1 | #! /usr/bin/env perl
|
---|
2 | # Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | #
|
---|
4 | # Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | # this file except in compliance with the License. You can obtain a copy
|
---|
6 | # in the file LICENSE in the source distribution or at
|
---|
7 | # https://www.openssl.org/source/license.html
|
---|
8 |
|
---|
9 |
|
---|
10 | # ====================================================================
|
---|
11 | # Written by Andy Polyakov <[email protected]> for the OpenSSL
|
---|
12 | # project. The module is, however, dual licensed under OpenSSL and
|
---|
13 | # CRYPTOGAMS licenses depending on where you obtain it. For further
|
---|
14 | # details see http://www.openssl.org/~appro/cryptogams/.
|
---|
15 | # ====================================================================
|
---|
16 |
|
---|
17 | # January 2009
|
---|
18 | #
|
---|
19 | # Provided that UltraSPARC VIS instructions are pipe-lined(*) and
|
---|
20 | # pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC
|
---|
21 | # Graphic Unit would make it possible to achieve higher instruction-
|
---|
22 | # level parallelism, ILP, and thus higher performance. It should be
|
---|
23 | # explicitly noted that ILP is the keyword, and it means that this
|
---|
24 | # code would be unsuitable for cores like UltraSPARC-Tx. The idea is
|
---|
25 | # not really novel, Sun had VIS-powered implementation for a while.
|
---|
26 | # Unlike Sun's implementation this one can process multiple unaligned
|
---|
27 | # input blocks, and as such works as drop-in replacement for OpenSSL
|
---|
28 | # sha1_block_data_order. Performance improvement was measured to be
|
---|
29 | # 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on
|
---|
30 | # UltraSPARC-III. See below for discussion...
|
---|
31 | #
|
---|
32 | # The module does not present direct interest for OpenSSL, because
|
---|
33 | # it doesn't provide better performance on contemporary SPARCv9 CPUs,
|
---|
34 | # UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they
|
---|
35 | # absolutely must score on UltraSPARC-I-IV can simply replace
|
---|
36 | # crypto/sha/asm/sha1-sparcv9.pl with this module.
|
---|
37 | #
|
---|
38 | # (*) "Pipe-lined" means that even if it takes several cycles to
|
---|
39 | # complete, next instruction using same functional unit [but not
|
---|
40 | # depending on the result of the current instruction] can start
|
---|
41 | # execution without having to wait for the unit. "Pairable"
|
---|
42 | # means that two [or more] independent instructions can be
|
---|
43 | # issued at the very same time.
|
---|
44 |
|
---|
45 | $bits=32;
|
---|
46 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); }
|
---|
47 | if ($bits==64) { $bias=2047; $frame=192; }
|
---|
48 | else { $bias=0; $frame=112; }
|
---|
49 |
|
---|
50 | $output=shift;
|
---|
51 | open STDOUT,">$output";
|
---|
52 |
|
---|
53 | $ctx="%i0";
|
---|
54 | $inp="%i1";
|
---|
55 | $len="%i2";
|
---|
56 | $tmp0="%i3";
|
---|
57 | $tmp1="%i4";
|
---|
58 | $tmp2="%i5";
|
---|
59 | $tmp3="%g5";
|
---|
60 |
|
---|
61 | $base="%g1";
|
---|
62 | $align="%g4";
|
---|
63 | $Xfer="%o5";
|
---|
64 | $nXfer=$tmp3;
|
---|
65 | $Xi="%o7";
|
---|
66 |
|
---|
67 | $A="%l0";
|
---|
68 | $B="%l1";
|
---|
69 | $C="%l2";
|
---|
70 | $D="%l3";
|
---|
71 | $E="%l4";
|
---|
72 | @V=($A,$B,$C,$D,$E);
|
---|
73 |
|
---|
74 | $Actx="%o0";
|
---|
75 | $Bctx="%o1";
|
---|
76 | $Cctx="%o2";
|
---|
77 | $Dctx="%o3";
|
---|
78 | $Ectx="%o4";
|
---|
79 |
|
---|
80 | $fmul="%f32";
|
---|
81 | $VK_00_19="%f34";
|
---|
82 | $VK_20_39="%f36";
|
---|
83 | $VK_40_59="%f38";
|
---|
84 | $VK_60_79="%f40";
|
---|
85 | @VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79);
|
---|
86 | @X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
|
---|
87 | "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16");
|
---|
88 |
|
---|
89 | # This is reference 2x-parallelized VIS-powered Xupdate procedure. It
|
---|
90 | # covers even K_NN_MM addition...
|
---|
91 | sub Xupdate {
|
---|
92 | my ($i)=@_;
|
---|
93 | my $K=@VK[($i+16)/20];
|
---|
94 | my $j=($i+16)%16;
|
---|
95 |
|
---|
96 | # [ provided that GSR.alignaddr_offset is 5, $mul contains
|
---|
97 | # 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to
|
---|
98 | # chosen registers... ]
|
---|
99 | $code.=<<___;
|
---|
100 | fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13]
|
---|
101 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
---|
102 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
---|
103 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
---|
104 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
---|
105 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
---|
106 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
---|
107 | ![fxors %f15,%f2,%f2]
|
---|
108 | for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
---|
109 | ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency
|
---|
110 | fpadd32 $K,@X[$j],%f20
|
---|
111 | std %f20,[$Xfer+`4*$j`]
|
---|
112 | ___
|
---|
113 | # The numbers delimited with slash are the earliest possible dispatch
|
---|
114 | # cycles for given instruction assuming 1 cycle latency for simple VIS
|
---|
115 | # instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as
|
---|
116 | # on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being
|
---|
117 | # 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1
|
---|
118 | # round. As [long as] FPU/VIS instructions are perfectly pairable with
|
---|
119 | # IALU ones, the round timing is defined by the maximum between VIS
|
---|
120 | # and IALU timings. The latter varies from round to round and averages
|
---|
121 | # out at 6.25 ticks. This means that USI&II should operate at IALU
|
---|
122 | # rate, while USIII&IV - at VIS rate. This explains why performance
|
---|
123 | # improvement varies among processors. Well, given that pure IALU
|
---|
124 | # sha1-sparcv9.pl module exhibits virtually uniform performance of
|
---|
125 | # ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical
|
---|
126 | # lower limits. Real-life performance was measured to be 6.6 cycles
|
---|
127 | # per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than
|
---|
128 | # half-round VIS timing, because there are 16 Xupdate-free rounds,
|
---|
129 | # which "push down" average theoretical timing to 8 cycles...
|
---|
130 |
|
---|
131 | # (*) SPARC64-V[II] was originally believed to have 2 cycles VIS
|
---|
132 | # latency. Well, it might have, but it doesn't have dedicated
|
---|
133 | # VIS-unit. Instead, VIS instructions are executed by other
|
---|
134 | # functional units, ones used here - by IALU. This doesn't
|
---|
135 | # improve effective ILP...
|
---|
136 | }
|
---|
137 |
|
---|
138 | # The reference Xupdate procedure is then "strained" over *pairs* of
|
---|
139 | # BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13]
|
---|
140 | # and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves
|
---|
141 | # plenty of room to amortize for read-after-write hazard, as well as
|
---|
142 | # to fetch and align input for the next spin. The VIS instructions are
|
---|
143 | # scheduled for latency of 2 cycles, because there are not enough IALU
|
---|
144 | # instructions to schedule for latency of 3, while scheduling for 1
|
---|
145 | # would give no gain on USI&II anyway.
|
---|
146 |
|
---|
147 | sub BODY_00_19 {
|
---|
148 | my ($i,$a,$b,$c,$d,$e)=@_;
|
---|
149 | my $j=$i&~1;
|
---|
150 | my $k=($j+16+2)%16; # ahead reference
|
---|
151 | my $l=($j+16-2)%16; # behind reference
|
---|
152 | my $K=@VK[($j+16-2)/20];
|
---|
153 |
|
---|
154 | $j=($j+16)%16;
|
---|
155 |
|
---|
156 | $code.=<<___ if (!($i&1));
|
---|
157 | sll $a,5,$tmp0 !! $i
|
---|
158 | and $c,$b,$tmp3
|
---|
159 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
160 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
---|
161 | srl $a,27,$tmp1
|
---|
162 | add $tmp0,$e,$e
|
---|
163 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
---|
164 | sll $b,30,$tmp2
|
---|
165 | add $tmp1,$e,$e
|
---|
166 | andn $d,$b,$tmp1
|
---|
167 | add $Xi,$e,$e
|
---|
168 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
---|
169 | srl $b,2,$b
|
---|
170 | or $tmp1,$tmp3,$tmp1
|
---|
171 | or $tmp2,$b,$b
|
---|
172 | add $tmp1,$e,$e
|
---|
173 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
---|
174 | ___
|
---|
175 | $code.=<<___ if ($i&1);
|
---|
176 | sll $a,5,$tmp0 !! $i
|
---|
177 | and $c,$b,$tmp3
|
---|
178 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
179 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
---|
180 | srl $a,27,$tmp1
|
---|
181 | add $tmp0,$e,$e
|
---|
182 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
---|
183 | sll $b,30,$tmp2
|
---|
184 | add $tmp1,$e,$e
|
---|
185 | fpadd32 $K,@X[$l],%f20 !
|
---|
186 | andn $d,$b,$tmp1
|
---|
187 | add $Xi,$e,$e
|
---|
188 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
---|
189 | srl $b,2,$b
|
---|
190 | or $tmp1,$tmp3,$tmp1
|
---|
191 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
---|
192 | or $tmp2,$b,$b
|
---|
193 | add $tmp1,$e,$e
|
---|
194 | ___
|
---|
195 | $code.=<<___ if ($i&1 && $i>=2);
|
---|
196 | std %f20,[$Xfer+`4*$l`] !
|
---|
197 | ___
|
---|
198 | }
|
---|
199 |
|
---|
200 | sub BODY_20_39 {
|
---|
201 | my ($i,$a,$b,$c,$d,$e)=@_;
|
---|
202 | my $j=$i&~1;
|
---|
203 | my $k=($j+16+2)%16; # ahead reference
|
---|
204 | my $l=($j+16-2)%16; # behind reference
|
---|
205 | my $K=@VK[($j+16-2)/20];
|
---|
206 |
|
---|
207 | $j=($j+16)%16;
|
---|
208 |
|
---|
209 | $code.=<<___ if (!($i&1) && $i<64);
|
---|
210 | sll $a,5,$tmp0 !! $i
|
---|
211 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
212 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
---|
213 | srl $a,27,$tmp1
|
---|
214 | add $tmp0,$e,$e
|
---|
215 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
---|
216 | xor $c,$b,$tmp0
|
---|
217 | add $tmp1,$e,$e
|
---|
218 | sll $b,30,$tmp2
|
---|
219 | xor $d,$tmp0,$tmp1
|
---|
220 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
---|
221 | srl $b,2,$b
|
---|
222 | add $tmp1,$e,$e
|
---|
223 | or $tmp2,$b,$b
|
---|
224 | add $Xi,$e,$e
|
---|
225 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
---|
226 | ___
|
---|
227 | $code.=<<___ if ($i&1 && $i<64);
|
---|
228 | sll $a,5,$tmp0 !! $i
|
---|
229 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
230 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
---|
231 | srl $a,27,$tmp1
|
---|
232 | add $tmp0,$e,$e
|
---|
233 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
---|
234 | xor $c,$b,$tmp0
|
---|
235 | add $tmp1,$e,$e
|
---|
236 | fpadd32 $K,@X[$l],%f20 !
|
---|
237 | sll $b,30,$tmp2
|
---|
238 | xor $d,$tmp0,$tmp1
|
---|
239 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
---|
240 | srl $b,2,$b
|
---|
241 | add $tmp1,$e,$e
|
---|
242 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
---|
243 | or $tmp2,$b,$b
|
---|
244 | add $Xi,$e,$e
|
---|
245 | std %f20,[$Xfer+`4*$l`] !
|
---|
246 | ___
|
---|
247 | $code.=<<___ if ($i==64);
|
---|
248 | sll $a,5,$tmp0 !! $i
|
---|
249 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
250 | fpadd32 $K,@X[$l],%f20
|
---|
251 | srl $a,27,$tmp1
|
---|
252 | add $tmp0,$e,$e
|
---|
253 | xor $c,$b,$tmp0
|
---|
254 | add $tmp1,$e,$e
|
---|
255 | sll $b,30,$tmp2
|
---|
256 | xor $d,$tmp0,$tmp1
|
---|
257 | std %f20,[$Xfer+`4*$l`]
|
---|
258 | srl $b,2,$b
|
---|
259 | add $tmp1,$e,$e
|
---|
260 | or $tmp2,$b,$b
|
---|
261 | add $Xi,$e,$e
|
---|
262 | ___
|
---|
263 | $code.=<<___ if ($i>64);
|
---|
264 | sll $a,5,$tmp0 !! $i
|
---|
265 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
266 | srl $a,27,$tmp1
|
---|
267 | add $tmp0,$e,$e
|
---|
268 | xor $c,$b,$tmp0
|
---|
269 | add $tmp1,$e,$e
|
---|
270 | sll $b,30,$tmp2
|
---|
271 | xor $d,$tmp0,$tmp1
|
---|
272 | srl $b,2,$b
|
---|
273 | add $tmp1,$e,$e
|
---|
274 | or $tmp2,$b,$b
|
---|
275 | add $Xi,$e,$e
|
---|
276 | ___
|
---|
277 | }
|
---|
278 |
|
---|
279 | sub BODY_40_59 {
|
---|
280 | my ($i,$a,$b,$c,$d,$e)=@_;
|
---|
281 | my $j=$i&~1;
|
---|
282 | my $k=($j+16+2)%16; # ahead reference
|
---|
283 | my $l=($j+16-2)%16; # behind reference
|
---|
284 | my $K=@VK[($j+16-2)/20];
|
---|
285 |
|
---|
286 | $j=($j+16)%16;
|
---|
287 |
|
---|
288 | $code.=<<___ if (!($i&1));
|
---|
289 | sll $a,5,$tmp0 !! $i
|
---|
290 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
291 | fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14]
|
---|
292 | srl $a,27,$tmp1
|
---|
293 | add $tmp0,$e,$e
|
---|
294 | fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9]
|
---|
295 | and $c,$b,$tmp0
|
---|
296 | add $tmp1,$e,$e
|
---|
297 | sll $b,30,$tmp2
|
---|
298 | or $c,$b,$tmp1
|
---|
299 | fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9]
|
---|
300 | srl $b,2,$b
|
---|
301 | and $d,$tmp1,$tmp1
|
---|
302 | add $Xi,$e,$e
|
---|
303 | or $tmp1,$tmp0,$tmp1
|
---|
304 | faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24
|
---|
305 | or $tmp2,$b,$b
|
---|
306 | add $tmp1,$e,$e
|
---|
307 | fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1
|
---|
308 | ___
|
---|
309 | $code.=<<___ if ($i&1);
|
---|
310 | sll $a,5,$tmp0 !! $i
|
---|
311 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
312 | srl $a,27,$tmp1
|
---|
313 | add $tmp0,$e,$e
|
---|
314 | fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1
|
---|
315 | and $c,$b,$tmp0
|
---|
316 | add $tmp1,$e,$e
|
---|
317 | fpadd32 $K,@X[$l],%f20 !
|
---|
318 | sll $b,30,$tmp2
|
---|
319 | or $c,$b,$tmp1
|
---|
320 | fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13]
|
---|
321 | srl $b,2,$b
|
---|
322 | and $d,$tmp1,$tmp1
|
---|
323 | fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp
|
---|
324 | add $Xi,$e,$e
|
---|
325 | or $tmp1,$tmp0,$tmp1
|
---|
326 | or $tmp2,$b,$b
|
---|
327 | add $tmp1,$e,$e
|
---|
328 | std %f20,[$Xfer+`4*$l`] !
|
---|
329 | ___
|
---|
330 | }
|
---|
331 |
|
---|
332 | # If there is more data to process, then we pre-fetch the data for
|
---|
333 | # next iteration in last ten rounds...
|
---|
334 | sub BODY_70_79 {
|
---|
335 | my ($i,$a,$b,$c,$d,$e)=@_;
|
---|
336 | my $j=$i&~1;
|
---|
337 | my $m=($i%8)*2;
|
---|
338 |
|
---|
339 | $j=($j+16)%16;
|
---|
340 |
|
---|
341 | $code.=<<___ if ($i==70);
|
---|
342 | sll $a,5,$tmp0 !! $i
|
---|
343 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
344 | srl $a,27,$tmp1
|
---|
345 | add $tmp0,$e,$e
|
---|
346 | ldd [$inp+64],@X[0]
|
---|
347 | xor $c,$b,$tmp0
|
---|
348 | add $tmp1,$e,$e
|
---|
349 | sll $b,30,$tmp2
|
---|
350 | xor $d,$tmp0,$tmp1
|
---|
351 | srl $b,2,$b
|
---|
352 | add $tmp1,$e,$e
|
---|
353 | or $tmp2,$b,$b
|
---|
354 | add $Xi,$e,$e
|
---|
355 |
|
---|
356 | and $inp,-64,$nXfer
|
---|
357 | inc 64,$inp
|
---|
358 | and $nXfer,255,$nXfer
|
---|
359 | alignaddr %g0,$align,%g0
|
---|
360 | add $base,$nXfer,$nXfer
|
---|
361 | ___
|
---|
362 | $code.=<<___ if ($i==71);
|
---|
363 | sll $a,5,$tmp0 !! $i
|
---|
364 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
365 | srl $a,27,$tmp1
|
---|
366 | add $tmp0,$e,$e
|
---|
367 | xor $c,$b,$tmp0
|
---|
368 | add $tmp1,$e,$e
|
---|
369 | sll $b,30,$tmp2
|
---|
370 | xor $d,$tmp0,$tmp1
|
---|
371 | srl $b,2,$b
|
---|
372 | add $tmp1,$e,$e
|
---|
373 | or $tmp2,$b,$b
|
---|
374 | add $Xi,$e,$e
|
---|
375 | ___
|
---|
376 | $code.=<<___ if ($i>=72);
|
---|
377 | faligndata @X[$m],@X[$m+2],@X[$m]
|
---|
378 | sll $a,5,$tmp0 !! $i
|
---|
379 | ld [$Xfer+`4*($i%16)`],$Xi
|
---|
380 | srl $a,27,$tmp1
|
---|
381 | add $tmp0,$e,$e
|
---|
382 | xor $c,$b,$tmp0
|
---|
383 | add $tmp1,$e,$e
|
---|
384 | fpadd32 $VK_00_19,@X[$m],%f20
|
---|
385 | sll $b,30,$tmp2
|
---|
386 | xor $d,$tmp0,$tmp1
|
---|
387 | srl $b,2,$b
|
---|
388 | add $tmp1,$e,$e
|
---|
389 | or $tmp2,$b,$b
|
---|
390 | add $Xi,$e,$e
|
---|
391 | ___
|
---|
392 | $code.=<<___ if ($i<77);
|
---|
393 | ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)]
|
---|
394 | ___
|
---|
395 | $code.=<<___ if ($i==77); # redundant if $inp was aligned
|
---|
396 | add $align,63,$tmp0
|
---|
397 | and $tmp0,-8,$tmp0
|
---|
398 | ldd [$inp+$tmp0],@X[16]
|
---|
399 | ___
|
---|
400 | $code.=<<___ if ($i>=72);
|
---|
401 | std %f20,[$nXfer+`4*$m`]
|
---|
402 | ___
|
---|
403 | }
|
---|
404 |
|
---|
405 | $code.=<<___;
|
---|
406 | .section ".text",#alloc,#execinstr
|
---|
407 |
|
---|
408 | .align 64
|
---|
409 | vis_const:
|
---|
410 | .long 0x5a827999,0x5a827999 ! K_00_19
|
---|
411 | .long 0x6ed9eba1,0x6ed9eba1 ! K_20_39
|
---|
412 | .long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59
|
---|
413 | .long 0xca62c1d6,0xca62c1d6 ! K_60_79
|
---|
414 | .long 0x00000100,0x00000100
|
---|
415 | .align 64
|
---|
416 | .type vis_const,#object
|
---|
417 | .size vis_const,(.-vis_const)
|
---|
418 |
|
---|
419 | .globl sha1_block_data_order
|
---|
420 | sha1_block_data_order:
|
---|
421 | save %sp,-$frame,%sp
|
---|
422 | add %fp,$bias-256,$base
|
---|
423 |
|
---|
424 | 1: call .+8
|
---|
425 | add %o7,vis_const-1b,$tmp0
|
---|
426 |
|
---|
427 | ldd [$tmp0+0],$VK_00_19
|
---|
428 | ldd [$tmp0+8],$VK_20_39
|
---|
429 | ldd [$tmp0+16],$VK_40_59
|
---|
430 | ldd [$tmp0+24],$VK_60_79
|
---|
431 | ldd [$tmp0+32],$fmul
|
---|
432 |
|
---|
433 | ld [$ctx+0],$Actx
|
---|
434 | and $base,-256,$base
|
---|
435 | ld [$ctx+4],$Bctx
|
---|
436 | sub $base,$bias+$frame,%sp
|
---|
437 | ld [$ctx+8],$Cctx
|
---|
438 | and $inp,7,$align
|
---|
439 | ld [$ctx+12],$Dctx
|
---|
440 | and $inp,-8,$inp
|
---|
441 | ld [$ctx+16],$Ectx
|
---|
442 |
|
---|
443 | ! X[16] is maintained in FP register bank
|
---|
444 | alignaddr %g0,$align,%g0
|
---|
445 | ldd [$inp+0],@X[0]
|
---|
446 | sub $inp,-64,$Xfer
|
---|
447 | ldd [$inp+8],@X[2]
|
---|
448 | and $Xfer,-64,$Xfer
|
---|
449 | ldd [$inp+16],@X[4]
|
---|
450 | and $Xfer,255,$Xfer
|
---|
451 | ldd [$inp+24],@X[6]
|
---|
452 | add $base,$Xfer,$Xfer
|
---|
453 | ldd [$inp+32],@X[8]
|
---|
454 | ldd [$inp+40],@X[10]
|
---|
455 | ldd [$inp+48],@X[12]
|
---|
456 | brz,pt $align,.Laligned
|
---|
457 | ldd [$inp+56],@X[14]
|
---|
458 |
|
---|
459 | ldd [$inp+64],@X[16]
|
---|
460 | faligndata @X[0],@X[2],@X[0]
|
---|
461 | faligndata @X[2],@X[4],@X[2]
|
---|
462 | faligndata @X[4],@X[6],@X[4]
|
---|
463 | faligndata @X[6],@X[8],@X[6]
|
---|
464 | faligndata @X[8],@X[10],@X[8]
|
---|
465 | faligndata @X[10],@X[12],@X[10]
|
---|
466 | faligndata @X[12],@X[14],@X[12]
|
---|
467 | faligndata @X[14],@X[16],@X[14]
|
---|
468 |
|
---|
469 | .Laligned:
|
---|
470 | mov 5,$tmp0
|
---|
471 | dec 1,$len
|
---|
472 | alignaddr %g0,$tmp0,%g0
|
---|
473 | fpadd32 $VK_00_19,@X[0],%f16
|
---|
474 | fpadd32 $VK_00_19,@X[2],%f18
|
---|
475 | fpadd32 $VK_00_19,@X[4],%f20
|
---|
476 | fpadd32 $VK_00_19,@X[6],%f22
|
---|
477 | fpadd32 $VK_00_19,@X[8],%f24
|
---|
478 | fpadd32 $VK_00_19,@X[10],%f26
|
---|
479 | fpadd32 $VK_00_19,@X[12],%f28
|
---|
480 | fpadd32 $VK_00_19,@X[14],%f30
|
---|
481 | std %f16,[$Xfer+0]
|
---|
482 | mov $Actx,$A
|
---|
483 | std %f18,[$Xfer+8]
|
---|
484 | mov $Bctx,$B
|
---|
485 | std %f20,[$Xfer+16]
|
---|
486 | mov $Cctx,$C
|
---|
487 | std %f22,[$Xfer+24]
|
---|
488 | mov $Dctx,$D
|
---|
489 | std %f24,[$Xfer+32]
|
---|
490 | mov $Ectx,$E
|
---|
491 | std %f26,[$Xfer+40]
|
---|
492 | fxors @X[13],@X[0],@X[0]
|
---|
493 | std %f28,[$Xfer+48]
|
---|
494 | ba .Loop
|
---|
495 | std %f30,[$Xfer+56]
|
---|
496 | .align 32
|
---|
497 | .Loop:
|
---|
498 | ___
|
---|
499 | for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
|
---|
500 | for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
---|
501 | for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
|
---|
502 | for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
---|
503 | $code.=<<___;
|
---|
504 | tst $len
|
---|
505 | bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail
|
---|
506 | nop
|
---|
507 | ___
|
---|
508 | for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); }
|
---|
509 | $code.=<<___;
|
---|
510 | add $A,$Actx,$Actx
|
---|
511 | add $B,$Bctx,$Bctx
|
---|
512 | add $C,$Cctx,$Cctx
|
---|
513 | add $D,$Dctx,$Dctx
|
---|
514 | add $E,$Ectx,$Ectx
|
---|
515 | mov 5,$tmp0
|
---|
516 | fxors @X[13],@X[0],@X[0]
|
---|
517 | mov $Actx,$A
|
---|
518 | mov $Bctx,$B
|
---|
519 | mov $Cctx,$C
|
---|
520 | mov $Dctx,$D
|
---|
521 | mov $Ectx,$E
|
---|
522 | alignaddr %g0,$tmp0,%g0
|
---|
523 | dec 1,$len
|
---|
524 | ba .Loop
|
---|
525 | mov $nXfer,$Xfer
|
---|
526 |
|
---|
527 | .align 32
|
---|
528 | .Ltail:
|
---|
529 | ___
|
---|
530 | for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
|
---|
531 | $code.=<<___;
|
---|
532 | add $A,$Actx,$Actx
|
---|
533 | add $B,$Bctx,$Bctx
|
---|
534 | add $C,$Cctx,$Cctx
|
---|
535 | add $D,$Dctx,$Dctx
|
---|
536 | add $E,$Ectx,$Ectx
|
---|
537 |
|
---|
538 | st $Actx,[$ctx+0]
|
---|
539 | st $Bctx,[$ctx+4]
|
---|
540 | st $Cctx,[$ctx+8]
|
---|
541 | st $Dctx,[$ctx+12]
|
---|
542 | st $Ectx,[$ctx+16]
|
---|
543 |
|
---|
544 | ret
|
---|
545 | restore
|
---|
546 | .type sha1_block_data_order,#function
|
---|
547 | .size sha1_block_data_order,(.-sha1_block_data_order)
|
---|
548 | .asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>"
|
---|
549 | .align 4
|
---|
550 | ___
|
---|
551 |
|
---|
552 | # Purpose of these subroutines is to explicitly encode VIS instructions,
|
---|
553 | # so that one can compile the module without having to specify VIS
|
---|
554 | # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
|
---|
555 | # Idea is to reserve for option to produce "universal" binary and let
|
---|
556 | # programmer detect if current CPU is VIS capable at run-time.
|
---|
557 | sub unvis {
|
---|
558 | my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
---|
559 | my ($ref,$opf);
|
---|
560 | my %visopf = ( "fmul8ulx16" => 0x037,
|
---|
561 | "faligndata" => 0x048,
|
---|
562 | "fpadd32" => 0x052,
|
---|
563 | "fxor" => 0x06c,
|
---|
564 | "fxors" => 0x06d );
|
---|
565 |
|
---|
566 | $ref = "$mnemonic\t$rs1,$rs2,$rd";
|
---|
567 |
|
---|
568 | if ($opf=$visopf{$mnemonic}) {
|
---|
569 | foreach ($rs1,$rs2,$rd) {
|
---|
570 | return $ref if (!/%f([0-9]{1,2})/);
|
---|
571 | $_=$1;
|
---|
572 | if ($1>=32) {
|
---|
573 | return $ref if ($1&1);
|
---|
574 | # re-encode for upper double register addressing
|
---|
575 | $_=($1|$1>>5)&31;
|
---|
576 | }
|
---|
577 | }
|
---|
578 |
|
---|
579 | return sprintf ".word\t0x%08x !%s",
|
---|
580 | 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
|
---|
581 | $ref;
|
---|
582 | } else {
|
---|
583 | return $ref;
|
---|
584 | }
|
---|
585 | }
|
---|
586 | sub unalignaddr {
|
---|
587 | my ($mnemonic,$rs1,$rs2,$rd)=@_;
|
---|
588 | my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
|
---|
589 | my $ref="$mnemonic\t$rs1,$rs2,$rd";
|
---|
590 |
|
---|
591 | foreach ($rs1,$rs2,$rd) {
|
---|
592 | if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; }
|
---|
593 | else { return $ref; }
|
---|
594 | }
|
---|
595 | return sprintf ".word\t0x%08x !%s",
|
---|
596 | 0x81b00300|$rd<<25|$rs1<<14|$rs2,
|
---|
597 | $ref;
|
---|
598 | }
|
---|
599 |
|
---|
600 | $code =~ s/\`([^\`]*)\`/eval $1/gem;
|
---|
601 | $code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/
|
---|
602 | &unvis($1,$2,$3,$4)
|
---|
603 | /gem;
|
---|
604 | $code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/
|
---|
605 | &unalignaddr($1,$2,$3,$4)
|
---|
606 | /gem;
|
---|
607 | print $code;
|
---|
608 | close STDOUT or die "error closing STDOUT: $!";
|
---|