1 | =pod
|
---|
2 |
|
---|
3 | =head1 NAME
|
---|
4 |
|
---|
5 | EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_mul, EC_POINT_mul, EC_GROUP_precompute_mult, EC_GROUP_have_precompute_mult - Functions for performing mathematical operations and tests on EC_POINT objects
|
---|
6 |
|
---|
7 | =head1 SYNOPSIS
|
---|
8 |
|
---|
9 | #include <openssl/ec.h>
|
---|
10 |
|
---|
11 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
---|
12 | const EC_POINT *b, BN_CTX *ctx);
|
---|
13 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx);
|
---|
14 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx);
|
---|
15 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p);
|
---|
16 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx);
|
---|
17 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx);
|
---|
18 | int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx);
|
---|
19 | int EC_POINTs_make_affine(const EC_GROUP *group, size_t num,
|
---|
20 | EC_POINT *points[], BN_CTX *ctx);
|
---|
21 | int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num,
|
---|
22 | const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx);
|
---|
23 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n,
|
---|
24 | const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx);
|
---|
25 | int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
|
---|
26 | int EC_GROUP_have_precompute_mult(const EC_GROUP *group);
|
---|
27 |
|
---|
28 |
|
---|
29 | =head1 DESCRIPTION
|
---|
30 |
|
---|
31 | EC_POINT_add adds the two points B<a> and B<b> and places the result in B<r>. Similarly EC_POINT_dbl doubles the point B<a> and places the
|
---|
32 | result in B<r>. In both cases it is valid for B<r> to be one of B<a> or B<b>.
|
---|
33 |
|
---|
34 | EC_POINT_invert calculates the inverse of the supplied point B<a>. The result is placed back in B<a>.
|
---|
35 |
|
---|
36 | The function EC_POINT_is_at_infinity tests whether the supplied point is at infinity or not.
|
---|
37 |
|
---|
38 | EC_POINT_is_on_curve tests whether the supplied point is on the curve or not.
|
---|
39 |
|
---|
40 | EC_POINT_cmp compares the two supplied points and tests whether or not they are equal.
|
---|
41 |
|
---|
42 | The functions EC_POINT_make_affine and EC_POINTs_make_affine force the internal representation of the EC_POINT(s) into the affine
|
---|
43 | co-ordinate system. In the case of EC_POINTs_make_affine the value B<num> provides the number of points in the array B<points> to be
|
---|
44 | forced.
|
---|
45 |
|
---|
46 | EC_POINT_mul is a convenient interface to EC_POINTs_mul: it calculates the value generator * B<n> + B<q> * B<m> and stores the result in B<r>.
|
---|
47 | The value B<n> may be NULL in which case the result is just B<q> * B<m> (variable point multiplication). Alternatively, both B<q> and B<m> may be NULL, and B<n> non-NULL, in which case the result is just generator * B<n> (fixed point multiplication).
|
---|
48 | When performing a single fixed or variable point multiplication, the underlying implementation uses a constant time algorithm, when the input scalar (either B<n> or B<m>) is in the range [0, ec_group_order).
|
---|
49 |
|
---|
50 | EC_POINTs_mul calculates the value generator * B<n> + B<q[0]> * B<m[0]> + ... + B<q[num-1]> * B<m[num-1]>. As for EC_POINT_mul the value B<n> may be NULL or B<num> may be zero.
|
---|
51 | When performing a fixed point multiplication (B<n> is non-NULL and B<num> is 0) or a variable point multiplication (B<n> is NULL and B<num> is 1), the underlying implementation uses a constant time algorithm, when the input scalar (either B<n> or B<m[0]>) is in the range [0, ec_group_order).
|
---|
52 |
|
---|
53 | The function EC_GROUP_precompute_mult stores multiples of the generator for faster point multiplication, whilst
|
---|
54 | EC_GROUP_have_precompute_mult tests whether precomputation has already been done. See L<EC_GROUP_copy(3)> for information
|
---|
55 | about the generator.
|
---|
56 |
|
---|
57 |
|
---|
58 | =head1 RETURN VALUES
|
---|
59 |
|
---|
60 | The following functions return 1 on success or 0 on error: EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_make_affine,
|
---|
61 | EC_POINTs_make_affine, EC_POINTs_make_affine, EC_POINT_mul, EC_POINTs_mul and EC_GROUP_precompute_mult.
|
---|
62 |
|
---|
63 | EC_POINT_is_at_infinity returns 1 if the point is at infinity, or 0 otherwise.
|
---|
64 |
|
---|
65 | EC_POINT_is_on_curve returns 1 if the point is on the curve, 0 if not, or -1 on error.
|
---|
66 |
|
---|
67 | EC_POINT_cmp returns 1 if the points are not equal, 0 if they are, or -1 on error.
|
---|
68 |
|
---|
69 | EC_GROUP_have_precompute_mult return 1 if a precomputation has been done, or 0 if not.
|
---|
70 |
|
---|
71 | =head1 SEE ALSO
|
---|
72 |
|
---|
73 | L<crypto(7)>, L<EC_GROUP_new(3)>, L<EC_GROUP_copy(3)>,
|
---|
74 | L<EC_POINT_new(3)>, L<EC_KEY_new(3)>,
|
---|
75 | L<EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)>
|
---|
76 |
|
---|
77 | =head1 COPYRIGHT
|
---|
78 |
|
---|
79 | Copyright 2013-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
80 |
|
---|
81 | Licensed under the OpenSSL license (the "License"). You may not use
|
---|
82 | this file except in compliance with the License. You can obtain a copy
|
---|
83 | in the file LICENSE in the source distribution or at
|
---|
84 | L<https://www.openssl.org/source/license.html>.
|
---|
85 |
|
---|
86 | =cut
|
---|