VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.3/crypto/bn/bn_asm.c@ 96662

Last change on this file since 96662 was 94082, checked in by vboxsync, 3 years ago

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

File size: 27.1 KB
Line 
1/*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <assert.h>
11#include <openssl/crypto.h>
12#include "internal/cryptlib.h"
13#include "bn_local.h"
14
15#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
16
17BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
18 BN_ULONG w)
19{
20 BN_ULONG c1 = 0;
21
22 assert(num >= 0);
23 if (num <= 0)
24 return c1;
25
26# ifndef OPENSSL_SMALL_FOOTPRINT
27 while (num & ~3) {
28 mul_add(rp[0], ap[0], w, c1);
29 mul_add(rp[1], ap[1], w, c1);
30 mul_add(rp[2], ap[2], w, c1);
31 mul_add(rp[3], ap[3], w, c1);
32 ap += 4;
33 rp += 4;
34 num -= 4;
35 }
36# endif
37 while (num) {
38 mul_add(rp[0], ap[0], w, c1);
39 ap++;
40 rp++;
41 num--;
42 }
43
44 return c1;
45}
46
47BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
48{
49 BN_ULONG c1 = 0;
50
51 assert(num >= 0);
52 if (num <= 0)
53 return c1;
54
55# ifndef OPENSSL_SMALL_FOOTPRINT
56 while (num & ~3) {
57 mul(rp[0], ap[0], w, c1);
58 mul(rp[1], ap[1], w, c1);
59 mul(rp[2], ap[2], w, c1);
60 mul(rp[3], ap[3], w, c1);
61 ap += 4;
62 rp += 4;
63 num -= 4;
64 }
65# endif
66 while (num) {
67 mul(rp[0], ap[0], w, c1);
68 ap++;
69 rp++;
70 num--;
71 }
72 return c1;
73}
74
75void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
76{
77 assert(n >= 0);
78 if (n <= 0)
79 return;
80
81# ifndef OPENSSL_SMALL_FOOTPRINT
82 while (n & ~3) {
83 sqr(r[0], r[1], a[0]);
84 sqr(r[2], r[3], a[1]);
85 sqr(r[4], r[5], a[2]);
86 sqr(r[6], r[7], a[3]);
87 a += 4;
88 r += 8;
89 n -= 4;
90 }
91# endif
92 while (n) {
93 sqr(r[0], r[1], a[0]);
94 a++;
95 r += 2;
96 n--;
97 }
98}
99
100#else /* !(defined(BN_LLONG) ||
101 * defined(BN_UMULT_HIGH)) */
102
103BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
104 BN_ULONG w)
105{
106 BN_ULONG c = 0;
107 BN_ULONG bl, bh;
108
109 assert(num >= 0);
110 if (num <= 0)
111 return (BN_ULONG)0;
112
113 bl = LBITS(w);
114 bh = HBITS(w);
115
116# ifndef OPENSSL_SMALL_FOOTPRINT
117 while (num & ~3) {
118 mul_add(rp[0], ap[0], bl, bh, c);
119 mul_add(rp[1], ap[1], bl, bh, c);
120 mul_add(rp[2], ap[2], bl, bh, c);
121 mul_add(rp[3], ap[3], bl, bh, c);
122 ap += 4;
123 rp += 4;
124 num -= 4;
125 }
126# endif
127 while (num) {
128 mul_add(rp[0], ap[0], bl, bh, c);
129 ap++;
130 rp++;
131 num--;
132 }
133 return c;
134}
135
136BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
137{
138 BN_ULONG carry = 0;
139 BN_ULONG bl, bh;
140
141 assert(num >= 0);
142 if (num <= 0)
143 return (BN_ULONG)0;
144
145 bl = LBITS(w);
146 bh = HBITS(w);
147
148# ifndef OPENSSL_SMALL_FOOTPRINT
149 while (num & ~3) {
150 mul(rp[0], ap[0], bl, bh, carry);
151 mul(rp[1], ap[1], bl, bh, carry);
152 mul(rp[2], ap[2], bl, bh, carry);
153 mul(rp[3], ap[3], bl, bh, carry);
154 ap += 4;
155 rp += 4;
156 num -= 4;
157 }
158# endif
159 while (num) {
160 mul(rp[0], ap[0], bl, bh, carry);
161 ap++;
162 rp++;
163 num--;
164 }
165 return carry;
166}
167
168void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
169{
170 assert(n >= 0);
171 if (n <= 0)
172 return;
173
174# ifndef OPENSSL_SMALL_FOOTPRINT
175 while (n & ~3) {
176 sqr64(r[0], r[1], a[0]);
177 sqr64(r[2], r[3], a[1]);
178 sqr64(r[4], r[5], a[2]);
179 sqr64(r[6], r[7], a[3]);
180 a += 4;
181 r += 8;
182 n -= 4;
183 }
184# endif
185 while (n) {
186 sqr64(r[0], r[1], a[0]);
187 a++;
188 r += 2;
189 n--;
190 }
191}
192
193#endif /* !(defined(BN_LLONG) ||
194 * defined(BN_UMULT_HIGH)) */
195
196#if defined(BN_LLONG) && defined(BN_DIV2W)
197
198BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
199{
200 return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));
201}
202
203#else
204
205/* Divide h,l by d and return the result. */
206/* I need to test this some more :-( */
207BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
208{
209 BN_ULONG dh, dl, q, ret = 0, th, tl, t;
210 int i, count = 2;
211
212 if (d == 0)
213 return BN_MASK2;
214
215 i = BN_num_bits_word(d);
216 assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
217
218 i = BN_BITS2 - i;
219 if (h >= d)
220 h -= d;
221
222 if (i) {
223 d <<= i;
224 h = (h << i) | (l >> (BN_BITS2 - i));
225 l <<= i;
226 }
227 dh = (d & BN_MASK2h) >> BN_BITS4;
228 dl = (d & BN_MASK2l);
229 for (;;) {
230 if ((h >> BN_BITS4) == dh)
231 q = BN_MASK2l;
232 else
233 q = h / dh;
234
235 th = q * dh;
236 tl = dl * q;
237 for (;;) {
238 t = h - th;
239 if ((t & BN_MASK2h) ||
240 ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
241 break;
242 q--;
243 th -= dh;
244 tl -= dl;
245 }
246 t = (tl >> BN_BITS4);
247 tl = (tl << BN_BITS4) & BN_MASK2h;
248 th += t;
249
250 if (l < tl)
251 th++;
252 l -= tl;
253 if (h < th) {
254 h += d;
255 q--;
256 }
257 h -= th;
258
259 if (--count == 0)
260 break;
261
262 ret = q << BN_BITS4;
263 h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
264 l = (l & BN_MASK2l) << BN_BITS4;
265 }
266 ret |= q;
267 return ret;
268}
269#endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
270
271#ifdef BN_LLONG
272BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
273 int n)
274{
275 BN_ULLONG ll = 0;
276
277 assert(n >= 0);
278 if (n <= 0)
279 return (BN_ULONG)0;
280
281# ifndef OPENSSL_SMALL_FOOTPRINT
282 while (n & ~3) {
283 ll += (BN_ULLONG) a[0] + b[0];
284 r[0] = (BN_ULONG)ll & BN_MASK2;
285 ll >>= BN_BITS2;
286 ll += (BN_ULLONG) a[1] + b[1];
287 r[1] = (BN_ULONG)ll & BN_MASK2;
288 ll >>= BN_BITS2;
289 ll += (BN_ULLONG) a[2] + b[2];
290 r[2] = (BN_ULONG)ll & BN_MASK2;
291 ll >>= BN_BITS2;
292 ll += (BN_ULLONG) a[3] + b[3];
293 r[3] = (BN_ULONG)ll & BN_MASK2;
294 ll >>= BN_BITS2;
295 a += 4;
296 b += 4;
297 r += 4;
298 n -= 4;
299 }
300# endif
301 while (n) {
302 ll += (BN_ULLONG) a[0] + b[0];
303 r[0] = (BN_ULONG)ll & BN_MASK2;
304 ll >>= BN_BITS2;
305 a++;
306 b++;
307 r++;
308 n--;
309 }
310 return (BN_ULONG)ll;
311}
312#else /* !BN_LLONG */
313BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
314 int n)
315{
316 BN_ULONG c, l, t;
317
318 assert(n >= 0);
319 if (n <= 0)
320 return (BN_ULONG)0;
321
322 c = 0;
323# ifndef OPENSSL_SMALL_FOOTPRINT
324 while (n & ~3) {
325 t = a[0];
326 t = (t + c) & BN_MASK2;
327 c = (t < c);
328 l = (t + b[0]) & BN_MASK2;
329 c += (l < t);
330 r[0] = l;
331 t = a[1];
332 t = (t + c) & BN_MASK2;
333 c = (t < c);
334 l = (t + b[1]) & BN_MASK2;
335 c += (l < t);
336 r[1] = l;
337 t = a[2];
338 t = (t + c) & BN_MASK2;
339 c = (t < c);
340 l = (t + b[2]) & BN_MASK2;
341 c += (l < t);
342 r[2] = l;
343 t = a[3];
344 t = (t + c) & BN_MASK2;
345 c = (t < c);
346 l = (t + b[3]) & BN_MASK2;
347 c += (l < t);
348 r[3] = l;
349 a += 4;
350 b += 4;
351 r += 4;
352 n -= 4;
353 }
354# endif
355 while (n) {
356 t = a[0];
357 t = (t + c) & BN_MASK2;
358 c = (t < c);
359 l = (t + b[0]) & BN_MASK2;
360 c += (l < t);
361 r[0] = l;
362 a++;
363 b++;
364 r++;
365 n--;
366 }
367 return (BN_ULONG)c;
368}
369#endif /* !BN_LLONG */
370
371BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
372 int n)
373{
374 BN_ULONG t1, t2;
375 int c = 0;
376
377 assert(n >= 0);
378 if (n <= 0)
379 return (BN_ULONG)0;
380
381#ifndef OPENSSL_SMALL_FOOTPRINT
382 while (n & ~3) {
383 t1 = a[0];
384 t2 = b[0];
385 r[0] = (t1 - t2 - c) & BN_MASK2;
386 if (t1 != t2)
387 c = (t1 < t2);
388 t1 = a[1];
389 t2 = b[1];
390 r[1] = (t1 - t2 - c) & BN_MASK2;
391 if (t1 != t2)
392 c = (t1 < t2);
393 t1 = a[2];
394 t2 = b[2];
395 r[2] = (t1 - t2 - c) & BN_MASK2;
396 if (t1 != t2)
397 c = (t1 < t2);
398 t1 = a[3];
399 t2 = b[3];
400 r[3] = (t1 - t2 - c) & BN_MASK2;
401 if (t1 != t2)
402 c = (t1 < t2);
403 a += 4;
404 b += 4;
405 r += 4;
406 n -= 4;
407 }
408#endif
409 while (n) {
410 t1 = a[0];
411 t2 = b[0];
412 r[0] = (t1 - t2 - c) & BN_MASK2;
413 if (t1 != t2)
414 c = (t1 < t2);
415 a++;
416 b++;
417 r++;
418 n--;
419 }
420 return c;
421}
422
423#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
424
425#ifndef ___openssl_mangling_h___ /* bird */
426# undef bn_mul_comba8
427# undef bn_mul_comba4
428# undef bn_sqr_comba8
429# undef bn_sqr_comba4
430#endif /* !___openssl_mangling_h___*/ /* bird */
431
432/* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
433/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
434/* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
435/*
436 * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
437 * c=(c2,c1,c0)
438 */
439
440# ifdef BN_LLONG
441/*
442 * Keep in mind that additions to multiplication result can not
443 * overflow, because its high half cannot be all-ones.
444 */
445# define mul_add_c(a,b,c0,c1,c2) do { \
446 BN_ULONG hi; \
447 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
448 t += c0; /* no carry */ \
449 c0 = (BN_ULONG)Lw(t); \
450 hi = (BN_ULONG)Hw(t); \
451 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
452 } while(0)
453
454# define mul_add_c2(a,b,c0,c1,c2) do { \
455 BN_ULONG hi; \
456 BN_ULLONG t = (BN_ULLONG)(a)*(b); \
457 BN_ULLONG tt = t+c0; /* no carry */ \
458 c0 = (BN_ULONG)Lw(tt); \
459 hi = (BN_ULONG)Hw(tt); \
460 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
461 t += c0; /* no carry */ \
462 c0 = (BN_ULONG)Lw(t); \
463 hi = (BN_ULONG)Hw(t); \
464 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
465 } while(0)
466
467# define sqr_add_c(a,i,c0,c1,c2) do { \
468 BN_ULONG hi; \
469 BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
470 t += c0; /* no carry */ \
471 c0 = (BN_ULONG)Lw(t); \
472 hi = (BN_ULONG)Hw(t); \
473 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
474 } while(0)
475
476# define sqr_add_c2(a,i,j,c0,c1,c2) \
477 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
478
479# elif defined(BN_UMULT_LOHI)
480/*
481 * Keep in mind that additions to hi can not overflow, because
482 * the high word of a multiplication result cannot be all-ones.
483 */
484# define mul_add_c(a,b,c0,c1,c2) do { \
485 BN_ULONG ta = (a), tb = (b); \
486 BN_ULONG lo, hi; \
487 BN_UMULT_LOHI(lo,hi,ta,tb); \
488 c0 += lo; hi += (c0<lo)?1:0; \
489 c1 += hi; c2 += (c1<hi)?1:0; \
490 } while(0)
491
492# define mul_add_c2(a,b,c0,c1,c2) do { \
493 BN_ULONG ta = (a), tb = (b); \
494 BN_ULONG lo, hi, tt; \
495 BN_UMULT_LOHI(lo,hi,ta,tb); \
496 c0 += lo; tt = hi+((c0<lo)?1:0); \
497 c1 += tt; c2 += (c1<tt)?1:0; \
498 c0 += lo; hi += (c0<lo)?1:0; \
499 c1 += hi; c2 += (c1<hi)?1:0; \
500 } while(0)
501
502# define sqr_add_c(a,i,c0,c1,c2) do { \
503 BN_ULONG ta = (a)[i]; \
504 BN_ULONG lo, hi; \
505 BN_UMULT_LOHI(lo,hi,ta,ta); \
506 c0 += lo; hi += (c0<lo)?1:0; \
507 c1 += hi; c2 += (c1<hi)?1:0; \
508 } while(0)
509
510# define sqr_add_c2(a,i,j,c0,c1,c2) \
511 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
512
513# elif defined(BN_UMULT_HIGH)
514/*
515 * Keep in mind that additions to hi can not overflow, because
516 * the high word of a multiplication result cannot be all-ones.
517 */
518# define mul_add_c(a,b,c0,c1,c2) do { \
519 BN_ULONG ta = (a), tb = (b); \
520 BN_ULONG lo = ta * tb; \
521 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
522 c0 += lo; hi += (c0<lo)?1:0; \
523 c1 += hi; c2 += (c1<hi)?1:0; \
524 } while(0)
525
526# define mul_add_c2(a,b,c0,c1,c2) do { \
527 BN_ULONG ta = (a), tb = (b), tt; \
528 BN_ULONG lo = ta * tb; \
529 BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
530 c0 += lo; tt = hi + ((c0<lo)?1:0); \
531 c1 += tt; c2 += (c1<tt)?1:0; \
532 c0 += lo; hi += (c0<lo)?1:0; \
533 c1 += hi; c2 += (c1<hi)?1:0; \
534 } while(0)
535
536# define sqr_add_c(a,i,c0,c1,c2) do { \
537 BN_ULONG ta = (a)[i]; \
538 BN_ULONG lo = ta * ta; \
539 BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
540 c0 += lo; hi += (c0<lo)?1:0; \
541 c1 += hi; c2 += (c1<hi)?1:0; \
542 } while(0)
543
544# define sqr_add_c2(a,i,j,c0,c1,c2) \
545 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
546
547# else /* !BN_LLONG */
548/*
549 * Keep in mind that additions to hi can not overflow, because
550 * the high word of a multiplication result cannot be all-ones.
551 */
552# define mul_add_c(a,b,c0,c1,c2) do { \
553 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
554 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
555 mul64(lo,hi,bl,bh); \
556 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
557 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
558 } while(0)
559
560# define mul_add_c2(a,b,c0,c1,c2) do { \
561 BN_ULONG tt; \
562 BN_ULONG lo = LBITS(a), hi = HBITS(a); \
563 BN_ULONG bl = LBITS(b), bh = HBITS(b); \
564 mul64(lo,hi,bl,bh); \
565 tt = hi; \
566 c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
567 c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
568 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
569 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
570 } while(0)
571
572# define sqr_add_c(a,i,c0,c1,c2) do { \
573 BN_ULONG lo, hi; \
574 sqr64(lo,hi,(a)[i]); \
575 c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
576 c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
577 } while(0)
578
579# define sqr_add_c2(a,i,j,c0,c1,c2) \
580 mul_add_c2((a)[i],(a)[j],c0,c1,c2)
581# endif /* !BN_LLONG */
582
583void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
584{
585 BN_ULONG c1, c2, c3;
586
587 c1 = 0;
588 c2 = 0;
589 c3 = 0;
590 mul_add_c(a[0], b[0], c1, c2, c3);
591 r[0] = c1;
592 c1 = 0;
593 mul_add_c(a[0], b[1], c2, c3, c1);
594 mul_add_c(a[1], b[0], c2, c3, c1);
595 r[1] = c2;
596 c2 = 0;
597 mul_add_c(a[2], b[0], c3, c1, c2);
598 mul_add_c(a[1], b[1], c3, c1, c2);
599 mul_add_c(a[0], b[2], c3, c1, c2);
600 r[2] = c3;
601 c3 = 0;
602 mul_add_c(a[0], b[3], c1, c2, c3);
603 mul_add_c(a[1], b[2], c1, c2, c3);
604 mul_add_c(a[2], b[1], c1, c2, c3);
605 mul_add_c(a[3], b[0], c1, c2, c3);
606 r[3] = c1;
607 c1 = 0;
608 mul_add_c(a[4], b[0], c2, c3, c1);
609 mul_add_c(a[3], b[1], c2, c3, c1);
610 mul_add_c(a[2], b[2], c2, c3, c1);
611 mul_add_c(a[1], b[3], c2, c3, c1);
612 mul_add_c(a[0], b[4], c2, c3, c1);
613 r[4] = c2;
614 c2 = 0;
615 mul_add_c(a[0], b[5], c3, c1, c2);
616 mul_add_c(a[1], b[4], c3, c1, c2);
617 mul_add_c(a[2], b[3], c3, c1, c2);
618 mul_add_c(a[3], b[2], c3, c1, c2);
619 mul_add_c(a[4], b[1], c3, c1, c2);
620 mul_add_c(a[5], b[0], c3, c1, c2);
621 r[5] = c3;
622 c3 = 0;
623 mul_add_c(a[6], b[0], c1, c2, c3);
624 mul_add_c(a[5], b[1], c1, c2, c3);
625 mul_add_c(a[4], b[2], c1, c2, c3);
626 mul_add_c(a[3], b[3], c1, c2, c3);
627 mul_add_c(a[2], b[4], c1, c2, c3);
628 mul_add_c(a[1], b[5], c1, c2, c3);
629 mul_add_c(a[0], b[6], c1, c2, c3);
630 r[6] = c1;
631 c1 = 0;
632 mul_add_c(a[0], b[7], c2, c3, c1);
633 mul_add_c(a[1], b[6], c2, c3, c1);
634 mul_add_c(a[2], b[5], c2, c3, c1);
635 mul_add_c(a[3], b[4], c2, c3, c1);
636 mul_add_c(a[4], b[3], c2, c3, c1);
637 mul_add_c(a[5], b[2], c2, c3, c1);
638 mul_add_c(a[6], b[1], c2, c3, c1);
639 mul_add_c(a[7], b[0], c2, c3, c1);
640 r[7] = c2;
641 c2 = 0;
642 mul_add_c(a[7], b[1], c3, c1, c2);
643 mul_add_c(a[6], b[2], c3, c1, c2);
644 mul_add_c(a[5], b[3], c3, c1, c2);
645 mul_add_c(a[4], b[4], c3, c1, c2);
646 mul_add_c(a[3], b[5], c3, c1, c2);
647 mul_add_c(a[2], b[6], c3, c1, c2);
648 mul_add_c(a[1], b[7], c3, c1, c2);
649 r[8] = c3;
650 c3 = 0;
651 mul_add_c(a[2], b[7], c1, c2, c3);
652 mul_add_c(a[3], b[6], c1, c2, c3);
653 mul_add_c(a[4], b[5], c1, c2, c3);
654 mul_add_c(a[5], b[4], c1, c2, c3);
655 mul_add_c(a[6], b[3], c1, c2, c3);
656 mul_add_c(a[7], b[2], c1, c2, c3);
657 r[9] = c1;
658 c1 = 0;
659 mul_add_c(a[7], b[3], c2, c3, c1);
660 mul_add_c(a[6], b[4], c2, c3, c1);
661 mul_add_c(a[5], b[5], c2, c3, c1);
662 mul_add_c(a[4], b[6], c2, c3, c1);
663 mul_add_c(a[3], b[7], c2, c3, c1);
664 r[10] = c2;
665 c2 = 0;
666 mul_add_c(a[4], b[7], c3, c1, c2);
667 mul_add_c(a[5], b[6], c3, c1, c2);
668 mul_add_c(a[6], b[5], c3, c1, c2);
669 mul_add_c(a[7], b[4], c3, c1, c2);
670 r[11] = c3;
671 c3 = 0;
672 mul_add_c(a[7], b[5], c1, c2, c3);
673 mul_add_c(a[6], b[6], c1, c2, c3);
674 mul_add_c(a[5], b[7], c1, c2, c3);
675 r[12] = c1;
676 c1 = 0;
677 mul_add_c(a[6], b[7], c2, c3, c1);
678 mul_add_c(a[7], b[6], c2, c3, c1);
679 r[13] = c2;
680 c2 = 0;
681 mul_add_c(a[7], b[7], c3, c1, c2);
682 r[14] = c3;
683 r[15] = c1;
684}
685
686void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
687{
688 BN_ULONG c1, c2, c3;
689
690 c1 = 0;
691 c2 = 0;
692 c3 = 0;
693 mul_add_c(a[0], b[0], c1, c2, c3);
694 r[0] = c1;
695 c1 = 0;
696 mul_add_c(a[0], b[1], c2, c3, c1);
697 mul_add_c(a[1], b[0], c2, c3, c1);
698 r[1] = c2;
699 c2 = 0;
700 mul_add_c(a[2], b[0], c3, c1, c2);
701 mul_add_c(a[1], b[1], c3, c1, c2);
702 mul_add_c(a[0], b[2], c3, c1, c2);
703 r[2] = c3;
704 c3 = 0;
705 mul_add_c(a[0], b[3], c1, c2, c3);
706 mul_add_c(a[1], b[2], c1, c2, c3);
707 mul_add_c(a[2], b[1], c1, c2, c3);
708 mul_add_c(a[3], b[0], c1, c2, c3);
709 r[3] = c1;
710 c1 = 0;
711 mul_add_c(a[3], b[1], c2, c3, c1);
712 mul_add_c(a[2], b[2], c2, c3, c1);
713 mul_add_c(a[1], b[3], c2, c3, c1);
714 r[4] = c2;
715 c2 = 0;
716 mul_add_c(a[2], b[3], c3, c1, c2);
717 mul_add_c(a[3], b[2], c3, c1, c2);
718 r[5] = c3;
719 c3 = 0;
720 mul_add_c(a[3], b[3], c1, c2, c3);
721 r[6] = c1;
722 r[7] = c2;
723}
724
725void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
726{
727 BN_ULONG c1, c2, c3;
728
729 c1 = 0;
730 c2 = 0;
731 c3 = 0;
732 sqr_add_c(a, 0, c1, c2, c3);
733 r[0] = c1;
734 c1 = 0;
735 sqr_add_c2(a, 1, 0, c2, c3, c1);
736 r[1] = c2;
737 c2 = 0;
738 sqr_add_c(a, 1, c3, c1, c2);
739 sqr_add_c2(a, 2, 0, c3, c1, c2);
740 r[2] = c3;
741 c3 = 0;
742 sqr_add_c2(a, 3, 0, c1, c2, c3);
743 sqr_add_c2(a, 2, 1, c1, c2, c3);
744 r[3] = c1;
745 c1 = 0;
746 sqr_add_c(a, 2, c2, c3, c1);
747 sqr_add_c2(a, 3, 1, c2, c3, c1);
748 sqr_add_c2(a, 4, 0, c2, c3, c1);
749 r[4] = c2;
750 c2 = 0;
751 sqr_add_c2(a, 5, 0, c3, c1, c2);
752 sqr_add_c2(a, 4, 1, c3, c1, c2);
753 sqr_add_c2(a, 3, 2, c3, c1, c2);
754 r[5] = c3;
755 c3 = 0;
756 sqr_add_c(a, 3, c1, c2, c3);
757 sqr_add_c2(a, 4, 2, c1, c2, c3);
758 sqr_add_c2(a, 5, 1, c1, c2, c3);
759 sqr_add_c2(a, 6, 0, c1, c2, c3);
760 r[6] = c1;
761 c1 = 0;
762 sqr_add_c2(a, 7, 0, c2, c3, c1);
763 sqr_add_c2(a, 6, 1, c2, c3, c1);
764 sqr_add_c2(a, 5, 2, c2, c3, c1);
765 sqr_add_c2(a, 4, 3, c2, c3, c1);
766 r[7] = c2;
767 c2 = 0;
768 sqr_add_c(a, 4, c3, c1, c2);
769 sqr_add_c2(a, 5, 3, c3, c1, c2);
770 sqr_add_c2(a, 6, 2, c3, c1, c2);
771 sqr_add_c2(a, 7, 1, c3, c1, c2);
772 r[8] = c3;
773 c3 = 0;
774 sqr_add_c2(a, 7, 2, c1, c2, c3);
775 sqr_add_c2(a, 6, 3, c1, c2, c3);
776 sqr_add_c2(a, 5, 4, c1, c2, c3);
777 r[9] = c1;
778 c1 = 0;
779 sqr_add_c(a, 5, c2, c3, c1);
780 sqr_add_c2(a, 6, 4, c2, c3, c1);
781 sqr_add_c2(a, 7, 3, c2, c3, c1);
782 r[10] = c2;
783 c2 = 0;
784 sqr_add_c2(a, 7, 4, c3, c1, c2);
785 sqr_add_c2(a, 6, 5, c3, c1, c2);
786 r[11] = c3;
787 c3 = 0;
788 sqr_add_c(a, 6, c1, c2, c3);
789 sqr_add_c2(a, 7, 5, c1, c2, c3);
790 r[12] = c1;
791 c1 = 0;
792 sqr_add_c2(a, 7, 6, c2, c3, c1);
793 r[13] = c2;
794 c2 = 0;
795 sqr_add_c(a, 7, c3, c1, c2);
796 r[14] = c3;
797 r[15] = c1;
798}
799
800void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
801{
802 BN_ULONG c1, c2, c3;
803
804 c1 = 0;
805 c2 = 0;
806 c3 = 0;
807 sqr_add_c(a, 0, c1, c2, c3);
808 r[0] = c1;
809 c1 = 0;
810 sqr_add_c2(a, 1, 0, c2, c3, c1);
811 r[1] = c2;
812 c2 = 0;
813 sqr_add_c(a, 1, c3, c1, c2);
814 sqr_add_c2(a, 2, 0, c3, c1, c2);
815 r[2] = c3;
816 c3 = 0;
817 sqr_add_c2(a, 3, 0, c1, c2, c3);
818 sqr_add_c2(a, 2, 1, c1, c2, c3);
819 r[3] = c1;
820 c1 = 0;
821 sqr_add_c(a, 2, c2, c3, c1);
822 sqr_add_c2(a, 3, 1, c2, c3, c1);
823 r[4] = c2;
824 c2 = 0;
825 sqr_add_c2(a, 3, 2, c3, c1, c2);
826 r[5] = c3;
827 c3 = 0;
828 sqr_add_c(a, 3, c1, c2, c3);
829 r[6] = c1;
830 r[7] = c2;
831}
832
833# ifdef OPENSSL_NO_ASM
834# ifdef OPENSSL_BN_ASM_MONT
835# include <alloca.h>
836/*
837 * This is essentially reference implementation, which may or may not
838 * result in performance improvement. E.g. on IA-32 this routine was
839 * observed to give 40% faster rsa1024 private key operations and 10%
840 * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
841 * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
842 * reference implementation, one to be used as starting point for
843 * platform-specific assembler. Mentioned numbers apply to compiler
844 * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
845 * can vary not only from platform to platform, but even for compiler
846 * versions. Assembler vs. assembler improvement coefficients can
847 * [and are known to] differ and are to be documented elsewhere.
848 */
849int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
850 const BN_ULONG *np, const BN_ULONG *n0p, int num)
851{
852 BN_ULONG c0, c1, ml, *tp, n0;
853# ifdef mul64
854 BN_ULONG mh;
855# endif
856 volatile BN_ULONG *vp;
857 int i = 0, j;
858
859# if 0 /* template for platform-specific
860 * implementation */
861 if (ap == bp)
862 return bn_sqr_mont(rp, ap, np, n0p, num);
863# endif
864 vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
865
866 n0 = *n0p;
867
868 c0 = 0;
869 ml = bp[0];
870# ifdef mul64
871 mh = HBITS(ml);
872 ml = LBITS(ml);
873 for (j = 0; j < num; ++j)
874 mul(tp[j], ap[j], ml, mh, c0);
875# else
876 for (j = 0; j < num; ++j)
877 mul(tp[j], ap[j], ml, c0);
878# endif
879
880 tp[num] = c0;
881 tp[num + 1] = 0;
882 goto enter;
883
884 for (i = 0; i < num; i++) {
885 c0 = 0;
886 ml = bp[i];
887# ifdef mul64
888 mh = HBITS(ml);
889 ml = LBITS(ml);
890 for (j = 0; j < num; ++j)
891 mul_add(tp[j], ap[j], ml, mh, c0);
892# else
893 for (j = 0; j < num; ++j)
894 mul_add(tp[j], ap[j], ml, c0);
895# endif
896 c1 = (tp[num] + c0) & BN_MASK2;
897 tp[num] = c1;
898 tp[num + 1] = (c1 < c0 ? 1 : 0);
899 enter:
900 c1 = tp[0];
901 ml = (c1 * n0) & BN_MASK2;
902 c0 = 0;
903# ifdef mul64
904 mh = HBITS(ml);
905 ml = LBITS(ml);
906 mul_add(c1, np[0], ml, mh, c0);
907# else
908 mul_add(c1, ml, np[0], c0);
909# endif
910 for (j = 1; j < num; j++) {
911 c1 = tp[j];
912# ifdef mul64
913 mul_add(c1, np[j], ml, mh, c0);
914# else
915 mul_add(c1, ml, np[j], c0);
916# endif
917 tp[j - 1] = c1 & BN_MASK2;
918 }
919 c1 = (tp[num] + c0) & BN_MASK2;
920 tp[num - 1] = c1;
921 tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
922 }
923
924 if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
925 c0 = bn_sub_words(rp, tp, np, num);
926 if (tp[num] != 0 || c0 == 0) {
927 for (i = 0; i < num + 2; i++)
928 vp[i] = 0;
929 return 1;
930 }
931 }
932 for (i = 0; i < num; i++)
933 rp[i] = tp[i], vp[i] = 0;
934 vp[num] = 0;
935 vp[num + 1] = 0;
936 return 1;
937}
938# else
939/*
940 * Return value of 0 indicates that multiplication/convolution was not
941 * performed to signal the caller to fall down to alternative/original
942 * code-path.
943 */
944int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
945 const BN_ULONG *np, const BN_ULONG *n0, int num)
946{
947 return 0;
948}
949# endif /* OPENSSL_BN_ASM_MONT */
950# endif
951
952#else /* !BN_MUL_COMBA */
953
954/* hmm... is it faster just to do a multiply? */
955#ifndef ___openssl_mangling_h___ /* bird */
956# undef bn_sqr_comba4
957# undef bn_sqr_comba8
958#endif
959void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
960{
961 BN_ULONG t[8];
962 bn_sqr_normal(r, a, 4, t);
963}
964
965void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
966{
967 BN_ULONG t[16];
968 bn_sqr_normal(r, a, 8, t);
969}
970
971void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
972{
973 r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
974 r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
975 r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
976 r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
977}
978
979void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
980{
981 r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
982 r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
983 r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
984 r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
985 r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
986 r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
987 r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
988 r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
989}
990
991# ifdef OPENSSL_NO_ASM
992# ifdef OPENSSL_BN_ASM_MONT
993# include <alloca.h>
994int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
995 const BN_ULONG *np, const BN_ULONG *n0p, int num)
996{
997 BN_ULONG c0, c1, *tp, n0 = *n0p;
998 volatile BN_ULONG *vp;
999 int i = 0, j;
1000
1001 vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
1002
1003 for (i = 0; i <= num; i++)
1004 tp[i] = 0;
1005
1006 for (i = 0; i < num; i++) {
1007 c0 = bn_mul_add_words(tp, ap, num, bp[i]);
1008 c1 = (tp[num] + c0) & BN_MASK2;
1009 tp[num] = c1;
1010 tp[num + 1] = (c1 < c0 ? 1 : 0);
1011
1012 c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
1013 c1 = (tp[num] + c0) & BN_MASK2;
1014 tp[num] = c1;
1015 tp[num + 1] += (c1 < c0 ? 1 : 0);
1016 for (j = 0; j <= num; j++)
1017 tp[j] = tp[j + 1];
1018 }
1019
1020 if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
1021 c0 = bn_sub_words(rp, tp, np, num);
1022 if (tp[num] != 0 || c0 == 0) {
1023 for (i = 0; i < num + 2; i++)
1024 vp[i] = 0;
1025 return 1;
1026 }
1027 }
1028 for (i = 0; i < num; i++)
1029 rp[i] = tp[i], vp[i] = 0;
1030 vp[num] = 0;
1031 vp[num + 1] = 0;
1032 return 1;
1033}
1034# else
1035int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
1036 const BN_ULONG *np, const BN_ULONG *n0, int num)
1037{
1038 return 0;
1039}
1040# endif /* OPENSSL_BN_ASM_MONT */
1041# endif
1042
1043#endif /* !BN_MUL_COMBA */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette