1 | /*
|
---|
2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <string.h>
|
---|
12 | #include <stdlib.h>
|
---|
13 | #include <openssl/crypto.h>
|
---|
14 | #include <openssl/lhash.h>
|
---|
15 | #include <openssl/err.h>
|
---|
16 | #include "crypto/ctype.h"
|
---|
17 | #include "crypto/lhash.h"
|
---|
18 | #include "lhash_local.h"
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * A hashing implementation that appears to be based on the linear hashing
|
---|
22 | * algorithm:
|
---|
23 | * https://en.wikipedia.org/wiki/Linear_hashing
|
---|
24 | *
|
---|
25 | * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
|
---|
26 | * addressing", Proc. 6th Conference on Very Large Databases: 212-223
|
---|
27 | * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
|
---|
28 | *
|
---|
29 | * From the Wikipedia article "Linear hashing is used in the BDB Berkeley
|
---|
30 | * database system, which in turn is used by many software systems such as
|
---|
31 | * OpenLDAP, using a C implementation derived from the CACM article and first
|
---|
32 | * published on the Usenet in 1988 by Esmond Pitt."
|
---|
33 | *
|
---|
34 | * The CACM paper is available here:
|
---|
35 | * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
|
---|
36 | */
|
---|
37 |
|
---|
38 | #undef MIN_NODES
|
---|
39 | #define MIN_NODES 16
|
---|
40 | #define UP_LOAD (2*LH_LOAD_MULT) /* load times 256 (default 2) */
|
---|
41 | #define DOWN_LOAD (LH_LOAD_MULT) /* load times 256 (default 1) */
|
---|
42 |
|
---|
43 | static int expand(OPENSSL_LHASH *lh);
|
---|
44 | static void contract(OPENSSL_LHASH *lh);
|
---|
45 | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
|
---|
46 |
|
---|
47 | static ossl_inline int tsan_lock(const OPENSSL_LHASH *lh)
|
---|
48 | {
|
---|
49 | #ifdef TSAN_REQUIRES_LOCKING
|
---|
50 | if (!CRYPTO_THREAD_write_lock(lh->tsan_lock))
|
---|
51 | return 0;
|
---|
52 | #endif
|
---|
53 | return 1;
|
---|
54 | }
|
---|
55 |
|
---|
56 | static ossl_inline void tsan_unlock(const OPENSSL_LHASH *lh)
|
---|
57 | {
|
---|
58 | #ifdef TSAN_REQUIRES_LOCKING
|
---|
59 | CRYPTO_THREAD_unlock(lh->tsan_lock);
|
---|
60 | #endif
|
---|
61 | }
|
---|
62 |
|
---|
63 | OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
|
---|
64 | {
|
---|
65 | OPENSSL_LHASH *ret;
|
---|
66 |
|
---|
67 | if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
|
---|
68 | /*
|
---|
69 | * Do not set the error code, because the ERR code uses LHASH
|
---|
70 | * and we want to avoid possible endless error loop.
|
---|
71 | * ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
|
---|
72 | */
|
---|
73 | return NULL;
|
---|
74 | }
|
---|
75 | if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
|
---|
76 | goto err;
|
---|
77 | #ifdef TSAN_REQUIRES_LOCKING
|
---|
78 | if ((ret->tsan_lock = CRYPTO_THREAD_lock_new()) == NULL)
|
---|
79 | goto err;
|
---|
80 | #endif
|
---|
81 | ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
|
---|
82 | ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
|
---|
83 | ret->num_nodes = MIN_NODES / 2;
|
---|
84 | ret->num_alloc_nodes = MIN_NODES;
|
---|
85 | ret->pmax = MIN_NODES / 2;
|
---|
86 | ret->up_load = UP_LOAD;
|
---|
87 | ret->down_load = DOWN_LOAD;
|
---|
88 | return ret;
|
---|
89 |
|
---|
90 | err:
|
---|
91 | OPENSSL_free(ret->b);
|
---|
92 | OPENSSL_free(ret);
|
---|
93 | return NULL;
|
---|
94 | }
|
---|
95 |
|
---|
96 | void OPENSSL_LH_free(OPENSSL_LHASH *lh)
|
---|
97 | {
|
---|
98 | if (lh == NULL)
|
---|
99 | return;
|
---|
100 |
|
---|
101 | OPENSSL_LH_flush(lh);
|
---|
102 | #ifdef TSAN_REQUIRES_LOCKING
|
---|
103 | CRYPTO_THREAD_lock_free(lh->tsan_lock);
|
---|
104 | #endif
|
---|
105 | OPENSSL_free(lh->b);
|
---|
106 | OPENSSL_free(lh);
|
---|
107 | }
|
---|
108 |
|
---|
109 | void OPENSSL_LH_flush(OPENSSL_LHASH *lh)
|
---|
110 | {
|
---|
111 | unsigned int i;
|
---|
112 | OPENSSL_LH_NODE *n, *nn;
|
---|
113 |
|
---|
114 | if (lh == NULL)
|
---|
115 | return;
|
---|
116 |
|
---|
117 | for (i = 0; i < lh->num_nodes; i++) {
|
---|
118 | n = lh->b[i];
|
---|
119 | while (n != NULL) {
|
---|
120 | nn = n->next;
|
---|
121 | OPENSSL_free(n);
|
---|
122 | n = nn;
|
---|
123 | }
|
---|
124 | lh->b[i] = NULL;
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
|
---|
129 | {
|
---|
130 | unsigned long hash;
|
---|
131 | OPENSSL_LH_NODE *nn, **rn;
|
---|
132 | void *ret;
|
---|
133 |
|
---|
134 | lh->error = 0;
|
---|
135 | if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
|
---|
136 | return NULL; /* 'lh->error++' already done in 'expand' */
|
---|
137 |
|
---|
138 | rn = getrn(lh, data, &hash);
|
---|
139 |
|
---|
140 | if (*rn == NULL) {
|
---|
141 | if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
|
---|
142 | lh->error++;
|
---|
143 | return NULL;
|
---|
144 | }
|
---|
145 | nn->data = data;
|
---|
146 | nn->next = NULL;
|
---|
147 | nn->hash = hash;
|
---|
148 | *rn = nn;
|
---|
149 | ret = NULL;
|
---|
150 | lh->num_insert++;
|
---|
151 | lh->num_items++;
|
---|
152 | } else { /* replace same key */
|
---|
153 | ret = (*rn)->data;
|
---|
154 | (*rn)->data = data;
|
---|
155 | lh->num_replace++;
|
---|
156 | }
|
---|
157 | return ret;
|
---|
158 | }
|
---|
159 |
|
---|
160 | void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
|
---|
161 | {
|
---|
162 | unsigned long hash;
|
---|
163 | OPENSSL_LH_NODE *nn, **rn;
|
---|
164 | void *ret;
|
---|
165 |
|
---|
166 | lh->error = 0;
|
---|
167 | rn = getrn(lh, data, &hash);
|
---|
168 |
|
---|
169 | if (*rn == NULL) {
|
---|
170 | lh->num_no_delete++;
|
---|
171 | return NULL;
|
---|
172 | } else {
|
---|
173 | nn = *rn;
|
---|
174 | *rn = nn->next;
|
---|
175 | ret = nn->data;
|
---|
176 | OPENSSL_free(nn);
|
---|
177 | lh->num_delete++;
|
---|
178 | }
|
---|
179 |
|
---|
180 | lh->num_items--;
|
---|
181 | if ((lh->num_nodes > MIN_NODES) &&
|
---|
182 | (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
|
---|
183 | contract(lh);
|
---|
184 |
|
---|
185 | return ret;
|
---|
186 | }
|
---|
187 |
|
---|
188 | void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
|
---|
189 | {
|
---|
190 | unsigned long hash;
|
---|
191 | OPENSSL_LH_NODE **rn;
|
---|
192 |
|
---|
193 | /*-
|
---|
194 | * This should be atomic without tsan.
|
---|
195 | * It's not clear why it was done this way and not elsewhere.
|
---|
196 | */
|
---|
197 | tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
|
---|
198 |
|
---|
199 | rn = getrn(lh, data, &hash);
|
---|
200 |
|
---|
201 | if (tsan_lock(lh)) {
|
---|
202 | tsan_counter(*rn == NULL ? &lh->num_retrieve_miss : &lh->num_retrieve);
|
---|
203 | tsan_unlock(lh);
|
---|
204 | }
|
---|
205 | return *rn == NULL ? NULL : (*rn)->data;
|
---|
206 | }
|
---|
207 |
|
---|
208 | static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
|
---|
209 | OPENSSL_LH_DOALL_FUNC func,
|
---|
210 | OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
|
---|
211 | {
|
---|
212 | int i;
|
---|
213 | OPENSSL_LH_NODE *a, *n;
|
---|
214 |
|
---|
215 | if (lh == NULL)
|
---|
216 | return;
|
---|
217 |
|
---|
218 | /*
|
---|
219 | * reverse the order so we search from 'top to bottom' We were having
|
---|
220 | * memory leaks otherwise
|
---|
221 | */
|
---|
222 | for (i = lh->num_nodes - 1; i >= 0; i--) {
|
---|
223 | a = lh->b[i];
|
---|
224 | while (a != NULL) {
|
---|
225 | n = a->next;
|
---|
226 | if (use_arg)
|
---|
227 | func_arg(a->data, arg);
|
---|
228 | else
|
---|
229 | func(a->data);
|
---|
230 | a = n;
|
---|
231 | }
|
---|
232 | }
|
---|
233 | }
|
---|
234 |
|
---|
235 | void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
|
---|
236 | {
|
---|
237 | doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
|
---|
238 | }
|
---|
239 |
|
---|
240 | void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
|
---|
241 | {
|
---|
242 | doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
|
---|
243 | }
|
---|
244 |
|
---|
245 | static int expand(OPENSSL_LHASH *lh)
|
---|
246 | {
|
---|
247 | OPENSSL_LH_NODE **n, **n1, **n2, *np;
|
---|
248 | unsigned int p, pmax, nni, j;
|
---|
249 | unsigned long hash;
|
---|
250 |
|
---|
251 | nni = lh->num_alloc_nodes;
|
---|
252 | p = lh->p;
|
---|
253 | pmax = lh->pmax;
|
---|
254 | if (p + 1 >= pmax) {
|
---|
255 | j = nni * 2;
|
---|
256 | n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
|
---|
257 | if (n == NULL) {
|
---|
258 | lh->error++;
|
---|
259 | return 0;
|
---|
260 | }
|
---|
261 | lh->b = n;
|
---|
262 | memset(n + nni, 0, sizeof(*n) * (j - nni));
|
---|
263 | lh->pmax = nni;
|
---|
264 | lh->num_alloc_nodes = j;
|
---|
265 | lh->num_expand_reallocs++;
|
---|
266 | lh->p = 0;
|
---|
267 | } else {
|
---|
268 | lh->p++;
|
---|
269 | }
|
---|
270 |
|
---|
271 | lh->num_nodes++;
|
---|
272 | lh->num_expands++;
|
---|
273 | n1 = &(lh->b[p]);
|
---|
274 | n2 = &(lh->b[p + pmax]);
|
---|
275 | *n2 = NULL;
|
---|
276 |
|
---|
277 | for (np = *n1; np != NULL;) {
|
---|
278 | hash = np->hash;
|
---|
279 | if ((hash % nni) != p) { /* move it */
|
---|
280 | *n1 = (*n1)->next;
|
---|
281 | np->next = *n2;
|
---|
282 | *n2 = np;
|
---|
283 | } else
|
---|
284 | n1 = &((*n1)->next);
|
---|
285 | np = *n1;
|
---|
286 | }
|
---|
287 |
|
---|
288 | return 1;
|
---|
289 | }
|
---|
290 |
|
---|
291 | static void contract(OPENSSL_LHASH *lh)
|
---|
292 | {
|
---|
293 | OPENSSL_LH_NODE **n, *n1, *np;
|
---|
294 |
|
---|
295 | np = lh->b[lh->p + lh->pmax - 1];
|
---|
296 | lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
|
---|
297 | if (lh->p == 0) {
|
---|
298 | n = OPENSSL_realloc(lh->b,
|
---|
299 | (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
|
---|
300 | if (n == NULL) {
|
---|
301 | /* fputs("realloc error in lhash",stderr); */
|
---|
302 | lh->error++;
|
---|
303 | return;
|
---|
304 | }
|
---|
305 | lh->num_contract_reallocs++;
|
---|
306 | lh->num_alloc_nodes /= 2;
|
---|
307 | lh->pmax /= 2;
|
---|
308 | lh->p = lh->pmax - 1;
|
---|
309 | lh->b = n;
|
---|
310 | } else
|
---|
311 | lh->p--;
|
---|
312 |
|
---|
313 | lh->num_nodes--;
|
---|
314 | lh->num_contracts++;
|
---|
315 |
|
---|
316 | n1 = lh->b[(int)lh->p];
|
---|
317 | if (n1 == NULL)
|
---|
318 | lh->b[(int)lh->p] = np;
|
---|
319 | else {
|
---|
320 | while (n1->next != NULL)
|
---|
321 | n1 = n1->next;
|
---|
322 | n1->next = np;
|
---|
323 | }
|
---|
324 | }
|
---|
325 |
|
---|
326 | static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
|
---|
327 | const void *data, unsigned long *rhash)
|
---|
328 | {
|
---|
329 | OPENSSL_LH_NODE **ret, *n1;
|
---|
330 | unsigned long hash, nn;
|
---|
331 | OPENSSL_LH_COMPFUNC cf;
|
---|
332 | int do_tsan = 1;
|
---|
333 |
|
---|
334 | #ifdef TSAN_REQUIRES_LOCKING
|
---|
335 | do_tsan = tsan_lock(lh);
|
---|
336 | #endif
|
---|
337 | hash = (*(lh->hash)) (data);
|
---|
338 | if (do_tsan)
|
---|
339 | tsan_counter(&lh->num_hash_calls);
|
---|
340 | *rhash = hash;
|
---|
341 |
|
---|
342 | nn = hash % lh->pmax;
|
---|
343 | if (nn < lh->p)
|
---|
344 | nn = hash % lh->num_alloc_nodes;
|
---|
345 |
|
---|
346 | cf = lh->comp;
|
---|
347 | ret = &(lh->b[(int)nn]);
|
---|
348 | for (n1 = *ret; n1 != NULL; n1 = n1->next) {
|
---|
349 | if (do_tsan)
|
---|
350 | tsan_counter(&lh->num_hash_comps);
|
---|
351 | if (n1->hash != hash) {
|
---|
352 | ret = &(n1->next);
|
---|
353 | continue;
|
---|
354 | }
|
---|
355 | if (do_tsan)
|
---|
356 | tsan_counter(&lh->num_comp_calls);
|
---|
357 | if (cf(n1->data, data) == 0)
|
---|
358 | break;
|
---|
359 | ret = &(n1->next);
|
---|
360 | }
|
---|
361 | if (do_tsan)
|
---|
362 | tsan_unlock(lh);
|
---|
363 | return ret;
|
---|
364 | }
|
---|
365 |
|
---|
366 | /*
|
---|
367 | * The following hash seems to work very well on normal text strings no
|
---|
368 | * collisions on /usr/dict/words and it distributes on %2^n quite well, not
|
---|
369 | * as good as MD5, but still good.
|
---|
370 | */
|
---|
371 | unsigned long OPENSSL_LH_strhash(const char *c)
|
---|
372 | {
|
---|
373 | unsigned long ret = 0;
|
---|
374 | long n;
|
---|
375 | unsigned long v;
|
---|
376 | int r;
|
---|
377 |
|
---|
378 | if ((c == NULL) || (*c == '\0'))
|
---|
379 | return ret;
|
---|
380 |
|
---|
381 | n = 0x100;
|
---|
382 | while (*c) {
|
---|
383 | v = n | (*c);
|
---|
384 | n += 0x100;
|
---|
385 | r = (int)((v >> 2) ^ v) & 0x0f;
|
---|
386 | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */
|
---|
387 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));
|
---|
388 | ret &= 0xFFFFFFFFL;
|
---|
389 | ret ^= v * v;
|
---|
390 | c++;
|
---|
391 | }
|
---|
392 | return (ret >> 16) ^ ret;
|
---|
393 | }
|
---|
394 |
|
---|
395 | unsigned long ossl_lh_strcasehash(const char *c)
|
---|
396 | {
|
---|
397 | unsigned long ret = 0;
|
---|
398 | long n;
|
---|
399 | unsigned long v;
|
---|
400 | int r;
|
---|
401 |
|
---|
402 | if (c == NULL || *c == '\0')
|
---|
403 | return ret;
|
---|
404 |
|
---|
405 | for (n = 0x100; *c != '\0'; n += 0x100) {
|
---|
406 | v = n | ossl_tolower(*c);
|
---|
407 | r = (int)((v >> 2) ^ v) & 0x0f;
|
---|
408 | /* cast to uint64_t to avoid 32 bit shift of 32 bit value */
|
---|
409 | ret = (ret << r) | (unsigned long)((uint64_t)ret >> (32 - r));
|
---|
410 | ret &= 0xFFFFFFFFL;
|
---|
411 | ret ^= v * v;
|
---|
412 | c++;
|
---|
413 | }
|
---|
414 | return (ret >> 16) ^ ret;
|
---|
415 | }
|
---|
416 |
|
---|
417 | unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
|
---|
418 | {
|
---|
419 | return lh ? lh->num_items : 0;
|
---|
420 | }
|
---|
421 |
|
---|
422 | unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
|
---|
423 | {
|
---|
424 | return lh->down_load;
|
---|
425 | }
|
---|
426 |
|
---|
427 | void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
|
---|
428 | {
|
---|
429 | lh->down_load = down_load;
|
---|
430 | }
|
---|
431 |
|
---|
432 | int OPENSSL_LH_error(OPENSSL_LHASH *lh)
|
---|
433 | {
|
---|
434 | return lh->error;
|
---|
435 | }
|
---|