1 | /*
|
---|
2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <assert.h>
|
---|
11 | #include <openssl/bn.h>
|
---|
12 | #include "internal/cryptlib.h"
|
---|
13 | #include "bn_local.h"
|
---|
14 |
|
---|
15 | /* The old slow way */
|
---|
16 | #if 0
|
---|
17 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
|
---|
18 | BN_CTX *ctx)
|
---|
19 | {
|
---|
20 | int i, nm, nd;
|
---|
21 | int ret = 0;
|
---|
22 | BIGNUM *D;
|
---|
23 |
|
---|
24 | bn_check_top(m);
|
---|
25 | bn_check_top(d);
|
---|
26 | if (BN_is_zero(d)) {
|
---|
27 | ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
|
---|
28 | return 0;
|
---|
29 | }
|
---|
30 |
|
---|
31 | if (BN_ucmp(m, d) < 0) {
|
---|
32 | if (rem != NULL) {
|
---|
33 | if (BN_copy(rem, m) == NULL)
|
---|
34 | return 0;
|
---|
35 | }
|
---|
36 | if (dv != NULL)
|
---|
37 | BN_zero(dv);
|
---|
38 | return 1;
|
---|
39 | }
|
---|
40 |
|
---|
41 | BN_CTX_start(ctx);
|
---|
42 | D = BN_CTX_get(ctx);
|
---|
43 | if (dv == NULL)
|
---|
44 | dv = BN_CTX_get(ctx);
|
---|
45 | if (rem == NULL)
|
---|
46 | rem = BN_CTX_get(ctx);
|
---|
47 | if (D == NULL || dv == NULL || rem == NULL)
|
---|
48 | goto end;
|
---|
49 |
|
---|
50 | nd = BN_num_bits(d);
|
---|
51 | nm = BN_num_bits(m);
|
---|
52 | if (BN_copy(D, d) == NULL)
|
---|
53 | goto end;
|
---|
54 | if (BN_copy(rem, m) == NULL)
|
---|
55 | goto end;
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * The next 2 are needed so we can do a dv->d[0]|=1 later since
|
---|
59 | * BN_lshift1 will only work once there is a value :-)
|
---|
60 | */
|
---|
61 | BN_zero(dv);
|
---|
62 | if (bn_wexpand(dv, 1) == NULL)
|
---|
63 | goto end;
|
---|
64 | dv->top = 1;
|
---|
65 |
|
---|
66 | if (!BN_lshift(D, D, nm - nd))
|
---|
67 | goto end;
|
---|
68 | for (i = nm - nd; i >= 0; i--) {
|
---|
69 | if (!BN_lshift1(dv, dv))
|
---|
70 | goto end;
|
---|
71 | if (BN_ucmp(rem, D) >= 0) {
|
---|
72 | dv->d[0] |= 1;
|
---|
73 | if (!BN_usub(rem, rem, D))
|
---|
74 | goto end;
|
---|
75 | }
|
---|
76 | /* CAN IMPROVE (and have now :=) */
|
---|
77 | if (!BN_rshift1(D, D))
|
---|
78 | goto end;
|
---|
79 | }
|
---|
80 | rem->neg = BN_is_zero(rem) ? 0 : m->neg;
|
---|
81 | dv->neg = m->neg ^ d->neg;
|
---|
82 | ret = 1;
|
---|
83 | end:
|
---|
84 | BN_CTX_end(ctx);
|
---|
85 | return ret;
|
---|
86 | }
|
---|
87 |
|
---|
88 | #else
|
---|
89 |
|
---|
90 | # if defined(BN_DIV3W)
|
---|
91 | BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
|
---|
92 | # elif 0
|
---|
93 | /*
|
---|
94 | * This is #if-ed away, because it's a reference for assembly implementations,
|
---|
95 | * where it can and should be made constant-time. But if you want to test it,
|
---|
96 | * just replace 0 with 1.
|
---|
97 | */
|
---|
98 | # if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
|
---|
99 | # undef BN_ULLONG
|
---|
100 | # define BN_ULLONG uint128_t
|
---|
101 | # define BN_LLONG
|
---|
102 | # endif
|
---|
103 |
|
---|
104 | # ifdef BN_LLONG
|
---|
105 | # define BN_DIV3W
|
---|
106 | /*
|
---|
107 | * Interface is somewhat quirky, |m| is pointer to most significant limb,
|
---|
108 | * and less significant limb is referred at |m[-1]|. This means that caller
|
---|
109 | * is responsible for ensuring that |m[-1]| is valid. Second condition that
|
---|
110 | * has to be met is that |d0|'s most significant bit has to be set. Or in
|
---|
111 | * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
|
---|
112 | * does all this. The subroutine considers four limbs, two of which are
|
---|
113 | * "overlapping," hence the name...
|
---|
114 | */
|
---|
115 | static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
|
---|
116 | {
|
---|
117 | BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
|
---|
118 | BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
|
---|
119 | BN_ULONG Q = 0, mask;
|
---|
120 | int i;
|
---|
121 |
|
---|
122 | for (i = 0; i < BN_BITS2; i++) {
|
---|
123 | Q <<= 1;
|
---|
124 | if (R >= D) {
|
---|
125 | Q |= 1;
|
---|
126 | R -= D;
|
---|
127 | }
|
---|
128 | D >>= 1;
|
---|
129 | }
|
---|
130 |
|
---|
131 | mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */
|
---|
132 |
|
---|
133 | Q <<= 1;
|
---|
134 | Q |= (R >= D);
|
---|
135 |
|
---|
136 | return (Q | mask) & BN_MASK2;
|
---|
137 | }
|
---|
138 | # endif
|
---|
139 | # endif
|
---|
140 |
|
---|
141 | static int bn_left_align(BIGNUM *num)
|
---|
142 | {
|
---|
143 | BN_ULONG *d = num->d, n, m, rmask;
|
---|
144 | int top = num->top;
|
---|
145 | int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
|
---|
146 |
|
---|
147 | lshift = BN_BITS2 - rshift;
|
---|
148 | rshift %= BN_BITS2; /* say no to undefined behaviour */
|
---|
149 | rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */
|
---|
150 | rmask |= rmask >> 8;
|
---|
151 |
|
---|
152 | for (i = 0, m = 0; i < top; i++) {
|
---|
153 | n = d[i];
|
---|
154 | d[i] = ((n << lshift) | m) & BN_MASK2;
|
---|
155 | m = (n >> rshift) & rmask;
|
---|
156 | }
|
---|
157 |
|
---|
158 | return lshift;
|
---|
159 | }
|
---|
160 |
|
---|
161 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
|
---|
162 | && !defined(PEDANTIC) && !defined(BN_DIV3W)
|
---|
163 | # if defined(__GNUC__) && __GNUC__>=2
|
---|
164 | # if defined(__i386) || defined (__i386__)
|
---|
165 | /*-
|
---|
166 | * There were two reasons for implementing this template:
|
---|
167 | * - GNU C generates a call to a function (__udivdi3 to be exact)
|
---|
168 | * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
|
---|
169 | * understand why...);
|
---|
170 | * - divl doesn't only calculate quotient, but also leaves
|
---|
171 | * remainder in %edx which we can definitely use here:-)
|
---|
172 | */
|
---|
173 | # undef bn_div_words
|
---|
174 | # define bn_div_words(n0,n1,d0) \
|
---|
175 | ({ asm volatile ( \
|
---|
176 | "divl %4" \
|
---|
177 | : "=a"(q), "=d"(rem) \
|
---|
178 | : "a"(n1), "d"(n0), "r"(d0) \
|
---|
179 | : "cc"); \
|
---|
180 | q; \
|
---|
181 | })
|
---|
182 | # define REMAINDER_IS_ALREADY_CALCULATED
|
---|
183 | # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
|
---|
184 | /*
|
---|
185 | * Same story here, but it's 128-bit by 64-bit division. Wow!
|
---|
186 | */
|
---|
187 | # undef bn_div_words
|
---|
188 | # define bn_div_words(n0,n1,d0) \
|
---|
189 | ({ asm volatile ( \
|
---|
190 | "divq %4" \
|
---|
191 | : "=a"(q), "=d"(rem) \
|
---|
192 | : "a"(n1), "d"(n0), "r"(d0) \
|
---|
193 | : "cc"); \
|
---|
194 | q; \
|
---|
195 | })
|
---|
196 | # define REMAINDER_IS_ALREADY_CALCULATED
|
---|
197 | # endif /* __<cpu> */
|
---|
198 | # endif /* __GNUC__ */
|
---|
199 | # endif /* OPENSSL_NO_ASM */
|
---|
200 |
|
---|
201 | /*-
|
---|
202 | * BN_div computes dv := num / divisor, rounding towards
|
---|
203 | * zero, and sets up rm such that dv*divisor + rm = num holds.
|
---|
204 | * Thus:
|
---|
205 | * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
|
---|
206 | * rm->neg == num->neg (unless the remainder is zero)
|
---|
207 | * If 'dv' or 'rm' is NULL, the respective value is not returned.
|
---|
208 | */
|
---|
209 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
---|
210 | BN_CTX *ctx)
|
---|
211 | {
|
---|
212 | int ret;
|
---|
213 |
|
---|
214 | if (BN_is_zero(divisor)) {
|
---|
215 | ERR_raise(ERR_LIB_BN, BN_R_DIV_BY_ZERO);
|
---|
216 | return 0;
|
---|
217 | }
|
---|
218 |
|
---|
219 | /*
|
---|
220 | * Invalid zero-padding would have particularly bad consequences so don't
|
---|
221 | * just rely on bn_check_top() here (bn_check_top() works only for
|
---|
222 | * BN_DEBUG builds)
|
---|
223 | */
|
---|
224 | if (divisor->d[divisor->top - 1] == 0) {
|
---|
225 | ERR_raise(ERR_LIB_BN, BN_R_NOT_INITIALIZED);
|
---|
226 | return 0;
|
---|
227 | }
|
---|
228 |
|
---|
229 | ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
|
---|
230 |
|
---|
231 | if (ret) {
|
---|
232 | if (dv != NULL)
|
---|
233 | bn_correct_top(dv);
|
---|
234 | if (rm != NULL)
|
---|
235 | bn_correct_top(rm);
|
---|
236 | }
|
---|
237 |
|
---|
238 | return ret;
|
---|
239 | }
|
---|
240 |
|
---|
241 | /*
|
---|
242 | * It's argued that *length* of *significant* part of divisor is public.
|
---|
243 | * Even if it's private modulus that is. Again, *length* is assumed
|
---|
244 | * public, but not *value*. Former is likely to be pre-defined by
|
---|
245 | * algorithm with bit granularity, though below subroutine is invariant
|
---|
246 | * of limb length. Thanks to this assumption we can require that |divisor|
|
---|
247 | * may not be zero-padded, yet claim this subroutine "constant-time"(*).
|
---|
248 | * This is because zero-padded dividend, |num|, is tolerated, so that
|
---|
249 | * caller can pass dividend of public length(*), but with smaller amount
|
---|
250 | * of significant limbs. This naturally means that quotient, |dv|, would
|
---|
251 | * contain correspongly less significant limbs as well, and will be zero-
|
---|
252 | * padded accordingly. Returned remainder, |rm|, will have same bit length
|
---|
253 | * as divisor, also zero-padded if needed. These actually leave sign bits
|
---|
254 | * in ambiguous state. In sense that we try to avoid negative zeros, while
|
---|
255 | * zero-padded zeros would retain sign.
|
---|
256 | *
|
---|
257 | * (*) "Constant-time-ness" has two pre-conditions:
|
---|
258 | *
|
---|
259 | * - availability of constant-time bn_div_3_words;
|
---|
260 | * - dividend is at least as "wide" as divisor, limb-wise, zero-padded
|
---|
261 | * if so required, which shouldn't be a privacy problem, because
|
---|
262 | * divisor's length is considered public;
|
---|
263 | */
|
---|
264 | int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
|
---|
265 | const BIGNUM *divisor, BN_CTX *ctx)
|
---|
266 | {
|
---|
267 | int norm_shift, i, j, loop;
|
---|
268 | BIGNUM *tmp, *snum, *sdiv, *res;
|
---|
269 | BN_ULONG *resp, *wnum, *wnumtop;
|
---|
270 | BN_ULONG d0, d1;
|
---|
271 | int num_n, div_n, num_neg;
|
---|
272 |
|
---|
273 | assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
|
---|
274 |
|
---|
275 | bn_check_top(num);
|
---|
276 | bn_check_top(divisor);
|
---|
277 | bn_check_top(dv);
|
---|
278 | bn_check_top(rm);
|
---|
279 |
|
---|
280 | BN_CTX_start(ctx);
|
---|
281 | res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
|
---|
282 | tmp = BN_CTX_get(ctx);
|
---|
283 | snum = BN_CTX_get(ctx);
|
---|
284 | sdiv = BN_CTX_get(ctx);
|
---|
285 | if (sdiv == NULL)
|
---|
286 | goto err;
|
---|
287 |
|
---|
288 | /* First we normalise the numbers */
|
---|
289 | if (!BN_copy(sdiv, divisor))
|
---|
290 | goto err;
|
---|
291 | norm_shift = bn_left_align(sdiv);
|
---|
292 | sdiv->neg = 0;
|
---|
293 | /*
|
---|
294 | * Note that bn_lshift_fixed_top's output is always one limb longer
|
---|
295 | * than input, even when norm_shift is zero. This means that amount of
|
---|
296 | * inner loop iterations is invariant of dividend value, and that one
|
---|
297 | * doesn't need to compare dividend and divisor if they were originally
|
---|
298 | * of the same bit length.
|
---|
299 | */
|
---|
300 | if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
|
---|
301 | goto err;
|
---|
302 |
|
---|
303 | div_n = sdiv->top;
|
---|
304 | num_n = snum->top;
|
---|
305 |
|
---|
306 | if (num_n <= div_n) {
|
---|
307 | /* caller didn't pad dividend -> no constant-time guarantee... */
|
---|
308 | if (bn_wexpand(snum, div_n + 1) == NULL)
|
---|
309 | goto err;
|
---|
310 | memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
|
---|
311 | snum->top = num_n = div_n + 1;
|
---|
312 | }
|
---|
313 |
|
---|
314 | loop = num_n - div_n;
|
---|
315 | /*
|
---|
316 | * Lets setup a 'window' into snum This is the part that corresponds to
|
---|
317 | * the current 'area' being divided
|
---|
318 | */
|
---|
319 | wnum = &(snum->d[loop]);
|
---|
320 | wnumtop = &(snum->d[num_n - 1]);
|
---|
321 |
|
---|
322 | /* Get the top 2 words of sdiv */
|
---|
323 | d0 = sdiv->d[div_n - 1];
|
---|
324 | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
|
---|
325 |
|
---|
326 | /* Setup quotient */
|
---|
327 | if (!bn_wexpand(res, loop))
|
---|
328 | goto err;
|
---|
329 | num_neg = num->neg;
|
---|
330 | res->neg = (num_neg ^ divisor->neg);
|
---|
331 | res->top = loop;
|
---|
332 | res->flags |= BN_FLG_FIXED_TOP;
|
---|
333 | resp = &(res->d[loop]);
|
---|
334 |
|
---|
335 | /* space for temp */
|
---|
336 | if (!bn_wexpand(tmp, (div_n + 1)))
|
---|
337 | goto err;
|
---|
338 |
|
---|
339 | for (i = 0; i < loop; i++, wnumtop--) {
|
---|
340 | BN_ULONG q, l0;
|
---|
341 | /*
|
---|
342 | * the first part of the loop uses the top two words of snum and sdiv
|
---|
343 | * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
|
---|
344 | */
|
---|
345 | # if defined(BN_DIV3W)
|
---|
346 | q = bn_div_3_words(wnumtop, d1, d0);
|
---|
347 | # else
|
---|
348 | BN_ULONG n0, n1, rem = 0;
|
---|
349 |
|
---|
350 | n0 = wnumtop[0];
|
---|
351 | n1 = wnumtop[-1];
|
---|
352 | if (n0 == d0)
|
---|
353 | q = BN_MASK2;
|
---|
354 | else { /* n0 < d0 */
|
---|
355 | BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
|
---|
356 | # ifdef BN_LLONG
|
---|
357 | BN_ULLONG t2;
|
---|
358 |
|
---|
359 | # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
|
---|
360 | q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0);
|
---|
361 | # else
|
---|
362 | q = bn_div_words(n0, n1, d0);
|
---|
363 | # endif
|
---|
364 |
|
---|
365 | # ifndef REMAINDER_IS_ALREADY_CALCULATED
|
---|
366 | /*
|
---|
367 | * rem doesn't have to be BN_ULLONG. The least we
|
---|
368 | * know it's less that d0, isn't it?
|
---|
369 | */
|
---|
370 | rem = (n1 - q * d0) & BN_MASK2;
|
---|
371 | # endif
|
---|
372 | t2 = (BN_ULLONG) d1 *q;
|
---|
373 |
|
---|
374 | for (;;) {
|
---|
375 | if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
|
---|
376 | break;
|
---|
377 | q--;
|
---|
378 | rem += d0;
|
---|
379 | if (rem < d0)
|
---|
380 | break; /* don't let rem overflow */
|
---|
381 | t2 -= d1;
|
---|
382 | }
|
---|
383 | # else /* !BN_LLONG */
|
---|
384 | BN_ULONG t2l, t2h;
|
---|
385 |
|
---|
386 | q = bn_div_words(n0, n1, d0);
|
---|
387 | # ifndef REMAINDER_IS_ALREADY_CALCULATED
|
---|
388 | rem = (n1 - q * d0) & BN_MASK2;
|
---|
389 | # endif
|
---|
390 |
|
---|
391 | # if defined(BN_UMULT_LOHI)
|
---|
392 | BN_UMULT_LOHI(t2l, t2h, d1, q);
|
---|
393 | # elif defined(BN_UMULT_HIGH)
|
---|
394 | t2l = d1 * q;
|
---|
395 | t2h = BN_UMULT_HIGH(d1, q);
|
---|
396 | # else
|
---|
397 | {
|
---|
398 | BN_ULONG ql, qh;
|
---|
399 | t2l = LBITS(d1);
|
---|
400 | t2h = HBITS(d1);
|
---|
401 | ql = LBITS(q);
|
---|
402 | qh = HBITS(q);
|
---|
403 | mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
|
---|
404 | }
|
---|
405 | # endif
|
---|
406 |
|
---|
407 | for (;;) {
|
---|
408 | if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
|
---|
409 | break;
|
---|
410 | q--;
|
---|
411 | rem += d0;
|
---|
412 | if (rem < d0)
|
---|
413 | break; /* don't let rem overflow */
|
---|
414 | if (t2l < d1)
|
---|
415 | t2h--;
|
---|
416 | t2l -= d1;
|
---|
417 | }
|
---|
418 | # endif /* !BN_LLONG */
|
---|
419 | }
|
---|
420 | # endif /* !BN_DIV3W */
|
---|
421 |
|
---|
422 | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
|
---|
423 | tmp->d[div_n] = l0;
|
---|
424 | wnum--;
|
---|
425 | /*
|
---|
426 | * ignore top values of the bignums just sub the two BN_ULONG arrays
|
---|
427 | * with bn_sub_words
|
---|
428 | */
|
---|
429 | l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
|
---|
430 | q -= l0;
|
---|
431 | /*
|
---|
432 | * Note: As we have considered only the leading two BN_ULONGs in
|
---|
433 | * the calculation of q, sdiv * q might be greater than wnum (but
|
---|
434 | * then (q-1) * sdiv is less or equal than wnum)
|
---|
435 | */
|
---|
436 | for (l0 = 0 - l0, j = 0; j < div_n; j++)
|
---|
437 | tmp->d[j] = sdiv->d[j] & l0;
|
---|
438 | l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
|
---|
439 | (*wnumtop) += l0;
|
---|
440 | assert((*wnumtop) == 0);
|
---|
441 |
|
---|
442 | /* store part of the result */
|
---|
443 | *--resp = q;
|
---|
444 | }
|
---|
445 | /* snum holds remainder, it's as wide as divisor */
|
---|
446 | snum->neg = num_neg;
|
---|
447 | snum->top = div_n;
|
---|
448 | snum->flags |= BN_FLG_FIXED_TOP;
|
---|
449 |
|
---|
450 | if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0)
|
---|
451 | goto err;
|
---|
452 |
|
---|
453 | BN_CTX_end(ctx);
|
---|
454 | return 1;
|
---|
455 | err:
|
---|
456 | bn_check_top(rm);
|
---|
457 | BN_CTX_end(ctx);
|
---|
458 | return 0;
|
---|
459 | }
|
---|
460 | #endif
|
---|