1 | /*
|
---|
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the OpenSSL license (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include "internal/cryptlib.h"
|
---|
12 | #include "internal/numbers.h"
|
---|
13 | #include <openssl/stack.h>
|
---|
14 | #include <openssl/objects.h>
|
---|
15 | #include <errno.h>
|
---|
16 | #include <openssl/e_os2.h> /* For ossl_inline */
|
---|
17 |
|
---|
18 | /*
|
---|
19 | * The initial number of nodes in the array.
|
---|
20 | */
|
---|
21 | static const int min_nodes = 4;
|
---|
22 | static const int max_nodes = SIZE_MAX / sizeof(void *) < INT_MAX
|
---|
23 | ? (int)(SIZE_MAX / sizeof(void *))
|
---|
24 | : INT_MAX;
|
---|
25 |
|
---|
26 | struct stack_st {
|
---|
27 | int num;
|
---|
28 | const void **data;
|
---|
29 | int sorted;
|
---|
30 | int num_alloc;
|
---|
31 | OPENSSL_sk_compfunc comp;
|
---|
32 | };
|
---|
33 |
|
---|
34 | OPENSSL_sk_compfunc OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk, OPENSSL_sk_compfunc c)
|
---|
35 | {
|
---|
36 | OPENSSL_sk_compfunc old = sk->comp;
|
---|
37 |
|
---|
38 | if (sk->comp != c)
|
---|
39 | sk->sorted = 0;
|
---|
40 | sk->comp = c;
|
---|
41 |
|
---|
42 | return old;
|
---|
43 | }
|
---|
44 |
|
---|
45 | OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk)
|
---|
46 | {
|
---|
47 | OPENSSL_STACK *ret;
|
---|
48 |
|
---|
49 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
|
---|
50 | CRYPTOerr(CRYPTO_F_OPENSSL_SK_DUP, ERR_R_MALLOC_FAILURE);
|
---|
51 | return NULL;
|
---|
52 | }
|
---|
53 |
|
---|
54 | /* direct structure assignment */
|
---|
55 | *ret = *sk;
|
---|
56 |
|
---|
57 | if (sk->num == 0) {
|
---|
58 | /* postpone |ret->data| allocation */
|
---|
59 | ret->data = NULL;
|
---|
60 | ret->num_alloc = 0;
|
---|
61 | return ret;
|
---|
62 | }
|
---|
63 | /* duplicate |sk->data| content */
|
---|
64 | if ((ret->data = OPENSSL_malloc(sizeof(*ret->data) * sk->num_alloc)) == NULL)
|
---|
65 | goto err;
|
---|
66 | memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
|
---|
67 | return ret;
|
---|
68 | err:
|
---|
69 | OPENSSL_sk_free(ret);
|
---|
70 | return NULL;
|
---|
71 | }
|
---|
72 |
|
---|
73 | OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
|
---|
74 | OPENSSL_sk_copyfunc copy_func,
|
---|
75 | OPENSSL_sk_freefunc free_func)
|
---|
76 | {
|
---|
77 | OPENSSL_STACK *ret;
|
---|
78 | int i;
|
---|
79 |
|
---|
80 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
|
---|
81 | CRYPTOerr(CRYPTO_F_OPENSSL_SK_DEEP_COPY, ERR_R_MALLOC_FAILURE);
|
---|
82 | return NULL;
|
---|
83 | }
|
---|
84 |
|
---|
85 | /* direct structure assignment */
|
---|
86 | *ret = *sk;
|
---|
87 |
|
---|
88 | if (sk->num == 0) {
|
---|
89 | /* postpone |ret| data allocation */
|
---|
90 | ret->data = NULL;
|
---|
91 | ret->num_alloc = 0;
|
---|
92 | return ret;
|
---|
93 | }
|
---|
94 |
|
---|
95 | ret->num_alloc = sk->num > min_nodes ? sk->num : min_nodes;
|
---|
96 | ret->data = OPENSSL_zalloc(sizeof(*ret->data) * ret->num_alloc);
|
---|
97 | if (ret->data == NULL) {
|
---|
98 | OPENSSL_free(ret);
|
---|
99 | return NULL;
|
---|
100 | }
|
---|
101 |
|
---|
102 | for (i = 0; i < ret->num; ++i) {
|
---|
103 | if (sk->data[i] == NULL)
|
---|
104 | continue;
|
---|
105 | if ((ret->data[i] = copy_func(sk->data[i])) == NULL) {
|
---|
106 | while (--i >= 0)
|
---|
107 | if (ret->data[i] != NULL)
|
---|
108 | free_func((void *)ret->data[i]);
|
---|
109 | OPENSSL_sk_free(ret);
|
---|
110 | return NULL;
|
---|
111 | }
|
---|
112 | }
|
---|
113 | return ret;
|
---|
114 | }
|
---|
115 |
|
---|
116 | OPENSSL_STACK *OPENSSL_sk_new_null(void)
|
---|
117 | {
|
---|
118 | return OPENSSL_sk_new_reserve(NULL, 0);
|
---|
119 | }
|
---|
120 |
|
---|
121 | OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_compfunc c)
|
---|
122 | {
|
---|
123 | return OPENSSL_sk_new_reserve(c, 0);
|
---|
124 | }
|
---|
125 |
|
---|
126 | /*
|
---|
127 | * Calculate the array growth based on the target size.
|
---|
128 | *
|
---|
129 | * The growth fraction is a rational number and is defined by a numerator
|
---|
130 | * and a denominator. According to Andrew Koenig in his paper "Why Are
|
---|
131 | * Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
|
---|
132 | * than the golden ratio (1.618...).
|
---|
133 | *
|
---|
134 | * We use 3/2 = 1.5 for simplicity of calculation and overflow checking.
|
---|
135 | * Another option 8/5 = 1.6 allows for slightly faster growth, although safe
|
---|
136 | * computation is more difficult.
|
---|
137 | *
|
---|
138 | * The limit to avoid overflow is spot on. The modulo three correction term
|
---|
139 | * ensures that the limit is the largest number than can be expanded by the
|
---|
140 | * growth factor without exceeding the hard limit.
|
---|
141 | *
|
---|
142 | * Do not call it with |current| lower than 2, or it will infinitely loop.
|
---|
143 | */
|
---|
144 | static ossl_inline int compute_growth(int target, int current)
|
---|
145 | {
|
---|
146 | const int limit = (max_nodes / 3) * 2 + (max_nodes % 3 ? 1 : 0);
|
---|
147 |
|
---|
148 | while (current < target) {
|
---|
149 | /* Check to see if we're at the hard limit */
|
---|
150 | if (current >= max_nodes)
|
---|
151 | return 0;
|
---|
152 |
|
---|
153 | /* Expand the size by a factor of 3/2 if it is within range */
|
---|
154 | current = current < limit ? current + current / 2 : max_nodes;
|
---|
155 | }
|
---|
156 | return current;
|
---|
157 | }
|
---|
158 |
|
---|
159 | /* internal STACK storage allocation */
|
---|
160 | static int sk_reserve(OPENSSL_STACK *st, int n, int exact)
|
---|
161 | {
|
---|
162 | const void **tmpdata;
|
---|
163 | int num_alloc;
|
---|
164 |
|
---|
165 | /* Check to see the reservation isn't exceeding the hard limit */
|
---|
166 | if (n > max_nodes - st->num)
|
---|
167 | return 0;
|
---|
168 |
|
---|
169 | /* Figure out the new size */
|
---|
170 | num_alloc = st->num + n;
|
---|
171 | if (num_alloc < min_nodes)
|
---|
172 | num_alloc = min_nodes;
|
---|
173 |
|
---|
174 | /* If |st->data| allocation was postponed */
|
---|
175 | if (st->data == NULL) {
|
---|
176 | /*
|
---|
177 | * At this point, |st->num_alloc| and |st->num| are 0;
|
---|
178 | * so |num_alloc| value is |n| or |min_nodes| if greater than |n|.
|
---|
179 | */
|
---|
180 | if ((st->data = OPENSSL_zalloc(sizeof(void *) * num_alloc)) == NULL) {
|
---|
181 | CRYPTOerr(CRYPTO_F_SK_RESERVE, ERR_R_MALLOC_FAILURE);
|
---|
182 | return 0;
|
---|
183 | }
|
---|
184 | st->num_alloc = num_alloc;
|
---|
185 | return 1;
|
---|
186 | }
|
---|
187 |
|
---|
188 | if (!exact) {
|
---|
189 | if (num_alloc <= st->num_alloc)
|
---|
190 | return 1;
|
---|
191 | num_alloc = compute_growth(num_alloc, st->num_alloc);
|
---|
192 | if (num_alloc == 0)
|
---|
193 | return 0;
|
---|
194 | } else if (num_alloc == st->num_alloc) {
|
---|
195 | return 1;
|
---|
196 | }
|
---|
197 |
|
---|
198 | tmpdata = OPENSSL_realloc((void *)st->data, sizeof(void *) * num_alloc);
|
---|
199 | if (tmpdata == NULL)
|
---|
200 | return 0;
|
---|
201 |
|
---|
202 | st->data = tmpdata;
|
---|
203 | st->num_alloc = num_alloc;
|
---|
204 | return 1;
|
---|
205 | }
|
---|
206 |
|
---|
207 | OPENSSL_STACK *OPENSSL_sk_new_reserve(OPENSSL_sk_compfunc c, int n)
|
---|
208 | {
|
---|
209 | OPENSSL_STACK *st = OPENSSL_zalloc(sizeof(OPENSSL_STACK));
|
---|
210 |
|
---|
211 | if (st == NULL)
|
---|
212 | return NULL;
|
---|
213 |
|
---|
214 | st->comp = c;
|
---|
215 |
|
---|
216 | if (n <= 0)
|
---|
217 | return st;
|
---|
218 |
|
---|
219 | if (!sk_reserve(st, n, 1)) {
|
---|
220 | OPENSSL_sk_free(st);
|
---|
221 | return NULL;
|
---|
222 | }
|
---|
223 |
|
---|
224 | return st;
|
---|
225 | }
|
---|
226 |
|
---|
227 | int OPENSSL_sk_reserve(OPENSSL_STACK *st, int n)
|
---|
228 | {
|
---|
229 | if (st == NULL)
|
---|
230 | return 0;
|
---|
231 |
|
---|
232 | if (n < 0)
|
---|
233 | return 1;
|
---|
234 | return sk_reserve(st, n, 1);
|
---|
235 | }
|
---|
236 |
|
---|
237 | int OPENSSL_sk_insert(OPENSSL_STACK *st, const void *data, int loc)
|
---|
238 | {
|
---|
239 | if (st == NULL || st->num == max_nodes)
|
---|
240 | return 0;
|
---|
241 |
|
---|
242 | if (!sk_reserve(st, 1, 0))
|
---|
243 | return 0;
|
---|
244 |
|
---|
245 | if ((loc >= st->num) || (loc < 0)) {
|
---|
246 | st->data[st->num] = data;
|
---|
247 | } else {
|
---|
248 | memmove(&st->data[loc + 1], &st->data[loc],
|
---|
249 | sizeof(st->data[0]) * (st->num - loc));
|
---|
250 | st->data[loc] = data;
|
---|
251 | }
|
---|
252 | st->num++;
|
---|
253 | st->sorted = 0;
|
---|
254 | return st->num;
|
---|
255 | }
|
---|
256 |
|
---|
257 | static ossl_inline void *internal_delete(OPENSSL_STACK *st, int loc)
|
---|
258 | {
|
---|
259 | const void *ret = st->data[loc];
|
---|
260 |
|
---|
261 | if (loc != st->num - 1)
|
---|
262 | memmove(&st->data[loc], &st->data[loc + 1],
|
---|
263 | sizeof(st->data[0]) * (st->num - loc - 1));
|
---|
264 | st->num--;
|
---|
265 |
|
---|
266 | return (void *)ret;
|
---|
267 | }
|
---|
268 |
|
---|
269 | void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *st, const void *p)
|
---|
270 | {
|
---|
271 | int i;
|
---|
272 |
|
---|
273 | for (i = 0; i < st->num; i++)
|
---|
274 | if (st->data[i] == p)
|
---|
275 | return internal_delete(st, i);
|
---|
276 | return NULL;
|
---|
277 | }
|
---|
278 |
|
---|
279 | void *OPENSSL_sk_delete(OPENSSL_STACK *st, int loc)
|
---|
280 | {
|
---|
281 | if (st == NULL || loc < 0 || loc >= st->num)
|
---|
282 | return NULL;
|
---|
283 |
|
---|
284 | return internal_delete(st, loc);
|
---|
285 | }
|
---|
286 |
|
---|
287 | static int internal_find(OPENSSL_STACK *st, const void *data,
|
---|
288 | int ret_val_options)
|
---|
289 | {
|
---|
290 | const void *r;
|
---|
291 | int i;
|
---|
292 |
|
---|
293 | if (st == NULL || st->num == 0)
|
---|
294 | return -1;
|
---|
295 |
|
---|
296 | if (st->comp == NULL) {
|
---|
297 | for (i = 0; i < st->num; i++)
|
---|
298 | if (st->data[i] == data)
|
---|
299 | return i;
|
---|
300 | return -1;
|
---|
301 | }
|
---|
302 |
|
---|
303 | if (!st->sorted) {
|
---|
304 | if (st->num > 1)
|
---|
305 | qsort(st->data, st->num, sizeof(void *), st->comp);
|
---|
306 | st->sorted = 1; /* empty or single-element stack is considered sorted */
|
---|
307 | }
|
---|
308 | if (data == NULL)
|
---|
309 | return -1;
|
---|
310 | r = OBJ_bsearch_ex_(&data, st->data, st->num, sizeof(void *), st->comp,
|
---|
311 | ret_val_options);
|
---|
312 |
|
---|
313 | return r == NULL ? -1 : (int)((const void **)r - st->data);
|
---|
314 | }
|
---|
315 |
|
---|
316 | int OPENSSL_sk_find(OPENSSL_STACK *st, const void *data)
|
---|
317 | {
|
---|
318 | return internal_find(st, data, OBJ_BSEARCH_FIRST_VALUE_ON_MATCH);
|
---|
319 | }
|
---|
320 |
|
---|
321 | int OPENSSL_sk_find_ex(OPENSSL_STACK *st, const void *data)
|
---|
322 | {
|
---|
323 | return internal_find(st, data, OBJ_BSEARCH_VALUE_ON_NOMATCH);
|
---|
324 | }
|
---|
325 |
|
---|
326 | int OPENSSL_sk_push(OPENSSL_STACK *st, const void *data)
|
---|
327 | {
|
---|
328 | if (st == NULL)
|
---|
329 | return -1;
|
---|
330 | return OPENSSL_sk_insert(st, data, st->num);
|
---|
331 | }
|
---|
332 |
|
---|
333 | int OPENSSL_sk_unshift(OPENSSL_STACK *st, const void *data)
|
---|
334 | {
|
---|
335 | return OPENSSL_sk_insert(st, data, 0);
|
---|
336 | }
|
---|
337 |
|
---|
338 | void *OPENSSL_sk_shift(OPENSSL_STACK *st)
|
---|
339 | {
|
---|
340 | if (st == NULL || st->num == 0)
|
---|
341 | return NULL;
|
---|
342 | return internal_delete(st, 0);
|
---|
343 | }
|
---|
344 |
|
---|
345 | void *OPENSSL_sk_pop(OPENSSL_STACK *st)
|
---|
346 | {
|
---|
347 | if (st == NULL || st->num == 0)
|
---|
348 | return NULL;
|
---|
349 | return internal_delete(st, st->num - 1);
|
---|
350 | }
|
---|
351 |
|
---|
352 | void OPENSSL_sk_zero(OPENSSL_STACK *st)
|
---|
353 | {
|
---|
354 | if (st == NULL || st->num == 0)
|
---|
355 | return;
|
---|
356 | memset(st->data, 0, sizeof(*st->data) * st->num);
|
---|
357 | st->num = 0;
|
---|
358 | }
|
---|
359 |
|
---|
360 | void OPENSSL_sk_pop_free(OPENSSL_STACK *st, OPENSSL_sk_freefunc func)
|
---|
361 | {
|
---|
362 | int i;
|
---|
363 |
|
---|
364 | if (st == NULL)
|
---|
365 | return;
|
---|
366 | for (i = 0; i < st->num; i++)
|
---|
367 | if (st->data[i] != NULL)
|
---|
368 | func((char *)st->data[i]);
|
---|
369 | OPENSSL_sk_free(st);
|
---|
370 | }
|
---|
371 |
|
---|
372 | void OPENSSL_sk_free(OPENSSL_STACK *st)
|
---|
373 | {
|
---|
374 | if (st == NULL)
|
---|
375 | return;
|
---|
376 | OPENSSL_free(st->data);
|
---|
377 | OPENSSL_free(st);
|
---|
378 | }
|
---|
379 |
|
---|
380 | int OPENSSL_sk_num(const OPENSSL_STACK *st)
|
---|
381 | {
|
---|
382 | return st == NULL ? -1 : st->num;
|
---|
383 | }
|
---|
384 |
|
---|
385 | void *OPENSSL_sk_value(const OPENSSL_STACK *st, int i)
|
---|
386 | {
|
---|
387 | if (st == NULL || i < 0 || i >= st->num)
|
---|
388 | return NULL;
|
---|
389 | return (void *)st->data[i];
|
---|
390 | }
|
---|
391 |
|
---|
392 | void *OPENSSL_sk_set(OPENSSL_STACK *st, int i, const void *data)
|
---|
393 | {
|
---|
394 | if (st == NULL || i < 0 || i >= st->num)
|
---|
395 | return NULL;
|
---|
396 | st->data[i] = data;
|
---|
397 | st->sorted = 0;
|
---|
398 | return (void *)st->data[i];
|
---|
399 | }
|
---|
400 |
|
---|
401 | void OPENSSL_sk_sort(OPENSSL_STACK *st)
|
---|
402 | {
|
---|
403 | if (st != NULL && !st->sorted && st->comp != NULL) {
|
---|
404 | if (st->num > 1)
|
---|
405 | qsort(st->data, st->num, sizeof(void *), st->comp);
|
---|
406 | st->sorted = 1; /* empty or single-element stack is considered sorted */
|
---|
407 | }
|
---|
408 | }
|
---|
409 |
|
---|
410 | int OPENSSL_sk_is_sorted(const OPENSSL_STACK *st)
|
---|
411 | {
|
---|
412 | return st == NULL ? 1 : st->sorted;
|
---|
413 | }
|
---|