VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.1/crypto/rsa/rsa_gen.c@ 94082

Last change on this file since 94082 was 94082, checked in by vboxsync, 3 years ago

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

File size: 16.5 KB
Line 
1/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16/*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20#include "internal/deprecated.h"
21
22#include <stdio.h>
23#include <time.h>
24#include "internal/cryptlib.h"
25#include <openssl/bn.h>
26#include <openssl/self_test.h>
27#include "prov/providercommon.h"
28#include "rsa_local.h"
29
30static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
31static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
32 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
33
34/*
35 * NB: this wrapper would normally be placed in rsa_lib.c and the static
36 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
37 * so that we don't introduce a new linker dependency. Eg. any application
38 * that wasn't previously linking object code related to key-generation won't
39 * have to now just because key-generation is part of RSA_METHOD.
40 */
41int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
42{
43 if (rsa->meth->rsa_keygen != NULL)
44 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
45
46 return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
47 e_value, cb);
48}
49
50int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
51 BIGNUM *e_value, BN_GENCB *cb)
52{
53#ifndef FIPS_MODULE
54 /* multi-prime is only supported with the builtin key generation */
55 if (rsa->meth->rsa_multi_prime_keygen != NULL) {
56 return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
57 e_value, cb);
58 } else if (rsa->meth->rsa_keygen != NULL) {
59 /*
60 * However, if rsa->meth implements only rsa_keygen, then we
61 * have to honour it in 2-prime case and assume that it wouldn't
62 * know what to do with multi-prime key generated by builtin
63 * subroutine...
64 */
65 if (primes == 2)
66 return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
67 else
68 return 0;
69 }
70#endif /* FIPS_MODULE */
71 return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);
72}
73
74#ifndef FIPS_MODULE
75static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
76 BIGNUM *e_value, BN_GENCB *cb)
77{
78 BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
79 int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
80 int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
81 RSA_PRIME_INFO *pinfo = NULL;
82 STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
83 BN_CTX *ctx = NULL;
84 BN_ULONG bitst = 0;
85 unsigned long error = 0;
86 int ok = -1;
87
88 if (bits < RSA_MIN_MODULUS_BITS) {
89 ok = 0; /* we set our own err */
90 ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
91 goto err;
92 }
93
94 /* A bad value for e can cause infinite loops */
95 if (e_value != NULL && !ossl_rsa_check_public_exponent(e_value)) {
96 ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
97 return 0;
98 }
99
100 if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
101 ok = 0; /* we set our own err */
102 ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
103 goto err;
104 }
105
106 ctx = BN_CTX_new_ex(rsa->libctx);
107 if (ctx == NULL)
108 goto err;
109 BN_CTX_start(ctx);
110 r0 = BN_CTX_get(ctx);
111 r1 = BN_CTX_get(ctx);
112 r2 = BN_CTX_get(ctx);
113 if (r2 == NULL)
114 goto err;
115
116 /* divide bits into 'primes' pieces evenly */
117 quo = bits / primes;
118 rmd = bits % primes;
119
120 for (i = 0; i < primes; i++)
121 bitsr[i] = (i < rmd) ? quo + 1 : quo;
122
123 rsa->dirty_cnt++;
124
125 /* We need the RSA components non-NULL */
126 if (!rsa->n && ((rsa->n = BN_new()) == NULL))
127 goto err;
128 if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
129 goto err;
130 BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
131 if (!rsa->e && ((rsa->e = BN_new()) == NULL))
132 goto err;
133 if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
134 goto err;
135 BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
136 if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
137 goto err;
138 BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
139 if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
140 goto err;
141 BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME);
142 if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
143 goto err;
144 BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME);
145 if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
146 goto err;
147 BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME);
148
149 /* initialize multi-prime components */
150 if (primes > RSA_DEFAULT_PRIME_NUM) {
151 rsa->version = RSA_ASN1_VERSION_MULTI;
152 prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
153 if (prime_infos == NULL)
154 goto err;
155 if (rsa->prime_infos != NULL) {
156 /* could this happen? */
157 sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
158 ossl_rsa_multip_info_free);
159 }
160 rsa->prime_infos = prime_infos;
161
162 /* prime_info from 2 to |primes| -1 */
163 for (i = 2; i < primes; i++) {
164 pinfo = ossl_rsa_multip_info_new();
165 if (pinfo == NULL)
166 goto err;
167 (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
168 }
169 }
170
171 if (BN_copy(rsa->e, e_value) == NULL)
172 goto err;
173
174 /* generate p, q and other primes (if any) */
175 for (i = 0; i < primes; i++) {
176 adj = 0;
177 retries = 0;
178
179 if (i == 0) {
180 prime = rsa->p;
181 } else if (i == 1) {
182 prime = rsa->q;
183 } else {
184 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
185 prime = pinfo->r;
186 }
187 BN_set_flags(prime, BN_FLG_CONSTTIME);
188
189 for (;;) {
190 redo:
191 if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
192 cb, ctx))
193 goto err;
194 /*
195 * prime should not be equal to p, q, r_3...
196 * (those primes prior to this one)
197 */
198 {
199 int j;
200
201 for (j = 0; j < i; j++) {
202 BIGNUM *prev_prime;
203
204 if (j == 0)
205 prev_prime = rsa->p;
206 else if (j == 1)
207 prev_prime = rsa->q;
208 else
209 prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
210 j - 2)->r;
211
212 if (!BN_cmp(prime, prev_prime)) {
213 goto redo;
214 }
215 }
216 }
217 if (!BN_sub(r2, prime, BN_value_one()))
218 goto err;
219 ERR_set_mark();
220 BN_set_flags(r2, BN_FLG_CONSTTIME);
221 if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
222 /* GCD == 1 since inverse exists */
223 break;
224 }
225 error = ERR_peek_last_error();
226 if (ERR_GET_LIB(error) == ERR_LIB_BN
227 && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
228 /* GCD != 1 */
229 ERR_pop_to_mark();
230 } else {
231 goto err;
232 }
233 if (!BN_GENCB_call(cb, 2, n++))
234 goto err;
235 }
236
237 bitse += bitsr[i];
238
239 /* calculate n immediately to see if it's sufficient */
240 if (i == 1) {
241 /* we get at least 2 primes */
242 if (!BN_mul(r1, rsa->p, rsa->q, ctx))
243 goto err;
244 } else if (i != 0) {
245 /* modulus n = p * q * r_3 * r_4 ... */
246 if (!BN_mul(r1, rsa->n, prime, ctx))
247 goto err;
248 } else {
249 /* i == 0, do nothing */
250 if (!BN_GENCB_call(cb, 3, i))
251 goto err;
252 continue;
253 }
254 /*
255 * if |r1|, product of factors so far, is not as long as expected
256 * (by checking the first 4 bits are less than 0x9 or greater than
257 * 0xF). If so, re-generate the last prime.
258 *
259 * NOTE: This actually can't happen in two-prime case, because of
260 * the way factors are generated.
261 *
262 * Besides, another consideration is, for multi-prime case, even the
263 * length modulus is as long as expected, the modulus could start at
264 * 0x8, which could be utilized to distinguish a multi-prime private
265 * key by using the modulus in a certificate. This is also covered
266 * by checking the length should not be less than 0x9.
267 */
268 if (!BN_rshift(r2, r1, bitse - 4))
269 goto err;
270 bitst = BN_get_word(r2);
271
272 if (bitst < 0x9 || bitst > 0xF) {
273 /*
274 * For keys with more than 4 primes, we attempt longer factor to
275 * meet length requirement.
276 *
277 * Otherwise, we just re-generate the prime with the same length.
278 *
279 * This strategy has the following goals:
280 *
281 * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
282 * 2. stay the same logic with normal 2-prime key
283 */
284 bitse -= bitsr[i];
285 if (!BN_GENCB_call(cb, 2, n++))
286 goto err;
287 if (primes > 4) {
288 if (bitst < 0x9)
289 adj++;
290 else
291 adj--;
292 } else if (retries == 4) {
293 /*
294 * re-generate all primes from scratch, mainly used
295 * in 4 prime case to avoid long loop. Max retry times
296 * is set to 4.
297 */
298 i = -1;
299 bitse = 0;
300 continue;
301 }
302 retries++;
303 goto redo;
304 }
305 /* save product of primes for further use, for multi-prime only */
306 if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
307 goto err;
308 if (BN_copy(rsa->n, r1) == NULL)
309 goto err;
310 if (!BN_GENCB_call(cb, 3, i))
311 goto err;
312 }
313
314 if (BN_cmp(rsa->p, rsa->q) < 0) {
315 tmp = rsa->p;
316 rsa->p = rsa->q;
317 rsa->q = tmp;
318 }
319
320 /* calculate d */
321
322 /* p - 1 */
323 if (!BN_sub(r1, rsa->p, BN_value_one()))
324 goto err;
325 /* q - 1 */
326 if (!BN_sub(r2, rsa->q, BN_value_one()))
327 goto err;
328 /* (p - 1)(q - 1) */
329 if (!BN_mul(r0, r1, r2, ctx))
330 goto err;
331 /* multi-prime */
332 for (i = 2; i < primes; i++) {
333 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
334 /* save r_i - 1 to pinfo->d temporarily */
335 if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
336 goto err;
337 if (!BN_mul(r0, r0, pinfo->d, ctx))
338 goto err;
339 }
340
341 {
342 BIGNUM *pr0 = BN_new();
343
344 if (pr0 == NULL)
345 goto err;
346
347 BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
348 if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
349 BN_free(pr0);
350 goto err; /* d */
351 }
352 /* We MUST free pr0 before any further use of r0 */
353 BN_free(pr0);
354 }
355
356 {
357 BIGNUM *d = BN_new();
358
359 if (d == NULL)
360 goto err;
361
362 BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
363
364 /* calculate d mod (p-1) and d mod (q - 1) */
365 if (!BN_mod(rsa->dmp1, d, r1, ctx)
366 || !BN_mod(rsa->dmq1, d, r2, ctx)) {
367 BN_free(d);
368 goto err;
369 }
370
371 /* calculate CRT exponents */
372 for (i = 2; i < primes; i++) {
373 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
374 /* pinfo->d == r_i - 1 */
375 if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
376 BN_free(d);
377 goto err;
378 }
379 }
380
381 /* We MUST free d before any further use of rsa->d */
382 BN_free(d);
383 }
384
385 {
386 BIGNUM *p = BN_new();
387
388 if (p == NULL)
389 goto err;
390 BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
391
392 /* calculate inverse of q mod p */
393 if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
394 BN_free(p);
395 goto err;
396 }
397
398 /* calculate CRT coefficient for other primes */
399 for (i = 2; i < primes; i++) {
400 pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
401 BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
402 if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
403 BN_free(p);
404 goto err;
405 }
406 }
407
408 /* We MUST free p before any further use of rsa->p */
409 BN_free(p);
410 }
411
412 ok = 1;
413 err:
414 if (ok == -1) {
415 ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
416 ok = 0;
417 }
418 BN_CTX_end(ctx);
419 BN_CTX_free(ctx);
420 return ok;
421}
422#endif /* FIPS_MODULE */
423
424static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
425 BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
426{
427 int ok = 0;
428
429 /*
430 * Only multi-prime keys or insecure keys with a small key length will use
431 * the older rsa_multiprime_keygen().
432 */
433 if (primes == 2 && bits >= 2048)
434 ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
435#ifndef FIPS_MODULE
436 else
437 ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
438#endif /* FIPS_MODULE */
439
440#ifdef FIPS_MODULE
441 pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
442#endif
443 if (pairwise_test && ok > 0) {
444 OSSL_CALLBACK *stcb = NULL;
445 void *stcbarg = NULL;
446
447 OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
448 ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
449 if (!ok) {
450 ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
451 /* Clear intermediate results */
452 BN_clear_free(rsa->d);
453 BN_clear_free(rsa->p);
454 BN_clear_free(rsa->q);
455 BN_clear_free(rsa->dmp1);
456 BN_clear_free(rsa->dmq1);
457 BN_clear_free(rsa->iqmp);
458 rsa->d = NULL;
459 rsa->p = NULL;
460 rsa->q = NULL;
461 rsa->dmp1 = NULL;
462 rsa->dmq1 = NULL;
463 rsa->iqmp = NULL;
464 }
465 }
466 return ok;
467}
468
469/*
470 * For RSA key generation it is not known whether the key pair will be used
471 * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
472 * either a signature verification OR an encryption operation may be used to
473 * perform the pairwise consistency check. The simpler encrypt/decrypt operation
474 * has been chosen for this case.
475 */
476static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
477{
478 int ret = 0;
479 unsigned int ciphertxt_len;
480 unsigned char *ciphertxt = NULL;
481 const unsigned char plaintxt[16] = {0};
482 unsigned char *decoded = NULL;
483 unsigned int decoded_len;
484 unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
485 int padding = RSA_PKCS1_PADDING;
486 OSSL_SELF_TEST *st = NULL;
487
488 st = OSSL_SELF_TEST_new(cb, cbarg);
489 if (st == NULL)
490 goto err;
491 OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
492 OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
493
494 ciphertxt_len = RSA_size(rsa);
495 /*
496 * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'
497 * parameter to be a maximum of RSA_size() - allocate space for both.
498 */
499 ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);
500 if (ciphertxt == NULL)
501 goto err;
502 decoded = ciphertxt + ciphertxt_len;
503
504 ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
505 padding);
506 if (ciphertxt_len <= 0)
507 goto err;
508 if (ciphertxt_len == plaintxt_len
509 && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
510 goto err;
511
512 OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
513
514 decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
515 padding);
516 if (decoded_len != plaintxt_len
517 || memcmp(decoded, plaintxt, decoded_len) != 0)
518 goto err;
519
520 ret = 1;
521err:
522 OSSL_SELF_TEST_onend(st, ret);
523 OSSL_SELF_TEST_free(st);
524 OPENSSL_free(ciphertxt);
525
526 return ret;
527}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette