VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.2/crypto/bn/asm/rsaz-avx512.pl@ 94955

Last change on this file since 94955 was 94320, checked in by vboxsync, 3 years ago

libs/openssl-3.0.1: Export to OSE and fix copyright headers in Makefiles, bugref:10128

File size: 22.7 KB
Line 
1# Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved.
2# Copyright (c) 2020, Intel Corporation. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8#
9#
10# Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
11# Intel Corporation
12#
13# December 2020
14#
15# Initial release.
16#
17# Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues.
18#
19# IceLake-Client @ 1.3GHz
20# |---------+----------------------+--------------+-------------|
21# | | OpenSSL 3.0.0-alpha9 | this | Unit |
22# |---------+----------------------+--------------+-------------|
23# | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign |
24# | | 611 | 1280 / +109% | sign/s |
25# |---------+----------------------+--------------+-------------|
26#
27
28# $output is the last argument if it looks like a file (it has an extension)
29# $flavour is the first argument if it doesn't look like a file
30$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
31$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
32
33$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
34$avx512ifma=0;
35
36$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
37( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
38( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
39die "can't locate x86_64-xlate.pl";
40
41if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
42 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
43 $avx512ifma = ($1>=2.26);
44}
45
46if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
47 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
48 $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12);
49}
50
51if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
52 $avx512ifma = ($2>=7.0);
53}
54
55open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
56 or die "can't call $xlate: $!";
57*STDOUT=*OUT;
58
59if ($avx512ifma>0) {{{
60@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
61
62$code.=<<___;
63.extern OPENSSL_ia32cap_P
64.globl ossl_rsaz_avx512ifma_eligible
65.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
66.align 32
67ossl_rsaz_avx512ifma_eligible:
68 mov OPENSSL_ia32cap_P+8(%rip), %ecx
69 xor %eax,%eax
70 and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f
71 cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx
72 cmove %ecx,%eax
73 ret
74.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
75___
76
77###############################################################################
78# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
79#
80# AMM is defined as presented in the paper
81# "Efficient Software Implementations of Modular Exponentiation" by Shay Gueron.
82#
83# The input and output are presented in 2^52 radix domain, i.e.
84# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
85# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
86# (note, the implementation counts only 52 bits from it).
87#
88# NB: the AMM implementation does not perform "conditional" subtraction step as
89# specified in the original algorithm as according to the paper "Enhanced Montgomery
90# Multiplication" by Shay Gueron (see Lemma 1), the result will be always < 2*2^1024
91# and can be used as a direct input to the next AMM iteration.
92# This post-condition is true, provided the correct parameter |s| is choosen, i.e.
93# s >= n + 2 * k, which matches our case: 1040 > 1024 + 2 * 1.
94#
95# void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res,
96# const BN_ULONG *a,
97# const BN_ULONG *b,
98# const BN_ULONG *m,
99# BN_ULONG k0);
100###############################################################################
101{
102# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
103my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
104
105my $mask52 = "%rax";
106my $acc0_0 = "%r9";
107my $acc0_0_low = "%r9d";
108my $acc0_1 = "%r15";
109my $acc0_1_low = "%r15d";
110my $b_ptr = "%r11";
111
112my $iter = "%ebx";
113
114my $zero = "%ymm0";
115my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm1", map("%ymm$_",(16..19)));
116my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm2", map("%ymm$_",(20..23)));
117my $Bi = "%ymm3";
118my $Yi = "%ymm4";
119
120# Registers mapping for normalization.
121# We can reuse Bi, Yi registers here.
122my $TMP = $Bi;
123my $mask52x4 = $Yi;
124my ($T0,$T0h,$T1,$T1h,$T2) = map("%ymm$_", (24..28));
125
126sub amm52x20_x1() {
127# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
128# of data for corresponding AMM operation;
129# _b_offset - offset in the |b| array pointing to the next qword digit;
130my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
131my $_R0_xmm = $_R0;
132$_R0_xmm =~ s/%y/%x/;
133$code.=<<___;
134 movq $_b_offset($b_ptr), %r13 # b[i]
135
136 vpbroadcastq %r13, $Bi # broadcast b[i]
137 movq $_data_offset($a), %rdx
138 mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
139 addq %r13, $_acc # acc += t0
140 movq %r12, %r10
141 adcq \$0, %r10 # t2 += CF
142
143 movq $_k0, %r13
144 imulq $_acc, %r13 # acc * k0
145 andq $mask52, %r13 # yi = (acc * k0) & mask52
146
147 vpbroadcastq %r13, $Yi # broadcast y[i]
148 movq $_data_offset($m), %rdx
149 mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
150 addq %r13, $_acc # acc += t0
151 adcq %r12, %r10 # t2 += (t1 + CF)
152
153 shrq \$52, $_acc
154 salq \$12, %r10
155 or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
156
157 vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0
158 vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h
159 vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
160 vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
161 vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
162
163 vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0
164 vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h
165 vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
166 vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
167 vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
168
169 # Shift accumulators right by 1 qword, zero extending the highest one
170 valignq \$1, $_R0, $_R0h, $_R0
171 valignq \$1, $_R0h, $_R1, $_R0h
172 valignq \$1, $_R1, $_R1h, $_R1
173 valignq \$1, $_R1h, $_R2, $_R1h
174 valignq \$1, $_R2, $zero, $_R2
175
176 vmovq $_R0_xmm, %r13
177 addq %r13, $_acc # acc += R0[0]
178
179 vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0
180 vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h
181 vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
182 vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
183 vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
184
185 vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0
186 vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h
187 vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
188 vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
189 vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
190___
191}
192
193# Normalization routine: handles carry bits in R0..R2 QWs and
194# gets R0..R2 back to normalized 2^52 representation.
195#
196# Uses %r8-14,%e[bcd]x
197sub amm52x20_x1_norm {
198my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
199$code.=<<___;
200 # Put accumulator to low qword in R0
201 vpbroadcastq $_acc, $TMP
202 vpblendd \$3, $TMP, $_R0, $_R0
203
204 # Extract "carries" (12 high bits) from each QW of R0..R2
205 # Save them to LSB of QWs in T0..T2
206 vpsrlq \$52, $_R0, $T0
207 vpsrlq \$52, $_R0h, $T0h
208 vpsrlq \$52, $_R1, $T1
209 vpsrlq \$52, $_R1h, $T1h
210 vpsrlq \$52, $_R2, $T2
211
212 # "Shift left" T0..T2 by 1 QW
213 valignq \$3, $T1h, $T2, $T2
214 valignq \$3, $T1, $T1h, $T1h
215 valignq \$3, $T0h, $T1, $T1
216 valignq \$3, $T0, $T0h, $T0h
217 valignq \$3, $zero, $T0, $T0
218
219 # Drop "carries" from R0..R2 QWs
220 vpandq $mask52x4, $_R0, $_R0
221 vpandq $mask52x4, $_R0h, $_R0h
222 vpandq $mask52x4, $_R1, $_R1
223 vpandq $mask52x4, $_R1h, $_R1h
224 vpandq $mask52x4, $_R2, $_R2
225
226 # Sum R0..R2 with corresponding adjusted carries
227 vpaddq $T0, $_R0, $_R0
228 vpaddq $T0h, $_R0h, $_R0h
229 vpaddq $T1, $_R1, $_R1
230 vpaddq $T1h, $_R1h, $_R1h
231 vpaddq $T2, $_R2, $_R2
232
233 # Now handle carry bits from this addition
234 # Get mask of QWs which 52-bit parts overflow...
235 vpcmpuq \$1, $_R0, $mask52x4, %k1 # OP=lt
236 vpcmpuq \$1, $_R0h, $mask52x4, %k2
237 vpcmpuq \$1, $_R1, $mask52x4, %k3
238 vpcmpuq \$1, $_R1h, $mask52x4, %k4
239 vpcmpuq \$1, $_R2, $mask52x4, %k5
240 kmovb %k1, %r14d # k1
241 kmovb %k2, %r13d # k1h
242 kmovb %k3, %r12d # k2
243 kmovb %k4, %r11d # k2h
244 kmovb %k5, %r10d # k3
245
246 # ...or saturated
247 vpcmpuq \$0, $_R0, $mask52x4, %k1 # OP=eq
248 vpcmpuq \$0, $_R0h, $mask52x4, %k2
249 vpcmpuq \$0, $_R1, $mask52x4, %k3
250 vpcmpuq \$0, $_R1h, $mask52x4, %k4
251 vpcmpuq \$0, $_R2, $mask52x4, %k5
252 kmovb %k1, %r9d # k4
253 kmovb %k2, %r8d # k4h
254 kmovb %k3, %ebx # k5
255 kmovb %k4, %ecx # k5h
256 kmovb %k5, %edx # k6
257
258 # Get mask of QWs where carries shall be propagated to.
259 # Merge 4-bit masks to 8-bit values to use add with carry.
260 shl \$4, %r13b
261 or %r13b, %r14b
262 shl \$4, %r11b
263 or %r11b, %r12b
264
265 add %r14b, %r14b
266 adc %r12b, %r12b
267 adc %r10b, %r10b
268
269 shl \$4, %r8b
270 or %r8b,%r9b
271 shl \$4, %cl
272 or %cl, %bl
273
274 add %r9b, %r14b
275 adc %bl, %r12b
276 adc %dl, %r10b
277
278 xor %r9b, %r14b
279 xor %bl, %r12b
280 xor %dl, %r10b
281
282 kmovb %r14d, %k1
283 shr \$4, %r14b
284 kmovb %r14d, %k2
285 kmovb %r12d, %k3
286 shr \$4, %r12b
287 kmovb %r12d, %k4
288 kmovb %r10d, %k5
289
290 # Add carries according to the obtained mask
291 vpsubq $mask52x4, $_R0, ${_R0}{%k1}
292 vpsubq $mask52x4, $_R0h, ${_R0h}{%k2}
293 vpsubq $mask52x4, $_R1, ${_R1}{%k3}
294 vpsubq $mask52x4, $_R1h, ${_R1h}{%k4}
295 vpsubq $mask52x4, $_R2, ${_R2}{%k5}
296
297 vpandq $mask52x4, $_R0, $_R0
298 vpandq $mask52x4, $_R0h, $_R0h
299 vpandq $mask52x4, $_R1, $_R1
300 vpandq $mask52x4, $_R1h, $_R1h
301 vpandq $mask52x4, $_R2, $_R2
302___
303}
304
305$code.=<<___;
306.text
307
308.globl ossl_rsaz_amm52x20_x1_256
309.type ossl_rsaz_amm52x20_x1_256,\@function,5
310.align 32
311ossl_rsaz_amm52x20_x1_256:
312.cfi_startproc
313 endbranch
314 push %rbx
315.cfi_push %rbx
316 push %rbp
317.cfi_push %rbp
318 push %r12
319.cfi_push %r12
320 push %r13
321.cfi_push %r13
322 push %r14
323.cfi_push %r14
324 push %r15
325.cfi_push %r15
326.Lrsaz_amm52x20_x1_256_body:
327
328 # Zeroing accumulators
329 vpxord $zero, $zero, $zero
330 vmovdqa64 $zero, $R0_0
331 vmovdqa64 $zero, $R0_0h
332 vmovdqa64 $zero, $R1_0
333 vmovdqa64 $zero, $R1_0h
334 vmovdqa64 $zero, $R2_0
335
336 xorl $acc0_0_low, $acc0_0_low
337
338 movq $b, $b_ptr # backup address of b
339 movq \$0xfffffffffffff, $mask52 # 52-bit mask
340
341 # Loop over 20 digits unrolled by 4
342 mov \$5, $iter
343
344.align 32
345.Lloop5:
346___
347 foreach my $idx (0..3) {
348 &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
349 }
350$code.=<<___;
351 lea `4*8`($b_ptr), $b_ptr
352 dec $iter
353 jne .Lloop5
354
355 vmovdqa64 .Lmask52x4(%rip), $mask52x4
356___
357 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
358$code.=<<___;
359
360 vmovdqu64 $R0_0, ($res)
361 vmovdqu64 $R0_0h, 32($res)
362 vmovdqu64 $R1_0, 64($res)
363 vmovdqu64 $R1_0h, 96($res)
364 vmovdqu64 $R2_0, 128($res)
365
366 vzeroupper
367 mov 0(%rsp),%r15
368.cfi_restore %r15
369 mov 8(%rsp),%r14
370.cfi_restore %r14
371 mov 16(%rsp),%r13
372.cfi_restore %r13
373 mov 24(%rsp),%r12
374.cfi_restore %r12
375 mov 32(%rsp),%rbp
376.cfi_restore %rbp
377 mov 40(%rsp),%rbx
378.cfi_restore %rbx
379 lea 48(%rsp),%rsp
380.cfi_adjust_cfa_offset -48
381.Lrsaz_amm52x20_x1_256_epilogue:
382 ret
383.cfi_endproc
384.size ossl_rsaz_amm52x20_x1_256, .-ossl_rsaz_amm52x20_x1_256
385___
386
387$code.=<<___;
388.data
389.align 32
390.Lmask52x4:
391 .quad 0xfffffffffffff
392 .quad 0xfffffffffffff
393 .quad 0xfffffffffffff
394 .quad 0xfffffffffffff
395___
396
397###############################################################################
398# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
399#
400# See description of ossl_rsaz_amm52x20_x1_256() above for details about Almost
401# Montgomery Multiplication algorithm and function input parameters description.
402#
403# This function does two AMMs for two independent inputs, hence dual.
404#
405# void ossl_rsaz_amm52x20_x2_256(BN_ULONG out[2][20],
406# const BN_ULONG a[2][20],
407# const BN_ULONG b[2][20],
408# const BN_ULONG m[2][20],
409# const BN_ULONG k0[2]);
410###############################################################################
411
412$code.=<<___;
413.text
414
415.globl ossl_rsaz_amm52x20_x2_256
416.type ossl_rsaz_amm52x20_x2_256,\@function,5
417.align 32
418ossl_rsaz_amm52x20_x2_256:
419.cfi_startproc
420 endbranch
421 push %rbx
422.cfi_push %rbx
423 push %rbp
424.cfi_push %rbp
425 push %r12
426.cfi_push %r12
427 push %r13
428.cfi_push %r13
429 push %r14
430.cfi_push %r14
431 push %r15
432.cfi_push %r15
433.Lrsaz_amm52x20_x2_256_body:
434
435 # Zeroing accumulators
436 vpxord $zero, $zero, $zero
437 vmovdqa64 $zero, $R0_0
438 vmovdqa64 $zero, $R0_0h
439 vmovdqa64 $zero, $R1_0
440 vmovdqa64 $zero, $R1_0h
441 vmovdqa64 $zero, $R2_0
442 vmovdqa64 $zero, $R0_1
443 vmovdqa64 $zero, $R0_1h
444 vmovdqa64 $zero, $R1_1
445 vmovdqa64 $zero, $R1_1h
446 vmovdqa64 $zero, $R2_1
447
448 xorl $acc0_0_low, $acc0_0_low
449 xorl $acc0_1_low, $acc0_1_low
450
451 movq $b, $b_ptr # backup address of b
452 movq \$0xfffffffffffff, $mask52 # 52-bit mask
453
454 mov \$20, $iter
455
456.align 32
457.Lloop20:
458___
459 &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
460 # 20*8 = offset of the next dimension in two-dimension array
461 &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
462$code.=<<___;
463 lea 8($b_ptr), $b_ptr
464 dec $iter
465 jne .Lloop20
466
467 vmovdqa64 .Lmask52x4(%rip), $mask52x4
468___
469 &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
470 &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
471$code.=<<___;
472
473 vmovdqu64 $R0_0, ($res)
474 vmovdqu64 $R0_0h, 32($res)
475 vmovdqu64 $R1_0, 64($res)
476 vmovdqu64 $R1_0h, 96($res)
477 vmovdqu64 $R2_0, 128($res)
478
479 vmovdqu64 $R0_1, 160($res)
480 vmovdqu64 $R0_1h, 192($res)
481 vmovdqu64 $R1_1, 224($res)
482 vmovdqu64 $R1_1h, 256($res)
483 vmovdqu64 $R2_1, 288($res)
484
485 vzeroupper
486 mov 0(%rsp),%r15
487.cfi_restore %r15
488 mov 8(%rsp),%r14
489.cfi_restore %r14
490 mov 16(%rsp),%r13
491.cfi_restore %r13
492 mov 24(%rsp),%r12
493.cfi_restore %r12
494 mov 32(%rsp),%rbp
495.cfi_restore %rbp
496 mov 40(%rsp),%rbx
497.cfi_restore %rbx
498 lea 48(%rsp),%rsp
499.cfi_adjust_cfa_offset -48
500.Lrsaz_amm52x20_x2_256_epilogue:
501 ret
502.cfi_endproc
503.size ossl_rsaz_amm52x20_x2_256, .-ossl_rsaz_amm52x20_x2_256
504___
505}
506
507###############################################################################
508# Constant time extraction from the precomputed table of powers base^i, where
509# i = 0..2^EXP_WIN_SIZE-1
510#
511# The input |red_table| contains precomputations for two independent base values,
512# so the |tbl_idx| indicates for which base shall we extract the value.
513# |red_table_idx| is a power index.
514#
515# Extracted value (output) is 20 digit number in 2^52 radix.
516#
517# void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
518# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
519# int red_table_idx,
520# int tbl_idx); # 0 or 1
521#
522# EXP_WIN_SIZE = 5
523###############################################################################
524{
525# input parameters
526my ($out,$red_tbl,$red_tbl_idx,$tbl_idx) = @_6_args_universal_ABI;
527
528my ($t0,$t1,$t2,$t3,$t4) = map("%ymm$_", (0..4));
529my $t4xmm = $t4;
530$t4xmm =~ s/%y/%x/;
531my ($tmp0,$tmp1,$tmp2,$tmp3,$tmp4) = map("%ymm$_", (16..20));
532my ($cur_idx,$idx,$ones) = map("%ymm$_", (21..23));
533
534$code.=<<___;
535.text
536
537.align 32
538.globl ossl_extract_multiplier_2x20_win5
539.type ossl_extract_multiplier_2x20_win5,\@function,4
540ossl_extract_multiplier_2x20_win5:
541.cfi_startproc
542 endbranch
543 leaq ($tbl_idx,$tbl_idx,4), %rax
544 salq \$5, %rax
545 addq %rax, $red_tbl
546
547 vmovdqa64 .Lones(%rip), $ones # broadcast ones
548 vpbroadcastq $red_tbl_idx, $idx
549 leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
550
551 vpxor $t4xmm, $t4xmm, $t4xmm
552 vmovdqa64 $t4, $t3 # zeroing t0..4, cur_idx
553 vmovdqa64 $t4, $t2
554 vmovdqa64 $t4, $t1
555 vmovdqa64 $t4, $t0
556 vmovdqa64 $t4, $cur_idx
557
558.align 32
559.Lloop:
560 vpcmpq \$0, $cur_idx, $idx, %k1 # mask of (idx == cur_idx)
561 addq \$320, $red_tbl # 320 = 2 * 20 digits * 8 bytes
562 vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
563 vmovdqu64 -320($red_tbl), $tmp0 # load data from red_tbl
564 vmovdqu64 -288($red_tbl), $tmp1
565 vmovdqu64 -256($red_tbl), $tmp2
566 vmovdqu64 -224($red_tbl), $tmp3
567 vmovdqu64 -192($red_tbl), $tmp4
568 vpblendmq $tmp0, $t0, ${t0}{%k1} # extract data when mask is not zero
569 vpblendmq $tmp1, $t1, ${t1}{%k1}
570 vpblendmq $tmp2, $t2, ${t2}{%k1}
571 vpblendmq $tmp3, $t3, ${t3}{%k1}
572 vpblendmq $tmp4, $t4, ${t4}{%k1}
573 cmpq $red_tbl, %rax
574 jne .Lloop
575
576 vmovdqu64 $t0, ($out) # store t0..4
577 vmovdqu64 $t1, 32($out)
578 vmovdqu64 $t2, 64($out)
579 vmovdqu64 $t3, 96($out)
580 vmovdqu64 $t4, 128($out)
581
582 ret
583.cfi_endproc
584.size ossl_extract_multiplier_2x20_win5, .-ossl_extract_multiplier_2x20_win5
585___
586$code.=<<___;
587.data
588.align 32
589.Lones:
590 .quad 1,1,1,1
591___
592}
593
594if ($win64) {
595$rec="%rcx";
596$frame="%rdx";
597$context="%r8";
598$disp="%r9";
599
600$code.=<<___
601.extern __imp_RtlVirtualUnwind
602.type rsaz_def_handler,\@abi-omnipotent
603.align 16
604rsaz_def_handler:
605 push %rsi
606 push %rdi
607 push %rbx
608 push %rbp
609 push %r12
610 push %r13
611 push %r14
612 push %r15
613 pushfq
614 sub \$64,%rsp
615
616 mov 120($context),%rax # pull context->Rax
617 mov 248($context),%rbx # pull context->Rip
618
619 mov 8($disp),%rsi # disp->ImageBase
620 mov 56($disp),%r11 # disp->HandlerData
621
622 mov 0(%r11),%r10d # HandlerData[0]
623 lea (%rsi,%r10),%r10 # prologue label
624 cmp %r10,%rbx # context->Rip<.Lprologue
625 jb .Lcommon_seh_tail
626
627 mov 152($context),%rax # pull context->Rsp
628
629 mov 4(%r11),%r10d # HandlerData[1]
630 lea (%rsi,%r10),%r10 # epilogue label
631 cmp %r10,%rbx # context->Rip>=.Lepilogue
632 jae .Lcommon_seh_tail
633
634 lea 48(%rax),%rax
635
636 mov -8(%rax),%rbx
637 mov -16(%rax),%rbp
638 mov -24(%rax),%r12
639 mov -32(%rax),%r13
640 mov -40(%rax),%r14
641 mov -48(%rax),%r15
642 mov %rbx,144($context) # restore context->Rbx
643 mov %rbp,160($context) # restore context->Rbp
644 mov %r12,216($context) # restore context->R12
645 mov %r13,224($context) # restore context->R13
646 mov %r14,232($context) # restore context->R14
647 mov %r15,240($context) # restore context->R14
648
649.Lcommon_seh_tail:
650 mov 8(%rax),%rdi
651 mov 16(%rax),%rsi
652 mov %rax,152($context) # restore context->Rsp
653 mov %rsi,168($context) # restore context->Rsi
654 mov %rdi,176($context) # restore context->Rdi
655
656 mov 40($disp),%rdi # disp->ContextRecord
657 mov $context,%rsi # context
658 mov \$154,%ecx # sizeof(CONTEXT)
659 .long 0xa548f3fc # cld; rep movsq
660
661 mov $disp,%rsi
662 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
663 mov 8(%rsi),%rdx # arg2, disp->ImageBase
664 mov 0(%rsi),%r8 # arg3, disp->ControlPc
665 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
666 mov 40(%rsi),%r10 # disp->ContextRecord
667 lea 56(%rsi),%r11 # &disp->HandlerData
668 lea 24(%rsi),%r12 # &disp->EstablisherFrame
669 mov %r10,32(%rsp) # arg5
670 mov %r11,40(%rsp) # arg6
671 mov %r12,48(%rsp) # arg7
672 mov %rcx,56(%rsp) # arg8, (NULL)
673 call *__imp_RtlVirtualUnwind(%rip)
674
675 mov \$1,%eax # ExceptionContinueSearch
676 add \$64,%rsp
677 popfq
678 pop %r15
679 pop %r14
680 pop %r13
681 pop %r12
682 pop %rbp
683 pop %rbx
684 pop %rdi
685 pop %rsi
686 ret
687.size rsaz_def_handler,.-rsaz_def_handler
688
689.section .pdata
690.align 4
691 .rva .LSEH_begin_ossl_rsaz_amm52x20_x1_256
692 .rva .LSEH_end_ossl_rsaz_amm52x20_x1_256
693 .rva .LSEH_info_ossl_rsaz_amm52x20_x1_256
694
695 .rva .LSEH_begin_ossl_rsaz_amm52x20_x2_256
696 .rva .LSEH_end_ossl_rsaz_amm52x20_x2_256
697 .rva .LSEH_info_ossl_rsaz_amm52x20_x2_256
698
699 .rva .LSEH_begin_ossl_extract_multiplier_2x20_win5
700 .rva .LSEH_end_ossl_extract_multiplier_2x20_win5
701 .rva .LSEH_info_ossl_extract_multiplier_2x20_win5
702
703.section .xdata
704.align 8
705.LSEH_info_ossl_rsaz_amm52x20_x1_256:
706 .byte 9,0,0,0
707 .rva rsaz_def_handler
708 .rva .Lrsaz_amm52x20_x1_256_body,.Lrsaz_amm52x20_x1_256_epilogue
709.LSEH_info_ossl_rsaz_amm52x20_x2_256:
710 .byte 9,0,0,0
711 .rva rsaz_def_handler
712 .rva .Lrsaz_amm52x20_x2_256_body,.Lrsaz_amm52x20_x2_256_epilogue
713.LSEH_info_ossl_extract_multiplier_2x20_win5:
714 .byte 9,0,0,0
715 .rva rsaz_def_handler
716 .rva .LSEH_begin_ossl_extract_multiplier_2x20_win5,.LSEH_begin_ossl_extract_multiplier_2x20_win5
717___
718}
719}}} else {{{ # fallback for old assembler
720$code.=<<___;
721.text
722
723.globl ossl_rsaz_avx512ifma_eligible
724.type ossl_rsaz_avx512ifma_eligible,\@abi-omnipotent
725ossl_rsaz_avx512ifma_eligible:
726 xor %eax,%eax
727 ret
728.size ossl_rsaz_avx512ifma_eligible, .-ossl_rsaz_avx512ifma_eligible
729
730.globl ossl_rsaz_amm52x20_x1_256
731.globl ossl_rsaz_amm52x20_x2_256
732.globl ossl_extract_multiplier_2x20_win5
733.type ossl_rsaz_amm52x20_x1_256,\@abi-omnipotent
734ossl_rsaz_amm52x20_x1_256:
735ossl_rsaz_amm52x20_x2_256:
736ossl_extract_multiplier_2x20_win5:
737 .byte 0x0f,0x0b # ud2
738 ret
739.size ossl_rsaz_amm52x20_x1_256, .-ossl_rsaz_amm52x20_x1_256
740___
741}}}
742
743$code =~ s/\`([^\`]*)\`/eval $1/gem;
744print $code;
745close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette