1 | /*
|
---|
2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/cryptlib.h"
|
---|
11 | #include "bn_local.h"
|
---|
12 |
|
---|
13 | /*
|
---|
14 | * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
|
---|
15 | * not contain branches that may leak sensitive information.
|
---|
16 | *
|
---|
17 | * This is a static function, we ensure all callers in this file pass valid
|
---|
18 | * arguments: all passed pointers here are non-NULL.
|
---|
19 | */
|
---|
20 | static ossl_inline
|
---|
21 | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
|
---|
22 | const BIGNUM *a, const BIGNUM *n,
|
---|
23 | BN_CTX *ctx, int *pnoinv)
|
---|
24 | {
|
---|
25 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
---|
26 | BIGNUM *ret = NULL;
|
---|
27 | int sign;
|
---|
28 |
|
---|
29 | bn_check_top(a);
|
---|
30 | bn_check_top(n);
|
---|
31 |
|
---|
32 | BN_CTX_start(ctx);
|
---|
33 | A = BN_CTX_get(ctx);
|
---|
34 | B = BN_CTX_get(ctx);
|
---|
35 | X = BN_CTX_get(ctx);
|
---|
36 | D = BN_CTX_get(ctx);
|
---|
37 | M = BN_CTX_get(ctx);
|
---|
38 | Y = BN_CTX_get(ctx);
|
---|
39 | T = BN_CTX_get(ctx);
|
---|
40 | if (T == NULL)
|
---|
41 | goto err;
|
---|
42 |
|
---|
43 | if (in == NULL)
|
---|
44 | R = BN_new();
|
---|
45 | else
|
---|
46 | R = in;
|
---|
47 | if (R == NULL)
|
---|
48 | goto err;
|
---|
49 |
|
---|
50 | BN_one(X);
|
---|
51 | BN_zero(Y);
|
---|
52 | if (BN_copy(B, a) == NULL)
|
---|
53 | goto err;
|
---|
54 | if (BN_copy(A, n) == NULL)
|
---|
55 | goto err;
|
---|
56 | A->neg = 0;
|
---|
57 |
|
---|
58 | if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
---|
59 | /*
|
---|
60 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
---|
61 | * BN_div_no_branch will be called eventually.
|
---|
62 | */
|
---|
63 | {
|
---|
64 | BIGNUM local_B;
|
---|
65 | bn_init(&local_B);
|
---|
66 | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
|
---|
67 | if (!BN_nnmod(B, &local_B, A, ctx))
|
---|
68 | goto err;
|
---|
69 | /* Ensure local_B goes out of scope before any further use of B */
|
---|
70 | }
|
---|
71 | }
|
---|
72 | sign = -1;
|
---|
73 | /*-
|
---|
74 | * From B = a mod |n|, A = |n| it follows that
|
---|
75 | *
|
---|
76 | * 0 <= B < A,
|
---|
77 | * -sign*X*a == B (mod |n|),
|
---|
78 | * sign*Y*a == A (mod |n|).
|
---|
79 | */
|
---|
80 |
|
---|
81 | while (!BN_is_zero(B)) {
|
---|
82 | BIGNUM *tmp;
|
---|
83 |
|
---|
84 | /*-
|
---|
85 | * 0 < B < A,
|
---|
86 | * (*) -sign*X*a == B (mod |n|),
|
---|
87 | * sign*Y*a == A (mod |n|)
|
---|
88 | */
|
---|
89 |
|
---|
90 | /*
|
---|
91 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
|
---|
92 | * BN_div_no_branch will be called eventually.
|
---|
93 | */
|
---|
94 | {
|
---|
95 | BIGNUM local_A;
|
---|
96 | bn_init(&local_A);
|
---|
97 | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
|
---|
98 |
|
---|
99 | /* (D, M) := (A/B, A%B) ... */
|
---|
100 | if (!BN_div(D, M, &local_A, B, ctx))
|
---|
101 | goto err;
|
---|
102 | /* Ensure local_A goes out of scope before any further use of A */
|
---|
103 | }
|
---|
104 |
|
---|
105 | /*-
|
---|
106 | * Now
|
---|
107 | * A = D*B + M;
|
---|
108 | * thus we have
|
---|
109 | * (**) sign*Y*a == D*B + M (mod |n|).
|
---|
110 | */
|
---|
111 |
|
---|
112 | tmp = A; /* keep the BIGNUM object, the value does not
|
---|
113 | * matter */
|
---|
114 |
|
---|
115 | /* (A, B) := (B, A mod B) ... */
|
---|
116 | A = B;
|
---|
117 | B = M;
|
---|
118 | /* ... so we have 0 <= B < A again */
|
---|
119 |
|
---|
120 | /*-
|
---|
121 | * Since the former M is now B and the former B is now A,
|
---|
122 | * (**) translates into
|
---|
123 | * sign*Y*a == D*A + B (mod |n|),
|
---|
124 | * i.e.
|
---|
125 | * sign*Y*a - D*A == B (mod |n|).
|
---|
126 | * Similarly, (*) translates into
|
---|
127 | * -sign*X*a == A (mod |n|).
|
---|
128 | *
|
---|
129 | * Thus,
|
---|
130 | * sign*Y*a + D*sign*X*a == B (mod |n|),
|
---|
131 | * i.e.
|
---|
132 | * sign*(Y + D*X)*a == B (mod |n|).
|
---|
133 | *
|
---|
134 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
---|
135 | * -sign*X*a == B (mod |n|),
|
---|
136 | * sign*Y*a == A (mod |n|).
|
---|
137 | * Note that X and Y stay non-negative all the time.
|
---|
138 | */
|
---|
139 |
|
---|
140 | if (!BN_mul(tmp, D, X, ctx))
|
---|
141 | goto err;
|
---|
142 | if (!BN_add(tmp, tmp, Y))
|
---|
143 | goto err;
|
---|
144 |
|
---|
145 | M = Y; /* keep the BIGNUM object, the value does not
|
---|
146 | * matter */
|
---|
147 | Y = X;
|
---|
148 | X = tmp;
|
---|
149 | sign = -sign;
|
---|
150 | }
|
---|
151 |
|
---|
152 | /*-
|
---|
153 | * The while loop (Euclid's algorithm) ends when
|
---|
154 | * A == gcd(a,n);
|
---|
155 | * we have
|
---|
156 | * sign*Y*a == A (mod |n|),
|
---|
157 | * where Y is non-negative.
|
---|
158 | */
|
---|
159 |
|
---|
160 | if (sign < 0) {
|
---|
161 | if (!BN_sub(Y, n, Y))
|
---|
162 | goto err;
|
---|
163 | }
|
---|
164 | /* Now Y*a == A (mod |n|). */
|
---|
165 |
|
---|
166 | if (BN_is_one(A)) {
|
---|
167 | /* Y*a == 1 (mod |n|) */
|
---|
168 | if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
---|
169 | if (!BN_copy(R, Y))
|
---|
170 | goto err;
|
---|
171 | } else {
|
---|
172 | if (!BN_nnmod(R, Y, n, ctx))
|
---|
173 | goto err;
|
---|
174 | }
|
---|
175 | } else {
|
---|
176 | *pnoinv = 1;
|
---|
177 | /* caller sets the BN_R_NO_INVERSE error */
|
---|
178 | goto err;
|
---|
179 | }
|
---|
180 |
|
---|
181 | ret = R;
|
---|
182 | *pnoinv = 0;
|
---|
183 |
|
---|
184 | err:
|
---|
185 | if ((ret == NULL) && (in == NULL))
|
---|
186 | BN_free(R);
|
---|
187 | BN_CTX_end(ctx);
|
---|
188 | bn_check_top(ret);
|
---|
189 | return ret;
|
---|
190 | }
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * This is an internal function, we assume all callers pass valid arguments:
|
---|
194 | * all pointers passed here are assumed non-NULL.
|
---|
195 | */
|
---|
196 | BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
---|
197 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
|
---|
198 | int *pnoinv)
|
---|
199 | {
|
---|
200 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
|
---|
201 | BIGNUM *ret = NULL;
|
---|
202 | int sign;
|
---|
203 |
|
---|
204 | /* This is invalid input so we don't worry about constant time here */
|
---|
205 | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
|
---|
206 | *pnoinv = 1;
|
---|
207 | return NULL;
|
---|
208 | }
|
---|
209 |
|
---|
210 | *pnoinv = 0;
|
---|
211 |
|
---|
212 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
|
---|
213 | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
|
---|
214 | return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
|
---|
215 | }
|
---|
216 |
|
---|
217 | bn_check_top(a);
|
---|
218 | bn_check_top(n);
|
---|
219 |
|
---|
220 | BN_CTX_start(ctx);
|
---|
221 | A = BN_CTX_get(ctx);
|
---|
222 | B = BN_CTX_get(ctx);
|
---|
223 | X = BN_CTX_get(ctx);
|
---|
224 | D = BN_CTX_get(ctx);
|
---|
225 | M = BN_CTX_get(ctx);
|
---|
226 | Y = BN_CTX_get(ctx);
|
---|
227 | T = BN_CTX_get(ctx);
|
---|
228 | if (T == NULL)
|
---|
229 | goto err;
|
---|
230 |
|
---|
231 | if (in == NULL)
|
---|
232 | R = BN_new();
|
---|
233 | else
|
---|
234 | R = in;
|
---|
235 | if (R == NULL)
|
---|
236 | goto err;
|
---|
237 |
|
---|
238 | BN_one(X);
|
---|
239 | BN_zero(Y);
|
---|
240 | if (BN_copy(B, a) == NULL)
|
---|
241 | goto err;
|
---|
242 | if (BN_copy(A, n) == NULL)
|
---|
243 | goto err;
|
---|
244 | A->neg = 0;
|
---|
245 | if (B->neg || (BN_ucmp(B, A) >= 0)) {
|
---|
246 | if (!BN_nnmod(B, B, A, ctx))
|
---|
247 | goto err;
|
---|
248 | }
|
---|
249 | sign = -1;
|
---|
250 | /*-
|
---|
251 | * From B = a mod |n|, A = |n| it follows that
|
---|
252 | *
|
---|
253 | * 0 <= B < A,
|
---|
254 | * -sign*X*a == B (mod |n|),
|
---|
255 | * sign*Y*a == A (mod |n|).
|
---|
256 | */
|
---|
257 |
|
---|
258 | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
|
---|
259 | /*
|
---|
260 | * Binary inversion algorithm; requires odd modulus. This is faster
|
---|
261 | * than the general algorithm if the modulus is sufficiently small
|
---|
262 | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
|
---|
263 | * systems)
|
---|
264 | */
|
---|
265 | int shift;
|
---|
266 |
|
---|
267 | while (!BN_is_zero(B)) {
|
---|
268 | /*-
|
---|
269 | * 0 < B < |n|,
|
---|
270 | * 0 < A <= |n|,
|
---|
271 | * (1) -sign*X*a == B (mod |n|),
|
---|
272 | * (2) sign*Y*a == A (mod |n|)
|
---|
273 | */
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Now divide B by the maximum possible power of two in the
|
---|
277 | * integers, and divide X by the same value mod |n|. When we're
|
---|
278 | * done, (1) still holds.
|
---|
279 | */
|
---|
280 | shift = 0;
|
---|
281 | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
|
---|
282 | shift++;
|
---|
283 |
|
---|
284 | if (BN_is_odd(X)) {
|
---|
285 | if (!BN_uadd(X, X, n))
|
---|
286 | goto err;
|
---|
287 | }
|
---|
288 | /*
|
---|
289 | * now X is even, so we can easily divide it by two
|
---|
290 | */
|
---|
291 | if (!BN_rshift1(X, X))
|
---|
292 | goto err;
|
---|
293 | }
|
---|
294 | if (shift > 0) {
|
---|
295 | if (!BN_rshift(B, B, shift))
|
---|
296 | goto err;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /*
|
---|
300 | * Same for A and Y. Afterwards, (2) still holds.
|
---|
301 | */
|
---|
302 | shift = 0;
|
---|
303 | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
|
---|
304 | shift++;
|
---|
305 |
|
---|
306 | if (BN_is_odd(Y)) {
|
---|
307 | if (!BN_uadd(Y, Y, n))
|
---|
308 | goto err;
|
---|
309 | }
|
---|
310 | /* now Y is even */
|
---|
311 | if (!BN_rshift1(Y, Y))
|
---|
312 | goto err;
|
---|
313 | }
|
---|
314 | if (shift > 0) {
|
---|
315 | if (!BN_rshift(A, A, shift))
|
---|
316 | goto err;
|
---|
317 | }
|
---|
318 |
|
---|
319 | /*-
|
---|
320 | * We still have (1) and (2).
|
---|
321 | * Both A and B are odd.
|
---|
322 | * The following computations ensure that
|
---|
323 | *
|
---|
324 | * 0 <= B < |n|,
|
---|
325 | * 0 < A < |n|,
|
---|
326 | * (1) -sign*X*a == B (mod |n|),
|
---|
327 | * (2) sign*Y*a == A (mod |n|),
|
---|
328 | *
|
---|
329 | * and that either A or B is even in the next iteration.
|
---|
330 | */
|
---|
331 | if (BN_ucmp(B, A) >= 0) {
|
---|
332 | /* -sign*(X + Y)*a == B - A (mod |n|) */
|
---|
333 | if (!BN_uadd(X, X, Y))
|
---|
334 | goto err;
|
---|
335 | /*
|
---|
336 | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
|
---|
337 | * actually makes the algorithm slower
|
---|
338 | */
|
---|
339 | if (!BN_usub(B, B, A))
|
---|
340 | goto err;
|
---|
341 | } else {
|
---|
342 | /* sign*(X + Y)*a == A - B (mod |n|) */
|
---|
343 | if (!BN_uadd(Y, Y, X))
|
---|
344 | goto err;
|
---|
345 | /*
|
---|
346 | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
|
---|
347 | */
|
---|
348 | if (!BN_usub(A, A, B))
|
---|
349 | goto err;
|
---|
350 | }
|
---|
351 | }
|
---|
352 | } else {
|
---|
353 | /* general inversion algorithm */
|
---|
354 |
|
---|
355 | while (!BN_is_zero(B)) {
|
---|
356 | BIGNUM *tmp;
|
---|
357 |
|
---|
358 | /*-
|
---|
359 | * 0 < B < A,
|
---|
360 | * (*) -sign*X*a == B (mod |n|),
|
---|
361 | * sign*Y*a == A (mod |n|)
|
---|
362 | */
|
---|
363 |
|
---|
364 | /* (D, M) := (A/B, A%B) ... */
|
---|
365 | if (BN_num_bits(A) == BN_num_bits(B)) {
|
---|
366 | if (!BN_one(D))
|
---|
367 | goto err;
|
---|
368 | if (!BN_sub(M, A, B))
|
---|
369 | goto err;
|
---|
370 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
|
---|
371 | /* A/B is 1, 2, or 3 */
|
---|
372 | if (!BN_lshift1(T, B))
|
---|
373 | goto err;
|
---|
374 | if (BN_ucmp(A, T) < 0) {
|
---|
375 | /* A < 2*B, so D=1 */
|
---|
376 | if (!BN_one(D))
|
---|
377 | goto err;
|
---|
378 | if (!BN_sub(M, A, B))
|
---|
379 | goto err;
|
---|
380 | } else {
|
---|
381 | /* A >= 2*B, so D=2 or D=3 */
|
---|
382 | if (!BN_sub(M, A, T))
|
---|
383 | goto err;
|
---|
384 | if (!BN_add(D, T, B))
|
---|
385 | goto err; /* use D (:= 3*B) as temp */
|
---|
386 | if (BN_ucmp(A, D) < 0) {
|
---|
387 | /* A < 3*B, so D=2 */
|
---|
388 | if (!BN_set_word(D, 2))
|
---|
389 | goto err;
|
---|
390 | /*
|
---|
391 | * M (= A - 2*B) already has the correct value
|
---|
392 | */
|
---|
393 | } else {
|
---|
394 | /* only D=3 remains */
|
---|
395 | if (!BN_set_word(D, 3))
|
---|
396 | goto err;
|
---|
397 | /*
|
---|
398 | * currently M = A - 2*B, but we need M = A - 3*B
|
---|
399 | */
|
---|
400 | if (!BN_sub(M, M, B))
|
---|
401 | goto err;
|
---|
402 | }
|
---|
403 | }
|
---|
404 | } else {
|
---|
405 | if (!BN_div(D, M, A, B, ctx))
|
---|
406 | goto err;
|
---|
407 | }
|
---|
408 |
|
---|
409 | /*-
|
---|
410 | * Now
|
---|
411 | * A = D*B + M;
|
---|
412 | * thus we have
|
---|
413 | * (**) sign*Y*a == D*B + M (mod |n|).
|
---|
414 | */
|
---|
415 |
|
---|
416 | tmp = A; /* keep the BIGNUM object, the value does not matter */
|
---|
417 |
|
---|
418 | /* (A, B) := (B, A mod B) ... */
|
---|
419 | A = B;
|
---|
420 | B = M;
|
---|
421 | /* ... so we have 0 <= B < A again */
|
---|
422 |
|
---|
423 | /*-
|
---|
424 | * Since the former M is now B and the former B is now A,
|
---|
425 | * (**) translates into
|
---|
426 | * sign*Y*a == D*A + B (mod |n|),
|
---|
427 | * i.e.
|
---|
428 | * sign*Y*a - D*A == B (mod |n|).
|
---|
429 | * Similarly, (*) translates into
|
---|
430 | * -sign*X*a == A (mod |n|).
|
---|
431 | *
|
---|
432 | * Thus,
|
---|
433 | * sign*Y*a + D*sign*X*a == B (mod |n|),
|
---|
434 | * i.e.
|
---|
435 | * sign*(Y + D*X)*a == B (mod |n|).
|
---|
436 | *
|
---|
437 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
|
---|
438 | * -sign*X*a == B (mod |n|),
|
---|
439 | * sign*Y*a == A (mod |n|).
|
---|
440 | * Note that X and Y stay non-negative all the time.
|
---|
441 | */
|
---|
442 |
|
---|
443 | /*
|
---|
444 | * most of the time D is very small, so we can optimize tmp := D*X+Y
|
---|
445 | */
|
---|
446 | if (BN_is_one(D)) {
|
---|
447 | if (!BN_add(tmp, X, Y))
|
---|
448 | goto err;
|
---|
449 | } else {
|
---|
450 | if (BN_is_word(D, 2)) {
|
---|
451 | if (!BN_lshift1(tmp, X))
|
---|
452 | goto err;
|
---|
453 | } else if (BN_is_word(D, 4)) {
|
---|
454 | if (!BN_lshift(tmp, X, 2))
|
---|
455 | goto err;
|
---|
456 | } else if (D->top == 1) {
|
---|
457 | if (!BN_copy(tmp, X))
|
---|
458 | goto err;
|
---|
459 | if (!BN_mul_word(tmp, D->d[0]))
|
---|
460 | goto err;
|
---|
461 | } else {
|
---|
462 | if (!BN_mul(tmp, D, X, ctx))
|
---|
463 | goto err;
|
---|
464 | }
|
---|
465 | if (!BN_add(tmp, tmp, Y))
|
---|
466 | goto err;
|
---|
467 | }
|
---|
468 |
|
---|
469 | M = Y; /* keep the BIGNUM object, the value does not matter */
|
---|
470 | Y = X;
|
---|
471 | X = tmp;
|
---|
472 | sign = -sign;
|
---|
473 | }
|
---|
474 | }
|
---|
475 |
|
---|
476 | /*-
|
---|
477 | * The while loop (Euclid's algorithm) ends when
|
---|
478 | * A == gcd(a,n);
|
---|
479 | * we have
|
---|
480 | * sign*Y*a == A (mod |n|),
|
---|
481 | * where Y is non-negative.
|
---|
482 | */
|
---|
483 |
|
---|
484 | if (sign < 0) {
|
---|
485 | if (!BN_sub(Y, n, Y))
|
---|
486 | goto err;
|
---|
487 | }
|
---|
488 | /* Now Y*a == A (mod |n|). */
|
---|
489 |
|
---|
490 | if (BN_is_one(A)) {
|
---|
491 | /* Y*a == 1 (mod |n|) */
|
---|
492 | if (!Y->neg && BN_ucmp(Y, n) < 0) {
|
---|
493 | if (!BN_copy(R, Y))
|
---|
494 | goto err;
|
---|
495 | } else {
|
---|
496 | if (!BN_nnmod(R, Y, n, ctx))
|
---|
497 | goto err;
|
---|
498 | }
|
---|
499 | } else {
|
---|
500 | *pnoinv = 1;
|
---|
501 | goto err;
|
---|
502 | }
|
---|
503 | ret = R;
|
---|
504 | err:
|
---|
505 | if ((ret == NULL) && (in == NULL))
|
---|
506 | BN_free(R);
|
---|
507 | BN_CTX_end(ctx);
|
---|
508 | bn_check_top(ret);
|
---|
509 | return ret;
|
---|
510 | }
|
---|
511 |
|
---|
512 | /* solves ax == 1 (mod n) */
|
---|
513 | BIGNUM *BN_mod_inverse(BIGNUM *in,
|
---|
514 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
|
---|
515 | {
|
---|
516 | BN_CTX *new_ctx = NULL;
|
---|
517 | BIGNUM *rv;
|
---|
518 | int noinv = 0;
|
---|
519 |
|
---|
520 | if (ctx == NULL) {
|
---|
521 | ctx = new_ctx = BN_CTX_new_ex(NULL);
|
---|
522 | if (ctx == NULL) {
|
---|
523 | ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
|
---|
524 | return NULL;
|
---|
525 | }
|
---|
526 | }
|
---|
527 |
|
---|
528 | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
|
---|
529 | if (noinv)
|
---|
530 | ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
|
---|
531 | BN_CTX_free(new_ctx);
|
---|
532 | return rv;
|
---|
533 | }
|
---|
534 |
|
---|
535 | /*-
|
---|
536 | * This function is based on the constant-time GCD work by Bernstein and Yang:
|
---|
537 | * https://eprint.iacr.org/2019/266
|
---|
538 | * Generalized fast GCD function to allow even inputs.
|
---|
539 | * The algorithm first finds the shared powers of 2 between
|
---|
540 | * the inputs, and removes them, reducing at least one of the
|
---|
541 | * inputs to an odd value. Then it proceeds to calculate the GCD.
|
---|
542 | * Before returning the resulting GCD, we take care of adding
|
---|
543 | * back the powers of two removed at the beginning.
|
---|
544 | * Note 1: we assume the bit length of both inputs is public information,
|
---|
545 | * since access to top potentially leaks this information.
|
---|
546 | */
|
---|
547 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
|
---|
548 | {
|
---|
549 | BIGNUM *g, *temp = NULL;
|
---|
550 | BN_ULONG mask = 0;
|
---|
551 | int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
|
---|
552 |
|
---|
553 | /* Note 2: zero input corner cases are not constant-time since they are
|
---|
554 | * handled immediately. An attacker can run an attack under this
|
---|
555 | * assumption without the need of side-channel information. */
|
---|
556 | if (BN_is_zero(in_b)) {
|
---|
557 | ret = BN_copy(r, in_a) != NULL;
|
---|
558 | r->neg = 0;
|
---|
559 | return ret;
|
---|
560 | }
|
---|
561 | if (BN_is_zero(in_a)) {
|
---|
562 | ret = BN_copy(r, in_b) != NULL;
|
---|
563 | r->neg = 0;
|
---|
564 | return ret;
|
---|
565 | }
|
---|
566 |
|
---|
567 | bn_check_top(in_a);
|
---|
568 | bn_check_top(in_b);
|
---|
569 |
|
---|
570 | BN_CTX_start(ctx);
|
---|
571 | temp = BN_CTX_get(ctx);
|
---|
572 | g = BN_CTX_get(ctx);
|
---|
573 |
|
---|
574 | /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
|
---|
575 | if (g == NULL
|
---|
576 | || !BN_lshift1(g, in_b)
|
---|
577 | || !BN_lshift1(r, in_a))
|
---|
578 | goto err;
|
---|
579 |
|
---|
580 | /* find shared powers of two, i.e. "shifts" >= 1 */
|
---|
581 | for (i = 0; i < r->dmax && i < g->dmax; i++) {
|
---|
582 | mask = ~(r->d[i] | g->d[i]);
|
---|
583 | for (j = 0; j < BN_BITS2; j++) {
|
---|
584 | bit &= mask;
|
---|
585 | shifts += bit;
|
---|
586 | mask >>= 1;
|
---|
587 | }
|
---|
588 | }
|
---|
589 |
|
---|
590 | /* subtract shared powers of two; shifts >= 1 */
|
---|
591 | if (!BN_rshift(r, r, shifts)
|
---|
592 | || !BN_rshift(g, g, shifts))
|
---|
593 | goto err;
|
---|
594 |
|
---|
595 | /* expand to biggest nword, with room for a possible extra word */
|
---|
596 | top = 1 + ((r->top >= g->top) ? r->top : g->top);
|
---|
597 | if (bn_wexpand(r, top) == NULL
|
---|
598 | || bn_wexpand(g, top) == NULL
|
---|
599 | || bn_wexpand(temp, top) == NULL)
|
---|
600 | goto err;
|
---|
601 |
|
---|
602 | /* re arrange inputs s.t. r is odd */
|
---|
603 | BN_consttime_swap((~r->d[0]) & 1, r, g, top);
|
---|
604 |
|
---|
605 | /* compute the number of iterations */
|
---|
606 | rlen = BN_num_bits(r);
|
---|
607 | glen = BN_num_bits(g);
|
---|
608 | m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
|
---|
609 |
|
---|
610 | for (i = 0; i < m; i++) {
|
---|
611 | /* conditionally flip signs if delta is positive and g is odd */
|
---|
612 | cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
|
---|
613 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
|
---|
614 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1)));
|
---|
615 | delta = (-cond & -delta) | ((cond - 1) & delta);
|
---|
616 | r->neg ^= cond;
|
---|
617 | /* swap */
|
---|
618 | BN_consttime_swap(cond, r, g, top);
|
---|
619 |
|
---|
620 | /* elimination step */
|
---|
621 | delta++;
|
---|
622 | if (!BN_add(temp, g, r))
|
---|
623 | goto err;
|
---|
624 | BN_consttime_swap(g->d[0] & 1 /* g is odd */
|
---|
625 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
|
---|
626 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))),
|
---|
627 | g, temp, top);
|
---|
628 | if (!BN_rshift1(g, g))
|
---|
629 | goto err;
|
---|
630 | }
|
---|
631 |
|
---|
632 | /* remove possible negative sign */
|
---|
633 | r->neg = 0;
|
---|
634 | /* add powers of 2 removed, then correct the artificial shift */
|
---|
635 | if (!BN_lshift(r, r, shifts)
|
---|
636 | || !BN_rshift1(r, r))
|
---|
637 | goto err;
|
---|
638 |
|
---|
639 | ret = 1;
|
---|
640 |
|
---|
641 | err:
|
---|
642 | BN_CTX_end(ctx);
|
---|
643 | bn_check_top(r);
|
---|
644 | return ret;
|
---|
645 | }
|
---|