VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.1/crypto/rc4/asm/rc4-x86_64.pl@ 94082

Last change on this file since 94082 was 94082, checked in by vboxsync, 3 years ago

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

  • Property svn:executable set to *
File size: 16.2 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# July 2004
18#
19# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
20# "hand-coded assembler"] doesn't stand for the whole improvement
21# coefficient. It turned out that eliminating RC4_CHAR from config
22# line results in ~40% improvement (yes, even for C implementation).
23# Presumably it has everything to do with AMD cache architecture and
24# RAW or whatever penalties. Once again! The module *requires* config
25# line *without* RC4_CHAR! As for coding "secret," I bet on partial
26# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
27# I simply 'inc %r8b'. Even though optimization manual discourages
28# to operate on partial registers, it turned out to be the best bet.
29# At least for AMD... How IA32E would perform remains to be seen...
30
31# November 2004
32#
33# As was shown by Marc Bevand reordering of couple of load operations
34# results in even higher performance gain of 3.3x:-) At least on
35# Opteron... For reference, 1x in this case is RC4_CHAR C-code
36# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
37# Latter means that if you want to *estimate* what to expect from
38# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
39
40# November 2004
41#
42# Intel P4 EM64T core was found to run the AMD64 code really slow...
43# The only way to achieve comparable performance on P4 was to keep
44# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
45# compose blended code, which would perform even within 30% marginal
46# on either AMD and Intel platforms, I implement both cases. See
47# rc4_skey.c for further details...
48
49# April 2005
50#
51# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
52# those with add/sub results in 50% performance improvement of folded
53# loop...
54
55# May 2005
56#
57# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
58# performance by >30% [unlike P4 32-bit case that is]. But this is
59# provided that loads are reordered even more aggressively! Both code
60# paths, AMD64 and EM64T, reorder loads in essentially same manner
61# as my IA-64 implementation. On Opteron this resulted in modest 5%
62# improvement [I had to test it], while final Intel P4 performance
63# achieves respectful 432MBps on 2.8GHz processor now. For reference.
64# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
65# RC4_INT code-path. While if executed on Opteron, it's only 25%
66# slower than the RC4_INT one [meaning that if CPU µ-arch detection
67# is not implemented, then this final RC4_CHAR code-path should be
68# preferred, as it provides better *all-round* performance].
69
70# March 2007
71#
72# Intel Core2 was observed to perform poorly on both code paths:-( It
73# apparently suffers from some kind of partial register stall, which
74# occurs in 64-bit mode only [as virtually identical 32-bit loop was
75# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
76# cloop1 boosts its performance by 80%! This loop appears to be optimal
77# fit for Core2 and therefore the code was modified to skip cloop8 on
78# this CPU.
79
80# May 2010
81#
82# Intel Westmere was observed to perform suboptimally. Adding yet
83# another movzb to cloop1 improved performance by almost 50%! Core2
84# performance is improved too, but nominally...
85
86# May 2011
87#
88# The only code path that was not modified is P4-specific one. Non-P4
89# Intel code path optimization is heavily based on submission by Maxim
90# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
91# some of the ideas even in attempt to optimize the original RC4_INT
92# code path... Current performance in cycles per processed byte (less
93# is better) and improvement coefficients relative to previous
94# version of this module are:
95#
96# Opteron 5.3/+0%(*)
97# P4 6.5
98# Core2 6.2/+15%(**)
99# Westmere 4.2/+60%
100# Sandy Bridge 4.2/+120%
101# Atom 9.3/+80%
102# VIA Nano 6.4/+4%
103# Ivy Bridge 4.1/+30%
104# Bulldozer 4.5/+30%(*)
105#
106# (*) But corresponding loop has less instructions, which should have
107# positive effect on upcoming Bulldozer, which has one less ALU.
108# For reference, Intel code runs at 6.8 cpb rate on Opteron.
109# (**) Note that Core2 result is ~15% lower than corresponding result
110# for 32-bit code, meaning that it's possible to improve it,
111# but more than likely at the cost of the others (see rc4-586.pl
112# to get the idea)...
113
114# $output is the last argument if it looks like a file (it has an extension)
115# $flavour is the first argument if it doesn't look like a file
116$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
117$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
118
119$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
120
121$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
122( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
123( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
124die "can't locate x86_64-xlate.pl";
125
126open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
127 or die "can't call $xlate: $!";
128*STDOUT=*OUT;
129
130$dat="%rdi"; # arg1
131$len="%rsi"; # arg2
132$inp="%rdx"; # arg3
133$out="%rcx"; # arg4
134
135{
136$code=<<___;
137.text
138.extern OPENSSL_ia32cap_P
139
140.globl RC4
141.type RC4,\@function,4
142.align 16
143RC4:
144.cfi_startproc
145 endbranch
146 or $len,$len
147 jne .Lentry
148 ret
149.Lentry:
150 push %rbx
151.cfi_push %rbx
152 push %r12
153.cfi_push %r12
154 push %r13
155.cfi_push %r13
156.Lprologue:
157 mov $len,%r11
158 mov $inp,%r12
159 mov $out,%r13
160___
161my $len="%r11"; # reassign input arguments
162my $inp="%r12";
163my $out="%r13";
164
165my @XX=("%r10","%rsi");
166my @TX=("%rax","%rbx");
167my $YY="%rcx";
168my $TY="%rdx";
169
170$code.=<<___;
171 xor $XX[0],$XX[0]
172 xor $YY,$YY
173
174 lea 8($dat),$dat
175 mov -8($dat),$XX[0]#b
176 mov -4($dat),$YY#b
177 cmpl \$-1,256($dat)
178 je .LRC4_CHAR
179 mov OPENSSL_ia32cap_P(%rip),%r8d
180 xor $TX[1],$TX[1]
181 inc $XX[0]#b
182 sub $XX[0],$TX[1]
183 sub $inp,$out
184 movl ($dat,$XX[0],4),$TX[0]#d
185 test \$-16,$len
186 jz .Lloop1
187 bt \$30,%r8d # Intel CPU?
188 jc .Lintel
189 and \$7,$TX[1]
190 lea 1($XX[0]),$XX[1]
191 jz .Loop8
192 sub $TX[1],$len
193.Loop8_warmup:
194 add $TX[0]#b,$YY#b
195 movl ($dat,$YY,4),$TY#d
196 movl $TX[0]#d,($dat,$YY,4)
197 movl $TY#d,($dat,$XX[0],4)
198 add $TY#b,$TX[0]#b
199 inc $XX[0]#b
200 movl ($dat,$TX[0],4),$TY#d
201 movl ($dat,$XX[0],4),$TX[0]#d
202 xorb ($inp),$TY#b
203 movb $TY#b,($out,$inp)
204 lea 1($inp),$inp
205 dec $TX[1]
206 jnz .Loop8_warmup
207
208 lea 1($XX[0]),$XX[1]
209 jmp .Loop8
210.align 16
211.Loop8:
212___
213for ($i=0;$i<8;$i++) {
214$code.=<<___ if ($i==7);
215 add \$8,$XX[1]#b
216___
217$code.=<<___;
218 add $TX[0]#b,$YY#b
219 movl ($dat,$YY,4),$TY#d
220 movl $TX[0]#d,($dat,$YY,4)
221 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
222 ror \$8,%r8 # ror is redundant when $i=0
223 movl $TY#d,4*$i($dat,$XX[0],4)
224 add $TX[0]#b,$TY#b
225 movb ($dat,$TY,4),%r8b
226___
227push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
228}
229$code.=<<___;
230 add \$8,$XX[0]#b
231 ror \$8,%r8
232 sub \$8,$len
233
234 xor ($inp),%r8
235 mov %r8,($out,$inp)
236 lea 8($inp),$inp
237
238 test \$-8,$len
239 jnz .Loop8
240 cmp \$0,$len
241 jne .Lloop1
242 jmp .Lexit
243
244.align 16
245.Lintel:
246 test \$-32,$len
247 jz .Lloop1
248 and \$15,$TX[1]
249 jz .Loop16_is_hot
250 sub $TX[1],$len
251.Loop16_warmup:
252 add $TX[0]#b,$YY#b
253 movl ($dat,$YY,4),$TY#d
254 movl $TX[0]#d,($dat,$YY,4)
255 movl $TY#d,($dat,$XX[0],4)
256 add $TY#b,$TX[0]#b
257 inc $XX[0]#b
258 movl ($dat,$TX[0],4),$TY#d
259 movl ($dat,$XX[0],4),$TX[0]#d
260 xorb ($inp),$TY#b
261 movb $TY#b,($out,$inp)
262 lea 1($inp),$inp
263 dec $TX[1]
264 jnz .Loop16_warmup
265
266 mov $YY,$TX[1]
267 xor $YY,$YY
268 mov $TX[1]#b,$YY#b
269
270.Loop16_is_hot:
271 lea ($dat,$XX[0],4),$XX[1]
272___
273sub RC4_loop {
274 my $i=shift;
275 my $j=$i<0?0:$i;
276 my $xmm="%xmm".($j&1);
277
278 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
279 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
280 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
281 $code.=" movl ($dat,$YY,4),$TY#d\n";
282 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
283 $code.=" psllq \$8,%xmm1\n" if ($i==0);
284 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
285 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
286 $code.=" add $TY#b,$TX[0]#b\n";
287 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
288 $code.=" movz $TX[0]#b,$TX[0]#d\n";
289 $code.=" movl $TY#d,4*$j($XX[1])\n";
290 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
291 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
292 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
293 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
294 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
295 $code.=" lea 16($inp),$inp\n" if ($i==0);
296 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
297}
298 RC4_loop(-1);
299$code.=<<___;
300 jmp .Loop16_enter
301.align 16
302.Loop16:
303___
304
305for ($i=0;$i<16;$i++) {
306 $code.=".Loop16_enter:\n" if ($i==1);
307 RC4_loop($i);
308 push(@TX,shift(@TX)); # "rotate" registers
309}
310$code.=<<___;
311 mov $YY,$TX[1]
312 xor $YY,$YY # keyword to partial register
313 sub \$16,$len
314 mov $TX[1]#b,$YY#b
315 test \$-16,$len
316 jnz .Loop16
317
318 psllq \$8,%xmm1
319 pxor %xmm0,%xmm2
320 pxor %xmm1,%xmm2
321 movdqu %xmm2,($out,$inp)
322 lea 16($inp),$inp
323
324 cmp \$0,$len
325 jne .Lloop1
326 jmp .Lexit
327
328.align 16
329.Lloop1:
330 add $TX[0]#b,$YY#b
331 movl ($dat,$YY,4),$TY#d
332 movl $TX[0]#d,($dat,$YY,4)
333 movl $TY#d,($dat,$XX[0],4)
334 add $TY#b,$TX[0]#b
335 inc $XX[0]#b
336 movl ($dat,$TX[0],4),$TY#d
337 movl ($dat,$XX[0],4),$TX[0]#d
338 xorb ($inp),$TY#b
339 movb $TY#b,($out,$inp)
340 lea 1($inp),$inp
341 dec $len
342 jnz .Lloop1
343 jmp .Lexit
344
345.align 16
346.LRC4_CHAR:
347 add \$1,$XX[0]#b
348 movzb ($dat,$XX[0]),$TX[0]#d
349 test \$-8,$len
350 jz .Lcloop1
351 jmp .Lcloop8
352.align 16
353.Lcloop8:
354 mov ($inp),%r8d
355 mov 4($inp),%r9d
356___
357# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
358for ($i=0;$i<4;$i++) {
359$code.=<<___;
360 add $TX[0]#b,$YY#b
361 lea 1($XX[0]),$XX[1]
362 movzb ($dat,$YY),$TY#d
363 movzb $XX[1]#b,$XX[1]#d
364 movzb ($dat,$XX[1]),$TX[1]#d
365 movb $TX[0]#b,($dat,$YY)
366 cmp $XX[1],$YY
367 movb $TY#b,($dat,$XX[0])
368 jne .Lcmov$i # Intel cmov is sloooow...
369 mov $TX[0],$TX[1]
370.Lcmov$i:
371 add $TX[0]#b,$TY#b
372 xor ($dat,$TY),%r8b
373 ror \$8,%r8d
374___
375push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
376}
377for ($i=4;$i<8;$i++) {
378$code.=<<___;
379 add $TX[0]#b,$YY#b
380 lea 1($XX[0]),$XX[1]
381 movzb ($dat,$YY),$TY#d
382 movzb $XX[1]#b,$XX[1]#d
383 movzb ($dat,$XX[1]),$TX[1]#d
384 movb $TX[0]#b,($dat,$YY)
385 cmp $XX[1],$YY
386 movb $TY#b,($dat,$XX[0])
387 jne .Lcmov$i # Intel cmov is sloooow...
388 mov $TX[0],$TX[1]
389.Lcmov$i:
390 add $TX[0]#b,$TY#b
391 xor ($dat,$TY),%r9b
392 ror \$8,%r9d
393___
394push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
395}
396$code.=<<___;
397 lea -8($len),$len
398 mov %r8d,($out)
399 lea 8($inp),$inp
400 mov %r9d,4($out)
401 lea 8($out),$out
402
403 test \$-8,$len
404 jnz .Lcloop8
405 cmp \$0,$len
406 jne .Lcloop1
407 jmp .Lexit
408___
409$code.=<<___;
410.align 16
411.Lcloop1:
412 add $TX[0]#b,$YY#b
413 movzb $YY#b,$YY#d
414 movzb ($dat,$YY),$TY#d
415 movb $TX[0]#b,($dat,$YY)
416 movb $TY#b,($dat,$XX[0])
417 add $TX[0]#b,$TY#b
418 add \$1,$XX[0]#b
419 movzb $TY#b,$TY#d
420 movzb $XX[0]#b,$XX[0]#d
421 movzb ($dat,$TY),$TY#d
422 movzb ($dat,$XX[0]),$TX[0]#d
423 xorb ($inp),$TY#b
424 lea 1($inp),$inp
425 movb $TY#b,($out)
426 lea 1($out),$out
427 sub \$1,$len
428 jnz .Lcloop1
429 jmp .Lexit
430
431.align 16
432.Lexit:
433 sub \$1,$XX[0]#b
434 movl $XX[0]#d,-8($dat)
435 movl $YY#d,-4($dat)
436
437 mov (%rsp),%r13
438.cfi_restore %r13
439 mov 8(%rsp),%r12
440.cfi_restore %r12
441 mov 16(%rsp),%rbx
442.cfi_restore %rbx
443 add \$24,%rsp
444.cfi_adjust_cfa_offset -24
445.Lepilogue:
446 ret
447.cfi_endproc
448.size RC4,.-RC4
449___
450}
451
452$idx="%r8";
453$ido="%r9";
454
455$code.=<<___;
456.globl RC4_set_key
457.type RC4_set_key,\@function,3
458.align 16
459RC4_set_key:
460.cfi_startproc
461 endbranch
462 lea 8($dat),$dat
463 lea ($inp,$len),$inp
464 neg $len
465 mov $len,%rcx
466 xor %eax,%eax
467 xor $ido,$ido
468 xor %r10,%r10
469 xor %r11,%r11
470
471 mov OPENSSL_ia32cap_P(%rip),$idx#d
472 bt \$20,$idx#d # RC4_CHAR?
473 jc .Lc1stloop
474 jmp .Lw1stloop
475
476.align 16
477.Lw1stloop:
478 mov %eax,($dat,%rax,4)
479 add \$1,%al
480 jnc .Lw1stloop
481
482 xor $ido,$ido
483 xor $idx,$idx
484.align 16
485.Lw2ndloop:
486 mov ($dat,$ido,4),%r10d
487 add ($inp,$len,1),$idx#b
488 add %r10b,$idx#b
489 add \$1,$len
490 mov ($dat,$idx,4),%r11d
491 cmovz %rcx,$len
492 mov %r10d,($dat,$idx,4)
493 mov %r11d,($dat,$ido,4)
494 add \$1,$ido#b
495 jnc .Lw2ndloop
496 jmp .Lexit_key
497
498.align 16
499.Lc1stloop:
500 mov %al,($dat,%rax)
501 add \$1,%al
502 jnc .Lc1stloop
503
504 xor $ido,$ido
505 xor $idx,$idx
506.align 16
507.Lc2ndloop:
508 mov ($dat,$ido),%r10b
509 add ($inp,$len),$idx#b
510 add %r10b,$idx#b
511 add \$1,$len
512 mov ($dat,$idx),%r11b
513 jnz .Lcnowrap
514 mov %rcx,$len
515.Lcnowrap:
516 mov %r10b,($dat,$idx)
517 mov %r11b,($dat,$ido)
518 add \$1,$ido#b
519 jnc .Lc2ndloop
520 movl \$-1,256($dat)
521
522.align 16
523.Lexit_key:
524 xor %eax,%eax
525 mov %eax,-8($dat)
526 mov %eax,-4($dat)
527 ret
528.cfi_endproc
529.size RC4_set_key,.-RC4_set_key
530
531.globl RC4_options
532.type RC4_options,\@abi-omnipotent
533.align 16
534RC4_options:
535.cfi_startproc
536 endbranch
537 lea .Lopts(%rip),%rax
538 mov OPENSSL_ia32cap_P(%rip),%edx
539 bt \$20,%edx
540 jc .L8xchar
541 bt \$30,%edx
542 jnc .Ldone
543 add \$25,%rax
544 ret
545.L8xchar:
546 add \$12,%rax
547.Ldone:
548 ret
549.cfi_endproc
550.align 64
551.Lopts:
552.asciz "rc4(8x,int)"
553.asciz "rc4(8x,char)"
554.asciz "rc4(16x,int)"
555.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
556.align 64
557.size RC4_options,.-RC4_options
558___
559
560# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
561# CONTEXT *context,DISPATCHER_CONTEXT *disp)
562if ($win64) {
563$rec="%rcx";
564$frame="%rdx";
565$context="%r8";
566$disp="%r9";
567
568$code.=<<___;
569.extern __imp_RtlVirtualUnwind
570.type stream_se_handler,\@abi-omnipotent
571.align 16
572stream_se_handler:
573 push %rsi
574 push %rdi
575 push %rbx
576 push %rbp
577 push %r12
578 push %r13
579 push %r14
580 push %r15
581 pushfq
582 sub \$64,%rsp
583
584 mov 120($context),%rax # pull context->Rax
585 mov 248($context),%rbx # pull context->Rip
586
587 lea .Lprologue(%rip),%r10
588 cmp %r10,%rbx # context->Rip<prologue label
589 jb .Lin_prologue
590
591 mov 152($context),%rax # pull context->Rsp
592
593 lea .Lepilogue(%rip),%r10
594 cmp %r10,%rbx # context->Rip>=epilogue label
595 jae .Lin_prologue
596
597 lea 24(%rax),%rax
598
599 mov -8(%rax),%rbx
600 mov -16(%rax),%r12
601 mov -24(%rax),%r13
602 mov %rbx,144($context) # restore context->Rbx
603 mov %r12,216($context) # restore context->R12
604 mov %r13,224($context) # restore context->R13
605
606.Lin_prologue:
607 mov 8(%rax),%rdi
608 mov 16(%rax),%rsi
609 mov %rax,152($context) # restore context->Rsp
610 mov %rsi,168($context) # restore context->Rsi
611 mov %rdi,176($context) # restore context->Rdi
612
613 jmp .Lcommon_seh_exit
614.size stream_se_handler,.-stream_se_handler
615
616.type key_se_handler,\@abi-omnipotent
617.align 16
618key_se_handler:
619 push %rsi
620 push %rdi
621 push %rbx
622 push %rbp
623 push %r12
624 push %r13
625 push %r14
626 push %r15
627 pushfq
628 sub \$64,%rsp
629
630 mov 152($context),%rax # pull context->Rsp
631 mov 8(%rax),%rdi
632 mov 16(%rax),%rsi
633 mov %rsi,168($context) # restore context->Rsi
634 mov %rdi,176($context) # restore context->Rdi
635
636.Lcommon_seh_exit:
637
638 mov 40($disp),%rdi # disp->ContextRecord
639 mov $context,%rsi # context
640 mov \$154,%ecx # sizeof(CONTEXT)
641 .long 0xa548f3fc # cld; rep movsq
642
643 mov $disp,%rsi
644 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
645 mov 8(%rsi),%rdx # arg2, disp->ImageBase
646 mov 0(%rsi),%r8 # arg3, disp->ControlPc
647 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
648 mov 40(%rsi),%r10 # disp->ContextRecord
649 lea 56(%rsi),%r11 # &disp->HandlerData
650 lea 24(%rsi),%r12 # &disp->EstablisherFrame
651 mov %r10,32(%rsp) # arg5
652 mov %r11,40(%rsp) # arg6
653 mov %r12,48(%rsp) # arg7
654 mov %rcx,56(%rsp) # arg8, (NULL)
655 call *__imp_RtlVirtualUnwind(%rip)
656
657 mov \$1,%eax # ExceptionContinueSearch
658 add \$64,%rsp
659 popfq
660 pop %r15
661 pop %r14
662 pop %r13
663 pop %r12
664 pop %rbp
665 pop %rbx
666 pop %rdi
667 pop %rsi
668 ret
669.size key_se_handler,.-key_se_handler
670
671.section .pdata
672.align 4
673 .rva .LSEH_begin_RC4
674 .rva .LSEH_end_RC4
675 .rva .LSEH_info_RC4
676
677 .rva .LSEH_begin_RC4_set_key
678 .rva .LSEH_end_RC4_set_key
679 .rva .LSEH_info_RC4_set_key
680
681.section .xdata
682.align 8
683.LSEH_info_RC4:
684 .byte 9,0,0,0
685 .rva stream_se_handler
686.LSEH_info_RC4_set_key:
687 .byte 9,0,0,0
688 .rva key_se_handler
689___
690}
691
692sub reg_part {
693my ($reg,$conv)=@_;
694 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
695 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
696 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
697 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
698 return $reg;
699}
700
701$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
702$code =~ s/\`([^\`]*)\`/eval $1/gem;
703
704print $code;
705
706close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette