================================================
|
---|
15 | #
|
---|
16 | # Keccak-1600 for AVX2.
|
---|
17 | #
|
---|
18 | # July 2017.
|
---|
19 | #
|
---|
20 | # To paraphrase Gilles Van Assche, if you contemplate Fig. 2.3 on page
|
---|
21 | # 20 of The Keccak reference [or Fig. 5 of FIPS PUB 202], and load data
|
---|
22 | # other than A[0][0] in magic order into 6 [256-bit] registers, *each
|
---|
23 | # dedicated to one axis*, Pi permutation is reduced to intra-register
|
---|
24 | # shuffles...
|
---|
25 | #
|
---|
26 | # It makes other steps more intricate, but overall, is it a win? To be
|
---|
27 | # more specific index permutations organized by quadruples are:
|
---|
28 | #
|
---|
29 | # [4][4] [3][3] [2][2] [1][1]<-+
|
---|
30 | # [0][4] [0][3] [0][2] [0][1]<-+
|
---|
31 | # [3][0] [1][0] [4][0] [2][0] |
|
---|
32 | # [4][3] [3][1] [2][4] [1][2] |
|
---|
33 | # [3][4] [1][3] [4][2] [2][1] |
|
---|
34 | # [2][3] [4][1] [1][4] [3][2] |
|
---|
35 | # [2][2] [4][4] [1][1] [3][3] -+
|
---|
36 | #
|
---|
37 | # This however is highly impractical for Theta and Chi. What would help
|
---|
38 | # Theta is if x indices were aligned column-wise, or in other words:
|
---|
39 | #
|
---|
40 | # [0][4] [0][3] [0][2] [0][1]
|
---|
41 | # [3][0] [1][0] [4][0] [2][0]
|
---|
42 | #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
|
---|
43 | # [2][4] [4][3] [1][2] [3][1]
|
---|
44 | #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
|
---|
45 | # [3][4] [1][3] [4][2] [2][1]
|
---|
46 | #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
|
---|
47 | # [1][4] [2][3] [3][2] [4][1]
|
---|
48 | #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
|
---|
49 | # [4][4] [3][3] [2][2] [1][1]
|
---|
50 | #
|
---|
51 | # So here we have it, lines not marked with vpermq() represent the magic
|
---|
52 | # order in which data is to be loaded and maintained. [And lines marked
|
---|
53 | # with vpermq() represent Pi circular permutation in chosen layout. Note
|
---|
54 | # that first step is permutation-free.] A[0][0] is loaded to register of
|
---|
55 | # its own, to all lanes. [A[0][0] is not part of Pi permutation or Rho.]
|
---|
56 | # Digits in variables' names denote right-most coordinates:
|
---|
57 |
|
---|
58 | my ($A00, # [0][0] [0][0] [0][0] [0][0] # %ymm0
|
---|
59 | $A01, # [0][4] [0][3] [0][2] [0][1] # %ymm1
|
---|
60 | $A20, # [3][0] [1][0] [4][0] [2][0] # %ymm2
|
---|
61 | $A31, # [2][4] [4][3] [1][2] [3][1] # %ymm3
|
---|
62 | $A21, # [3][4] [1][3] [4][2] [2][1] # %ymm4
|
---|
63 | $A41, # [1][4] [2][3] [3][2] [4][1] # %ymm5
|
---|
64 | $A11) = # [4][4] [3][3] [2][2] [1][1] # %ymm6
|
---|
65 | map("%ymm$_",(0..6));
|
---|
66 |
|
---|
67 | # We also need to map the magic order into offsets within structure:
|
---|
68 |
|
---|
69 | my @A_jagged = ([0,0], [1,0], [1,1], [1,2], [1,3], # [0][0..4]
|
---|
70 | [2,2], [6,0], [3,1], [4,2], [5,3], # [1][0..4]
|
---|
71 | [2,0], [4,0], [6,1], [5,2], [3,3], # [2][0..4]
|
---|
72 | [2,3], [3,0], [5,1], [6,2], [4,3], # [3][0..4]
|
---|
73 | [2,1], [5,0], [4,1], [3,2], [6,3]); # [4][0..4]
|
---|
74 | @A_jagged = map(8*($$_[0]*4+$$_[1]), @A_jagged); # ... and now linear
|
---|
75 |
|
---|
76 | # But on the other hand Chi is much better off if y indices were aligned
|
---|
77 | # column-wise, not x. For this reason we have to shuffle data prior
|
---|
78 | # Chi and revert it afterwards. Prior shuffle is naturally merged with
|
---|
79 | # Pi itself:
|
---|
80 | #
|
---|
81 | # [0][4] [0][3] [0][2] [0][1]
|
---|
82 | # [3][0] [1][0] [4][0] [2][0]
|
---|
83 | #vpermq([4][3] [3][1] [2][4] [1][2], 0b01110010)
|
---|
84 | #vpermq([2][4] [4][3] [1][2] [3][1], 0b00011011) = 0b10001101
|
---|
85 | # [3][1] [1][2] [4][3] [2][4]
|
---|
86 | #vpermq([4][2] [3][4] [2][1] [1][3], 0b10001101)
|
---|
87 | #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = 0b10001101
|
---|
88 | # [3][4] [1][3] [4][2] [2][1]
|
---|
89 | #vpermq([2][3] [4][1] [1][4] [3][2], 0b01110010)
|
---|
90 | #vpermq([1][4] [2][3] [3][2] [4][1], 0b01110010) = 0b00011011
|
---|
91 | # [3][2] [1][4] [4][1] [2][3]
|
---|
92 | #vpermq([1][1] [2][2] [3][3] [4][4], 0b00011011)
|
---|
93 | #vpermq([4][4] [3][3] [2][2] [1][1], 0b10001101) = 0b01110010
|
---|
94 | # [3][3] [1][1] [4][4] [2][2]
|
---|
95 | #
|
---|
96 | # And reverse post-Chi permutation:
|
---|
97 | #
|
---|
98 | # [0][4] [0][3] [0][2] [0][1]
|
---|
99 | # [3][0] [1][0] [4][0] [2][0]
|
---|
100 | #vpermq([3][1] [1][2] [4][3] [2][4], 0b00011011)
|
---|
101 | # [2][4] [4][3] [1][2] [3][1]
|
---|
102 | #vpermq([3][4] [1][3] [4][2] [2][1], 0b11100100) = nop :-)
|
---|
103 | # [3][4] [1][3] [4][2] [2][1]
|
---|
104 | #vpermq([3][2] [1][4] [4][1] [2][3], 0b10001101)
|
---|
105 | # [1][4] [2][3] [3][2] [4][1]
|
---|
106 | #vpermq([3][3] [1][1] [4][4] [2][2], 0b01110010)
|
---|
107 | # [4][4] [3][3] [2][2] [1][1]
|
---|
108 | #
|
---|
109 | ########################################################################
|
---|
110 | # Numbers are cycles per processed byte out of large message.
|
---|
111 | #
|
---|
112 | # r=1088(*)
|
---|
113 | #
|
---|
114 | # Haswell 8.7/+10%
|
---|
115 | # Skylake 7.8/+20%
|
---|
116 | # Ryzen 17(**)
|
---|
117 | #
|
---|
118 | # (*) Corresponds to SHA3-256. Percentage after slash is improvement
|
---|
119 | # coefficient in comparison to scalar keccak1600-x86_64.pl.
|
---|
120 | # (**) It's expected that Ryzen performs poorly, because instruction
|
---|
121 | # issue rate is limited to two AVX2 instructions per cycle and
|
---|
122 | # in addition vpblendd is reportedly bound to specific port.
|
---|
123 | # Obviously this code path should not be executed on Ryzen.
|
---|
124 |
|
---|
125 | my @T = map("%ymm$_",(7..15));
|
---|
126 | my ($C14,$C00,$D00,$D14) = @T[5..8];
|
---|
127 |
|
---|
128 | $code.=<<___;
|
---|
129 | .text
|
---|
130 |
|
---|
131 | .type __KeccakF1600,\@function
|
---|
132 | .align 32
|
---|
133 | __KeccakF1600:
|
---|
134 | lea rhotates_left+96(%rip),%r8
|
---|
135 | lea rhotates_right+96(%rip),%r9
|
---|
136 | lea iotas(%rip),%r10
|
---|
137 | mov \$24,%eax
|
---|
138 | jmp .Loop_avx2
|
---|
139 |
|
---|
140 | .align 32
|
---|
141 | .Loop_avx2:
|
---|
142 | ######################################### Theta
|
---|
143 | vpshufd \$0b01001110,$A20,$C00
|
---|
144 | vpxor $A31,$A41,$C14
|
---|
145 | vpxor $A11,$A21,@T[2]
|
---|
146 | vpxor $A01,$C14,$C14
|
---|
147 | vpxor @T[2],$C14,$C14 # C[1..4]
|
---|
148 |
|
---|
149 | vpermq \$0b10010011,$C14,@T[4]
|
---|
150 | vpxor $A20,$C00,$C00
|
---|
151 | vpermq \$0b01001110,$C00,@T[0]
|
---|
152 |
|
---|
153 | vpsrlq \$63,$C14,@T[1]
|
---|
154 | vpaddq $C14,$C14,@T[2]
|
---|
155 | vpor @T[2],@T[1],@T[1] # ROL64(C[1..4],1)
|
---|
156 |
|
---|
157 | vpermq \$0b00111001,@T[1],$D14
|
---|
158 | vpxor @T[4],@T[1],$D00
|
---|
159 | vpermq \$0b00000000,$D00,$D00 # D[0..0] = ROL64(C[1],1) ^ C[4]
|
---|
160 |
|
---|
161 | vpxor $A00,$C00,$C00
|
---|
162 | vpxor @T[0],$C00,$C00 # C[0..0]
|
---|
163 |
|
---|
164 | vpsrlq \$63,$C00,@T[0]
|
---|
165 | vpaddq $C00,$C00,@T[1]
|
---|
166 | vpor @T[0],@T[1],@T[1] # ROL64(C[0..0],1)
|
---|
167 |
|
---|
168 | vpxor $D00,$A20,$A20 # ^= D[0..0]
|
---|
169 | vpxor $D00,$A00,$A00 # ^= D[0..0]
|
---|
170 |
|
---|
171 | vpblendd \$0b11000000,@T[1],$D14,$D14
|
---|
172 | vpblendd \$0b00000011,$C00,@T[4],@T[4]
|
---|
173 | vpxor @T[4],$D14,$D14 # D[1..4] = ROL64(C[2..4,0),1) ^ C[0..3]
|
---|
174 |
|
---|
175 | ######################################### Rho + Pi + pre-Chi shuffle
|
---|
176 | vpsllvq 0*32-96(%r8),$A20,@T[3]
|
---|
177 | vpsrlvq 0*32-96(%r9),$A20,$A20
|
---|
178 | vpor @T[3],$A20,$A20
|
---|
179 |
|
---|
180 | vpxor $D14,$A31,$A31 # ^= D[1..4] from Theta
|
---|
181 | vpsllvq 2*32-96(%r8),$A31,@T[4]
|
---|
182 | vpsrlvq 2*32-96(%r9),$A31,$A31
|
---|
183 | vpor @T[4],$A31,$A31
|
---|
184 |
|
---|
185 | vpxor $D14,$A21,$A21 # ^= D[1..4] from Theta
|
---|
186 | vpsllvq 3*32-96(%r8),$A21,@T[5]
|
---|
187 | vpsrlvq 3*32-96(%r9),$A21,$A21
|
---|
188 | vpor @T[5],$A21,$A21
|
---|
189 |
|
---|
190 | vpxor $D14,$A41,$A41 # ^= D[1..4] from Theta
|
---|
191 | vpsllvq 4*32-96(%r8),$A41,@T[6]
|
---|
192 | vpsrlvq 4*32-96(%r9),$A41,$A41
|
---|
193 | vpor @T[6],$A41,$A41
|
---|
194 |
|
---|
195 | vpxor $D14,$A11,$A11 # ^= D[1..4] from Theta
|
---|
196 | vpermq \$0b10001101,$A20,@T[3] # $A20 -> future $A31
|
---|
197 | vpermq \$0b10001101,$A31,@T[4] # $A31 -> future $A21
|
---|
198 | vpsllvq 5*32-96(%r8),$A11,@T[7]
|
---|
199 | vpsrlvq 5*32-96(%r9),$A11,@T[1]
|
---|
200 | vpor @T[7],@T[1],@T[1] # $A11 -> future $A01
|
---|
201 |
|
---|
202 | vpxor $D14,$A01,$A01 # ^= D[1..4] from Theta
|
---|
203 | vpermq \$0b00011011,$A21,@T[5] # $A21 -> future $A41
|
---|
204 | vpermq \$0b01110010,$A41,@T[6] # $A41 -> future $A11
|
---|
205 | vpsllvq 1*32-96(%r8),$A01,@T[8]
|
---|
206 | vpsrlvq 1*32-96(%r9),$A01,@T[2]
|
---|
207 | vpor @T[8],@T[2],@T[2] # $A01 -> future $A20
|
---|
208 |
|
---|
209 | ######################################### Chi
|
---|
210 | vpsrldq \$8,@T[1],@T[7]
|
---|
211 | vpandn @T[7],@T[1],@T[0] # tgting [0][0] [0][0] [0][0] [0][0]
|
---|
212 |
|
---|
213 | vpblendd \$0b00001100,@T[6],@T[2],$A31 # [4][4] [2][0]
|
---|
214 | vpblendd \$0b00001100,@T[2],@T[4],@T[8] # [4][0] [2][1]
|
---|
215 | vpblendd \$0b00001100,@T[4],@T[3],$A41 # [4][2] [2][4]
|
---|
216 | vpblendd \$0b00001100,@T[3],@T[2],@T[7] # [4][3] [2][0]
|
---|
217 | vpblendd \$0b00110000,@T[4],$A31,$A31 # [1][3] [4][4] [2][0]
|
---|
218 | vpblendd \$0b00110000,@T[5],@T[8],@T[8] # [1][4] [4][0] [2][1]
|
---|
219 | vpblendd \$0b00110000,@T[2],$A41,$A41 # [1][0] [4][2] [2][4]
|
---|
220 | vpblendd \$0b00110000,@T[6],@T[7],@T[7] # [1][1] [4][3] [2][0]
|
---|
221 | vpblendd \$0b11000000,@T[5],$A31,$A31 # [3][2] [1][3] [4][4] [2][0]
|
---|
222 | vpblendd \$0b11000000,@T[6],@T[8],@T[8] # [3][3] [1][4] [4][0] [2][1]
|
---|
223 | vpblendd \$0b11000000,@T[6],$A41,$A41 # [3][3] [1][0] [4][2] [2][4]
|
---|
224 | vpblendd \$0b11000000,@T[4],@T[7],@T[7] # [3][4] [1][1] [4][3] [2][0]
|
---|
225 | vpandn @T[8],$A31,$A31 # tgting [3][1] [1][2] [4][3] [2][4]
|
---|
226 | vpandn @T[7],$A41,$A41 # tgting [3][2] [1][4] [4][1] [2][3]
|
---|
227 |
|
---|
228 | vpblendd \$0b00001100,@T[2],@T[5],$A11 # [4][0] [2][3]
|
---|
229 | vpblendd \$0b00001100,@T[5],@T[3],@T[8] # [4][1] [2][4]
|
---|
230 | vpxor @T[3],$A31,$A31
|
---|
231 | vpblendd \$0b00110000,@T[3],$A11,$A11 # [1][2] [4][0] [2][3]
|
---|
232 | vpblendd \$0b00110000,@T[4],@T[8],@T[8] # [1][3] [4][1] [2][4]
|
---|
233 | vpxor @T[5],$A41,$A41
|
---|
234 | vpblendd \$0b11000000,@T[4],$A11,$A11 # [3][4] [1][2] [4][0] [2][3]
|
---|
235 | vpblendd \$0b11000000,@T[2],@T[8],@T[8] # [3][0] [1][3] [4][1] [2][4]
|
---|
236 | vpandn @T[8],$A11,$A11 # tgting [3][3] [1][1] [4][4] [2][2]
|
---|
237 | vpxor @T[6],$A11,$A11
|
---|
238 |
|
---|
239 | vpermq \$0b00011110,@T[1],$A21 # [0][1] [0][2] [0][4] [0][3]
|
---|
240 | vpblendd \$0b00110000,$A00,$A21,@T[8] # [0][1] [0][0] [0][4] [0][3]
|
---|
241 | vpermq \$0b00111001,@T[1],$A01 # [0][1] [0][4] [0][3] [0][2]
|
---|
242 | vpblendd \$0b11000000,$A00,$A01,$A01 # [0][0] [0][4] [0][3] [0][2]
|
---|
243 | vpandn @T[8],$A01,$A01 # tgting [0][4] [0][3] [0][2] [0][1]
|
---|
244 |
|
---|
245 | vpblendd \$0b00001100,@T[5],@T[4],$A20 # [4][1] [2][1]
|
---|
246 | vpblendd \$0b00001100,@T[4],@T[6],@T[7] # [4][2] [2][2]
|
---|
247 | vpblendd \$0b00110000,@T[6],$A20,$A20 # [1][1] [4][1] [2][1]
|
---|
248 | vpblendd \$0b00110000,@T[3],@T[7],@T[7] # [1][2] [4][2] [2][2]
|
---|
249 | vpblendd \$0b11000000,@T[3],$A20,$A20 # [3][1] [1][1] [4][1] [2][1]
|
---|
250 | vpblendd \$0b11000000,@T[5],@T[7],@T[7] # [3][2] [1][2] [4][2] [2][2]
|
---|
251 | vpandn @T[7],$A20,$A20 # tgting [3][0] [1][0] [4][0] [2][0]
|
---|
252 | vpxor @T[2],$A20,$A20
|
---|
253 |
|
---|
254 | vpermq \$0b00000000,@T[0],@T[0] # [0][0] [0][0] [0][0] [0][0]
|
---|
255 | vpermq \$0b00011011,$A31,$A31 # post-Chi shuffle
|
---|
256 | vpermq \$0b10001101,$A41,$A41
|
---|
257 | vpermq \$0b01110010,$A11,$A11
|
---|
258 |
|
---|
259 | vpblendd \$0b00001100,@T[3],@T[6],$A21 # [4][3] [2][2]
|
---|
260 | vpblendd \$0b00001100,@T[6],@T[5],@T[7] # [4][4] [2][3]
|
---|
261 | vpblendd \$0b00110000,@T[5],$A21,$A21 # [1][4] [4][3] [2][2]
|
---|
262 | vpblendd \$0b00110000,@T[2],@T[7],@T[7] # [1][0] [4][4] [2][3]
|
---|
263 | vpblendd \$0b11000000,@T[2],$A21,$A21 # [3][0] [1][4] [4][3] [2][2]
|
---|
264 | vpblendd \$0b11000000,@T[3],@T[7],@T[7] # [3][1] [1][0] [4][4] [2][3]
|
---|
265 | vpandn @T[7],$A21,$A21 # tgting [3][4] [1][3] [4][2] [2][1]
|
---|
266 |
|
---|
267 | vpxor @T[0],$A00,$A00
|
---|
268 | vpxor @T[1],$A01,$A01
|
---|
269 | vpxor @T[4],$A21,$A21
|
---|
270 |
|
---|
271 | ######################################### Iota
|
---|
272 | vpxor (%r10),$A00,$A00
|
---|
273 | lea 32(%r10),%r10
|
---|
274 |
|
---|
275 | dec %eax
|
---|
276 | jnz .Loop_avx2
|
---|
277 |
|
---|
278 | ret
|
---|
279 | .size __KeccakF1600,.-__KeccakF1600
|
---|
280 | ___
|
---|
281 | my ($A_flat,$inp,$len,$bsz) = ("%rdi","%rsi","%rdx","%rcx");
|
---|
282 | my $out = $inp; # in squeeze
|
---|
283 |
|
---|
284 | $code.=<<___;
|
---|
285 | .globl SHA3_absorb
|
---|
286 | .type SHA3_absorb,\@function
|
---|
287 | .align 32
|
---|
288 | SHA3_absorb:
|
---|
289 | mov %rsp,%r11
|
---|
290 |
|
---|
291 | lea -240(%rsp),%rsp
|
---|
292 | and \$-32,%rsp
|
---|
293 |
|
---|
294 | lea 96($A_flat),$A_flat
|
---|
295 | lea 96($inp),$inp
|
---|
296 | lea 96(%rsp),%r10
|
---|
297 |
|
---|
298 | vzeroupper
|
---|
299 |
|
---|
300 | vpbroadcastq -96($A_flat),$A00 # load A[5][5]
|
---|
301 | vmovdqu 8+32*0-96($A_flat),$A01
|
---|
302 | vmovdqu 8+32*1-96($A_flat),$A20
|
---|
303 | vmovdqu 8+32*2-96($A_flat),$A31
|
---|
304 | vmovdqu 8+32*3-96($A_flat),$A21
|
---|
305 | vmovdqu 8+32*4-96($A_flat),$A41
|
---|
306 | vmovdqu 8+32*5-96($A_flat),$A11
|
---|
307 |
|
---|
308 | vpxor @T[0],@T[0],@T[0]
|
---|
309 | vmovdqa @T[0],32*2-96(%r10) # zero transfer area on stack
|
---|
310 | vmovdqa @T[0],32*3-96(%r10)
|
---|
311 | vmovdqa @T[0],32*4-96(%r10)
|
---|
312 | vmovdqa @T[0],32*5-96(%r10)
|
---|
313 | vmovdqa @T[0],32*6-96(%r10)
|
---|
314 |
|
---|
315 | .Loop_absorb_avx2:
|
---|
316 | mov $bsz,%rax
|
---|
317 | sub $bsz,$len
|
---|
318 | jc .Ldone_absorb_avx2
|
---|
319 |
|
---|
320 | shr \$3,%eax
|
---|
321 | vpbroadcastq 0-96($inp),@T[0]
|
---|
322 | vmovdqu 8-96($inp),@T[1]
|
---|
323 | sub \$4,%eax
|
---|
324 | ___
|
---|
325 | for(my $i=5; $i<25; $i++) {
|
---|
326 | $code.=<<___
|
---|
327 | dec %eax
|
---|
328 | jz .Labsorved_avx2
|
---|
329 | mov 8*$i-96($inp),%r8
|
---|
330 | mov %r8,$A_jagged[$i]-96(%r10)
|
---|
331 | ___
|
---|
332 | }
|
---|
333 | $code.=<<___;
|
---|
334 | .Labsorved_avx2:
|
---|
335 | lea ($inp,$bsz),$inp
|
---|
336 |
|
---|
337 | vpxor @T[0],$A00,$A00
|
---|
338 | vpxor @T[1],$A01,$A01
|
---|
339 | vpxor 32*2-96(%r10),$A20,$A20
|
---|
340 | vpxor 32*3-96(%r10),$A31,$A31
|
---|
341 | vpxor 32*4-96(%r10),$A21,$A21
|
---|
342 | vpxor 32*5-96(%r10),$A41,$A41
|
---|
343 | vpxor 32*6-96(%r10),$A11,$A11
|
---|
344 |
|
---|
345 | call __KeccakF1600
|
---|
346 |
|
---|
347 | lea 96(%rsp),%r10
|
---|
348 | jmp .Loop_absorb_avx2
|
---|
349 |
|
---|
350 | .Ldone_absorb_avx2:
|
---|
351 | vmovq %xmm0,-96($A_flat)
|
---|
352 | vmovdqu $A01,8+32*0-96($A_flat)
|
---|
353 | vmovdqu $A20,8+32*1-96($A_flat)
|
---|
354 | vmovdqu $A31,8+32*2-96($A_flat)
|
---|
355 | vmovdqu $A21,8+32*3-96($A_flat)
|
---|
356 | vmovdqu $A41,8+32*4-96($A_flat)
|
---|
357 | vmovdqu $A11,8+32*5-96($A_flat)
|
---|
358 |
|
---|
359 | vzeroupper
|
---|
360 |
|
---|
361 | lea (%r11),%rsp
|
---|
362 | lea ($len,$bsz),%rax # return value
|
---|
363 | ret
|
---|
364 | .size SHA3_absorb,.-SHA3_absorb
|
---|
365 |
|
---|
366 | .globl SHA3_squeeze
|
---|
367 | .type SHA3_squeeze,\@function
|
---|
368 | .align 32
|
---|
369 | SHA3_squeeze:
|
---|
370 | mov %rsp,%r11
|
---|
371 |
|
---|
372 | lea 96($A_flat),$A_flat
|
---|
373 | shr \$3,$bsz
|
---|
374 |
|
---|
375 | vzeroupper
|
---|
376 |
|
---|
377 | vpbroadcastq -96($A_flat),$A00
|
---|
378 | vpxor @T[0],@T[0],@T[0]
|
---|
379 | vmovdqu 8+32*0-96($A_flat),$A01
|
---|
380 | vmovdqu 8+32*1-96($A_flat),$A20
|
---|
381 | vmovdqu 8+32*2-96($A_flat),$A31
|
---|
382 | vmovdqu 8+32*3-96($A_flat),$A21
|
---|
383 | vmovdqu 8+32*4-96($A_flat),$A41
|
---|
384 | vmovdqu 8+32*5-96($A_flat),$A11
|
---|
385 |
|
---|
386 | mov $bsz,%rax
|
---|
387 |
|
---|
388 | .Loop_squeeze_avx2:
|
---|
389 | mov @A_jagged[$i]-96($A_flat),%r8
|
---|
390 | ___
|
---|
391 | for (my $i=0; $i<25; $i++) {
|
---|
392 | $code.=<<___;
|
---|
393 | sub \$8,$len
|
---|
394 | jc .Ltail_squeeze_avx2
|
---|
395 | mov %r8,($out)
|
---|
396 | lea 8($out),$out
|
---|
397 | je .Ldone_squeeze_avx2
|
---|
398 | dec %eax
|
---|
399 | je .Lextend_output_avx2
|
---|
400 | mov @A_jagged[$i+1]-120($A_flat),%r8
|
---|
401 | ___
|
---|
402 | }
|
---|
403 | $code.=<<___;
|
---|
404 | .Lextend_output_avx2:
|
---|
405 | call __KeccakF1600
|
---|
406 |
|
---|
407 | vmovq %xmm0,-96($A_flat)
|
---|
408 | vmovdqu $A01,8+32*0-96($A_flat)
|
---|
409 | vmovdqu $A20,8+32*1-96($A_flat)
|
---|
410 | vmovdqu $A31,8+32*2-96($A_flat)
|
---|
411 | vmovdqu $A21,8+32*3-96($A_flat)
|
---|
412 | vmovdqu $A41,8+32*4-96($A_flat)
|
---|
413 | vmovdqu $A11,8+32*5-96($A_flat)
|
---|
414 |
|
---|
415 | mov $bsz,%rax
|
---|
416 | jmp .Loop_squeeze_avx2
|
---|
417 |
|
---|
418 |
|
---|
419 | .Ltail_squeeze_avx2:
|
---|
420 | add \$8,$len
|
---|
421 | .Loop_tail_avx2:
|
---|
422 | mov %r8b,($out)
|
---|
423 | lea 1($out),$out
|
---|
424 | shr \$8,%r8
|
---|
425 | dec $len
|
---|
426 | jnz .Loop_tail_avx2
|
---|
427 |
|
---|
428 | .Ldone_squeeze_avx2:
|
---|
429 | vzeroupper
|
---|
430 |
|
---|
431 | lea (%r11),%rsp
|
---|
432 | ret
|
---|
433 | .size SHA3_squeeze,.-SHA3_squeeze
|
---|
434 |
|
---|
435 | .align 64
|
---|
436 | rhotates_left:
|
---|
437 | .quad 3, 18, 36, 41 # [2][0] [4][0] [1][0] [3][0]
|
---|
438 | .quad 1, 62, 28, 27 # [0][1] [0][2] [0][3] [0][4]
|
---|
439 | .quad 45, 6, 56, 39 # [3][1] [1][2] [4][3] [2][4]
|
---|
440 | .quad 10, 61, 55, 8 # [2][1] [4][2] [1][3] [3][4]
|
---|
441 | .quad 2, 15, 25, 20 # [4][1] [3][2] [2][3] [1][4]
|
---|
442 | .quad 44, 43, 21, 14 # [1][1] [2][2] [3][3] [4][4]
|
---|
443 | rhotates_right:
|
---|
444 | .quad 64-3, 64-18, 64-36, 64-41
|
---|
445 | .quad 64-1, 64-62, 64-28, 64-27
|
---|
446 | .quad 64-45, 64-6, 64-56, 64-39
|
---|
447 | .quad 64-10, 64-61, 64-55, 64-8
|
---|
448 | .quad 64-2, 64-15, 64-25, 64-20
|
---|
449 | .quad 64-44, 64-43, 64-21, 64-14
|
---|
450 | iotas:
|
---|
451 | .quad 0x0000000000000001, 0x0000000000000001, 0x0000000000000001, 0x0000000000000001
|
---|
452 | .quad 0x0000000000008082, 0x0000000000008082, 0x0000000000008082, 0x0000000000008082
|
---|
453 | .quad 0x800000000000808a, 0x800000000000808a, 0x800000000000808a, 0x800000000000808a
|
---|
454 | .quad 0x8000000080008000, 0x8000000080008000, 0x8000000080008000, 0x8000000080008000
|
---|
455 | .quad 0x000000000000808b, 0x000000000000808b, 0x000000000000808b, 0x000000000000808b
|
---|
456 | .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
|
---|
457 | .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
|
---|
458 | .quad 0x8000000000008009, 0x8000000000008009, 0x8000000000008009, 0x8000000000008009
|
---|
459 | .quad 0x000000000000008a, 0x000000000000008a, 0x000000000000008a, 0x000000000000008a
|
---|
460 | .quad 0x0000000000000088, 0x0000000000000088, 0x0000000000000088, 0x0000000000000088
|
---|
461 | .quad 0x0000000080008009, 0x0000000080008009, 0x0000000080008009, 0x0000000080008009
|
---|
462 | .quad 0x000000008000000a, 0x000000008000000a, 0x000000008000000a, 0x000000008000000a
|
---|
463 | .quad 0x000000008000808b, 0x000000008000808b, 0x000000008000808b, 0x000000008000808b
|
---|
464 | .quad 0x800000000000008b, 0x800000000000008b, 0x800000000000008b, 0x800000000000008b
|
---|
465 | .quad 0x8000000000008089, 0x8000000000008089, 0x8000000000008089, 0x8000000000008089
|
---|
466 | .quad 0x8000000000008003, 0x8000000000008003, 0x8000000000008003, 0x8000000000008003
|
---|
467 | .quad 0x8000000000008002, 0x8000000000008002, 0x8000000000008002, 0x8000000000008002
|
---|
468 | .quad 0x8000000000000080, 0x8000000000000080, 0x8000000000000080, 0x8000000000000080
|
---|
469 | .quad 0x000000000000800a, 0x000000000000800a, 0x000000000000800a, 0x000000000000800a
|
---|
470 | .quad 0x800000008000000a, 0x800000008000000a, 0x800000008000000a, 0x800000008000000a
|
---|
471 | .quad 0x8000000080008081, 0x8000000080008081, 0x8000000080008081, 0x8000000080008081
|
---|
472 | .quad 0x8000000000008080, 0x8000000000008080, 0x8000000000008080, 0x8000000000008080
|
---|
473 | .quad 0x0000000080000001, 0x0000000080000001, 0x0000000080000001, 0x0000000080000001
|
---|
474 | .quad 0x8000000080008008, 0x8000000080008008, 0x8000000080008008, 0x8000000080008008
|
---|
475 |
|
---|
476 | .asciz "Keccak-1600 absorb and squeeze for AVX2, CRYPTOGAMS by <appro\@openssl.org>"
|
---|
477 | ___
|
---|
478 |
|
---|
479 | $output=pop;
|
---|
480 | open STDOUT,">$output";
|
---|
481 | print $code;
|
---|
482 | close STDOUT or die "error closing STDOUT: $!";
|
---|