1 | /*
|
---|
2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <assert.h>
|
---|
11 | #include "internal/cryptlib.h"
|
---|
12 | #include "bn_local.h"
|
---|
13 |
|
---|
14 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
|
---|
15 | /*
|
---|
16 | * Here follows specialised variants of bn_add_words() and bn_sub_words().
|
---|
17 | * They have the property performing operations on arrays of different sizes.
|
---|
18 | * The sizes of those arrays is expressed through cl, which is the common
|
---|
19 | * length ( basically, min(len(a),len(b)) ), and dl, which is the delta
|
---|
20 | * between the two lengths, calculated as len(a)-len(b). All lengths are the
|
---|
21 | * number of BN_ULONGs... For the operations that require a result array as
|
---|
22 | * parameter, it must have the length cl+abs(dl). These functions should
|
---|
23 | * probably end up in bn_asm.c as soon as there are assembler counterparts
|
---|
24 | * for the systems that use assembler files.
|
---|
25 | */
|
---|
26 |
|
---|
27 | BN_ULONG bn_sub_part_words(BN_ULONG *r,
|
---|
28 | const BN_ULONG *a, const BN_ULONG *b,
|
---|
29 | int cl, int dl)
|
---|
30 | {
|
---|
31 | BN_ULONG c, t;
|
---|
32 |
|
---|
33 | assert(cl >= 0);
|
---|
34 | c = bn_sub_words(r, a, b, cl);
|
---|
35 |
|
---|
36 | if (dl == 0)
|
---|
37 | return c;
|
---|
38 |
|
---|
39 | r += cl;
|
---|
40 | a += cl;
|
---|
41 | b += cl;
|
---|
42 |
|
---|
43 | if (dl < 0) {
|
---|
44 | for (;;) {
|
---|
45 | t = b[0];
|
---|
46 | r[0] = (0 - t - c) & BN_MASK2;
|
---|
47 | if (t != 0)
|
---|
48 | c = 1;
|
---|
49 | if (++dl >= 0)
|
---|
50 | break;
|
---|
51 |
|
---|
52 | t = b[1];
|
---|
53 | r[1] = (0 - t - c) & BN_MASK2;
|
---|
54 | if (t != 0)
|
---|
55 | c = 1;
|
---|
56 | if (++dl >= 0)
|
---|
57 | break;
|
---|
58 |
|
---|
59 | t = b[2];
|
---|
60 | r[2] = (0 - t - c) & BN_MASK2;
|
---|
61 | if (t != 0)
|
---|
62 | c = 1;
|
---|
63 | if (++dl >= 0)
|
---|
64 | break;
|
---|
65 |
|
---|
66 | t = b[3];
|
---|
67 | r[3] = (0 - t - c) & BN_MASK2;
|
---|
68 | if (t != 0)
|
---|
69 | c = 1;
|
---|
70 | if (++dl >= 0)
|
---|
71 | break;
|
---|
72 |
|
---|
73 | b += 4;
|
---|
74 | r += 4;
|
---|
75 | }
|
---|
76 | } else {
|
---|
77 | int save_dl = dl;
|
---|
78 | while (c) {
|
---|
79 | t = a[0];
|
---|
80 | r[0] = (t - c) & BN_MASK2;
|
---|
81 | if (t != 0)
|
---|
82 | c = 0;
|
---|
83 | if (--dl <= 0)
|
---|
84 | break;
|
---|
85 |
|
---|
86 | t = a[1];
|
---|
87 | r[1] = (t - c) & BN_MASK2;
|
---|
88 | if (t != 0)
|
---|
89 | c = 0;
|
---|
90 | if (--dl <= 0)
|
---|
91 | break;
|
---|
92 |
|
---|
93 | t = a[2];
|
---|
94 | r[2] = (t - c) & BN_MASK2;
|
---|
95 | if (t != 0)
|
---|
96 | c = 0;
|
---|
97 | if (--dl <= 0)
|
---|
98 | break;
|
---|
99 |
|
---|
100 | t = a[3];
|
---|
101 | r[3] = (t - c) & BN_MASK2;
|
---|
102 | if (t != 0)
|
---|
103 | c = 0;
|
---|
104 | if (--dl <= 0)
|
---|
105 | break;
|
---|
106 |
|
---|
107 | save_dl = dl;
|
---|
108 | a += 4;
|
---|
109 | r += 4;
|
---|
110 | }
|
---|
111 | if (dl > 0) {
|
---|
112 | if (save_dl > dl) {
|
---|
113 | switch (save_dl - dl) {
|
---|
114 | case 1:
|
---|
115 | r[1] = a[1];
|
---|
116 | if (--dl <= 0)
|
---|
117 | break;
|
---|
118 | /* fall thru */
|
---|
119 | case 2:
|
---|
120 | r[2] = a[2];
|
---|
121 | if (--dl <= 0)
|
---|
122 | break;
|
---|
123 | /* fall thru */
|
---|
124 | case 3:
|
---|
125 | r[3] = a[3];
|
---|
126 | if (--dl <= 0)
|
---|
127 | break;
|
---|
128 | }
|
---|
129 | a += 4;
|
---|
130 | r += 4;
|
---|
131 | }
|
---|
132 | }
|
---|
133 | if (dl > 0) {
|
---|
134 | for (;;) {
|
---|
135 | r[0] = a[0];
|
---|
136 | if (--dl <= 0)
|
---|
137 | break;
|
---|
138 | r[1] = a[1];
|
---|
139 | if (--dl <= 0)
|
---|
140 | break;
|
---|
141 | r[2] = a[2];
|
---|
142 | if (--dl <= 0)
|
---|
143 | break;
|
---|
144 | r[3] = a[3];
|
---|
145 | if (--dl <= 0)
|
---|
146 | break;
|
---|
147 |
|
---|
148 | a += 4;
|
---|
149 | r += 4;
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | return c;
|
---|
154 | }
|
---|
155 | #endif
|
---|
156 |
|
---|
157 | #ifdef BN_RECURSION
|
---|
158 | /*
|
---|
159 | * Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
|
---|
160 | * Computer Programming, Vol. 2)
|
---|
161 | */
|
---|
162 |
|
---|
163 | /*-
|
---|
164 | * r is 2*n2 words in size,
|
---|
165 | * a and b are both n2 words in size.
|
---|
166 | * n2 must be a power of 2.
|
---|
167 | * We multiply and return the result.
|
---|
168 | * t must be 2*n2 words in size
|
---|
169 | * We calculate
|
---|
170 | * a[0]*b[0]
|
---|
171 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
---|
172 | * a[1]*b[1]
|
---|
173 | */
|
---|
174 | /* dnX may not be positive, but n2/2+dnX has to be */
|
---|
175 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
---|
176 | int dna, int dnb, BN_ULONG *t)
|
---|
177 | {
|
---|
178 | int n = n2 / 2, c1, c2;
|
---|
179 | int tna = n + dna, tnb = n + dnb;
|
---|
180 | unsigned int neg, zero;
|
---|
181 | BN_ULONG ln, lo, *p;
|
---|
182 |
|
---|
183 | # ifdef BN_MUL_COMBA
|
---|
184 | # if 0
|
---|
185 | if (n2 == 4) {
|
---|
186 | bn_mul_comba4(r, a, b);
|
---|
187 | return;
|
---|
188 | }
|
---|
189 | # endif
|
---|
190 | /*
|
---|
191 | * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
|
---|
192 | * [steve]
|
---|
193 | */
|
---|
194 | if (n2 == 8 && dna == 0 && dnb == 0) {
|
---|
195 | bn_mul_comba8(r, a, b);
|
---|
196 | return;
|
---|
197 | }
|
---|
198 | # endif /* BN_MUL_COMBA */
|
---|
199 | /* Else do normal multiply */
|
---|
200 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
|
---|
201 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
|
---|
202 | if ((dna + dnb) < 0)
|
---|
203 | memset(&r[2 * n2 + dna + dnb], 0,
|
---|
204 | sizeof(BN_ULONG) * -(dna + dnb));
|
---|
205 | return;
|
---|
206 | }
|
---|
207 | /* r=(a[0]-a[1])*(b[1]-b[0]) */
|
---|
208 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
|
---|
209 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
|
---|
210 | zero = neg = 0;
|
---|
211 | switch (c1 * 3 + c2) {
|
---|
212 | case -4:
|
---|
213 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
---|
214 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
---|
215 | break;
|
---|
216 | case -3:
|
---|
217 | zero = 1;
|
---|
218 | break;
|
---|
219 | case -2:
|
---|
220 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
---|
221 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
|
---|
222 | neg = 1;
|
---|
223 | break;
|
---|
224 | case -1:
|
---|
225 | case 0:
|
---|
226 | case 1:
|
---|
227 | zero = 1;
|
---|
228 | break;
|
---|
229 | case 2:
|
---|
230 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
|
---|
231 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
---|
232 | neg = 1;
|
---|
233 | break;
|
---|
234 | case 3:
|
---|
235 | zero = 1;
|
---|
236 | break;
|
---|
237 | case 4:
|
---|
238 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
|
---|
239 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
|
---|
240 | break;
|
---|
241 | }
|
---|
242 |
|
---|
243 | # ifdef BN_MUL_COMBA
|
---|
244 | if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
|
---|
245 | * extra args to do this well */
|
---|
246 | if (!zero)
|
---|
247 | bn_mul_comba4(&(t[n2]), t, &(t[n]));
|
---|
248 | else
|
---|
249 | memset(&t[n2], 0, sizeof(*t) * 8);
|
---|
250 |
|
---|
251 | bn_mul_comba4(r, a, b);
|
---|
252 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
|
---|
253 | } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
|
---|
254 | * take extra args to do
|
---|
255 | * this well */
|
---|
256 | if (!zero)
|
---|
257 | bn_mul_comba8(&(t[n2]), t, &(t[n]));
|
---|
258 | else
|
---|
259 | memset(&t[n2], 0, sizeof(*t) * 16);
|
---|
260 |
|
---|
261 | bn_mul_comba8(r, a, b);
|
---|
262 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
|
---|
263 | } else
|
---|
264 | # endif /* BN_MUL_COMBA */
|
---|
265 | {
|
---|
266 | p = &(t[n2 * 2]);
|
---|
267 | if (!zero)
|
---|
268 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
|
---|
269 | else
|
---|
270 | memset(&t[n2], 0, sizeof(*t) * n2);
|
---|
271 | bn_mul_recursive(r, a, b, n, 0, 0, p);
|
---|
272 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
|
---|
273 | }
|
---|
274 |
|
---|
275 | /*-
|
---|
276 | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
---|
277 | * r[10] holds (a[0]*b[0])
|
---|
278 | * r[32] holds (b[1]*b[1])
|
---|
279 | */
|
---|
280 |
|
---|
281 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
---|
282 |
|
---|
283 | if (neg) { /* if t[32] is negative */
|
---|
284 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
---|
285 | } else {
|
---|
286 | /* Might have a carry */
|
---|
287 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
|
---|
288 | }
|
---|
289 |
|
---|
290 | /*-
|
---|
291 | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
---|
292 | * r[10] holds (a[0]*b[0])
|
---|
293 | * r[32] holds (b[1]*b[1])
|
---|
294 | * c1 holds the carry bits
|
---|
295 | */
|
---|
296 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
---|
297 | if (c1) {
|
---|
298 | p = &(r[n + n2]);
|
---|
299 | lo = *p;
|
---|
300 | ln = (lo + c1) & BN_MASK2;
|
---|
301 | *p = ln;
|
---|
302 |
|
---|
303 | /*
|
---|
304 | * The overflow will stop before we over write words we should not
|
---|
305 | * overwrite
|
---|
306 | */
|
---|
307 | if (ln < (BN_ULONG)c1) {
|
---|
308 | do {
|
---|
309 | p++;
|
---|
310 | lo = *p;
|
---|
311 | ln = (lo + 1) & BN_MASK2;
|
---|
312 | *p = ln;
|
---|
313 | } while (ln == 0);
|
---|
314 | }
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 | /*
|
---|
319 | * n+tn is the word length t needs to be n*4 is size, as does r
|
---|
320 | */
|
---|
321 | /* tnX may not be negative but less than n */
|
---|
322 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
|
---|
323 | int tna, int tnb, BN_ULONG *t)
|
---|
324 | {
|
---|
325 | int i, j, n2 = n * 2;
|
---|
326 | int c1, c2, neg;
|
---|
327 | BN_ULONG ln, lo, *p;
|
---|
328 |
|
---|
329 | if (n < 8) {
|
---|
330 | bn_mul_normal(r, a, n + tna, b, n + tnb);
|
---|
331 | return;
|
---|
332 | }
|
---|
333 |
|
---|
334 | /* r=(a[0]-a[1])*(b[1]-b[0]) */
|
---|
335 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
|
---|
336 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
|
---|
337 | neg = 0;
|
---|
338 | switch (c1 * 3 + c2) {
|
---|
339 | case -4:
|
---|
340 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
---|
341 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
---|
342 | break;
|
---|
343 | case -3:
|
---|
344 | case -2:
|
---|
345 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
---|
346 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
|
---|
347 | neg = 1;
|
---|
348 | break;
|
---|
349 | case -1:
|
---|
350 | case 0:
|
---|
351 | case 1:
|
---|
352 | case 2:
|
---|
353 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
|
---|
354 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
---|
355 | neg = 1;
|
---|
356 | break;
|
---|
357 | case 3:
|
---|
358 | case 4:
|
---|
359 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
|
---|
360 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
|
---|
361 | break;
|
---|
362 | }
|
---|
363 | /*
|
---|
364 | * The zero case isn't yet implemented here. The speedup would probably
|
---|
365 | * be negligible.
|
---|
366 | */
|
---|
367 | # if 0
|
---|
368 | if (n == 4) {
|
---|
369 | bn_mul_comba4(&(t[n2]), t, &(t[n]));
|
---|
370 | bn_mul_comba4(r, a, b);
|
---|
371 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
|
---|
372 | memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
|
---|
373 | } else
|
---|
374 | # endif
|
---|
375 | if (n == 8) {
|
---|
376 | bn_mul_comba8(&(t[n2]), t, &(t[n]));
|
---|
377 | bn_mul_comba8(r, a, b);
|
---|
378 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
|
---|
379 | memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
|
---|
380 | } else {
|
---|
381 | p = &(t[n2 * 2]);
|
---|
382 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
|
---|
383 | bn_mul_recursive(r, a, b, n, 0, 0, p);
|
---|
384 | i = n / 2;
|
---|
385 | /*
|
---|
386 | * If there is only a bottom half to the number, just do it
|
---|
387 | */
|
---|
388 | if (tna > tnb)
|
---|
389 | j = tna - i;
|
---|
390 | else
|
---|
391 | j = tnb - i;
|
---|
392 | if (j == 0) {
|
---|
393 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
|
---|
394 | i, tna - i, tnb - i, p);
|
---|
395 | memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
|
---|
396 | } else if (j > 0) { /* eg, n == 16, i == 8 and tn == 11 */
|
---|
397 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
|
---|
398 | i, tna - i, tnb - i, p);
|
---|
399 | memset(&(r[n2 + tna + tnb]), 0,
|
---|
400 | sizeof(BN_ULONG) * (n2 - tna - tnb));
|
---|
401 | } else { /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
|
---|
402 |
|
---|
403 | memset(&r[n2], 0, sizeof(*r) * n2);
|
---|
404 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
|
---|
405 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
|
---|
406 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
|
---|
407 | } else {
|
---|
408 | for (;;) {
|
---|
409 | i /= 2;
|
---|
410 | /*
|
---|
411 | * these simplified conditions work exclusively because
|
---|
412 | * difference between tna and tnb is 1 or 0
|
---|
413 | */
|
---|
414 | if (i < tna || i < tnb) {
|
---|
415 | bn_mul_part_recursive(&(r[n2]),
|
---|
416 | &(a[n]), &(b[n]),
|
---|
417 | i, tna - i, tnb - i, p);
|
---|
418 | break;
|
---|
419 | } else if (i == tna || i == tnb) {
|
---|
420 | bn_mul_recursive(&(r[n2]),
|
---|
421 | &(a[n]), &(b[n]),
|
---|
422 | i, tna - i, tnb - i, p);
|
---|
423 | break;
|
---|
424 | }
|
---|
425 | }
|
---|
426 | }
|
---|
427 | }
|
---|
428 | }
|
---|
429 |
|
---|
430 | /*-
|
---|
431 | * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
---|
432 | * r[10] holds (a[0]*b[0])
|
---|
433 | * r[32] holds (b[1]*b[1])
|
---|
434 | */
|
---|
435 |
|
---|
436 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
---|
437 |
|
---|
438 | if (neg) { /* if t[32] is negative */
|
---|
439 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
---|
440 | } else {
|
---|
441 | /* Might have a carry */
|
---|
442 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
|
---|
443 | }
|
---|
444 |
|
---|
445 | /*-
|
---|
446 | * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
---|
447 | * r[10] holds (a[0]*b[0])
|
---|
448 | * r[32] holds (b[1]*b[1])
|
---|
449 | * c1 holds the carry bits
|
---|
450 | */
|
---|
451 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
---|
452 | if (c1) {
|
---|
453 | p = &(r[n + n2]);
|
---|
454 | lo = *p;
|
---|
455 | ln = (lo + c1) & BN_MASK2;
|
---|
456 | *p = ln;
|
---|
457 |
|
---|
458 | /*
|
---|
459 | * The overflow will stop before we over write words we should not
|
---|
460 | * overwrite
|
---|
461 | */
|
---|
462 | if (ln < (BN_ULONG)c1) {
|
---|
463 | do {
|
---|
464 | p++;
|
---|
465 | lo = *p;
|
---|
466 | ln = (lo + 1) & BN_MASK2;
|
---|
467 | *p = ln;
|
---|
468 | } while (ln == 0);
|
---|
469 | }
|
---|
470 | }
|
---|
471 | }
|
---|
472 |
|
---|
473 | /*-
|
---|
474 | * a and b must be the same size, which is n2.
|
---|
475 | * r needs to be n2 words and t needs to be n2*2
|
---|
476 | */
|
---|
477 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
---|
478 | BN_ULONG *t)
|
---|
479 | {
|
---|
480 | int n = n2 / 2;
|
---|
481 |
|
---|
482 | bn_mul_recursive(r, a, b, n, 0, 0, &(t[0]));
|
---|
483 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) {
|
---|
484 | bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2]));
|
---|
485 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
|
---|
486 | bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2]));
|
---|
487 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
|
---|
488 | } else {
|
---|
489 | bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n);
|
---|
490 | bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n);
|
---|
491 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n);
|
---|
492 | bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
|
---|
493 | }
|
---|
494 | }
|
---|
495 | #endif /* BN_RECURSION */
|
---|
496 |
|
---|
497 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
498 | {
|
---|
499 | int ret = bn_mul_fixed_top(r, a, b, ctx);
|
---|
500 |
|
---|
501 | bn_correct_top(r);
|
---|
502 | bn_check_top(r);
|
---|
503 |
|
---|
504 | return ret;
|
---|
505 | }
|
---|
506 |
|
---|
507 | int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
508 | {
|
---|
509 | int ret = 0;
|
---|
510 | int top, al, bl;
|
---|
511 | BIGNUM *rr;
|
---|
512 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
---|
513 | int i;
|
---|
514 | #endif
|
---|
515 | #ifdef BN_RECURSION
|
---|
516 | BIGNUM *t = NULL;
|
---|
517 | int j = 0, k;
|
---|
518 | #endif
|
---|
519 |
|
---|
520 | bn_check_top(a);
|
---|
521 | bn_check_top(b);
|
---|
522 | bn_check_top(r);
|
---|
523 |
|
---|
524 | al = a->top;
|
---|
525 | bl = b->top;
|
---|
526 |
|
---|
527 | if ((al == 0) || (bl == 0)) {
|
---|
528 | BN_zero(r);
|
---|
529 | return 1;
|
---|
530 | }
|
---|
531 | top = al + bl;
|
---|
532 |
|
---|
533 | BN_CTX_start(ctx);
|
---|
534 | if ((r == a) || (r == b)) {
|
---|
535 | if ((rr = BN_CTX_get(ctx)) == NULL)
|
---|
536 | goto err;
|
---|
537 | } else
|
---|
538 | rr = r;
|
---|
539 |
|
---|
540 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
---|
541 | i = al - bl;
|
---|
542 | #endif
|
---|
543 | #ifdef BN_MUL_COMBA
|
---|
544 | if (i == 0) {
|
---|
545 | # if 0
|
---|
546 | if (al == 4) {
|
---|
547 | if (bn_wexpand(rr, 8) == NULL)
|
---|
548 | goto err;
|
---|
549 | rr->top = 8;
|
---|
550 | bn_mul_comba4(rr->d, a->d, b->d);
|
---|
551 | goto end;
|
---|
552 | }
|
---|
553 | # endif
|
---|
554 | if (al == 8) {
|
---|
555 | if (bn_wexpand(rr, 16) == NULL)
|
---|
556 | goto err;
|
---|
557 | rr->top = 16;
|
---|
558 | bn_mul_comba8(rr->d, a->d, b->d);
|
---|
559 | goto end;
|
---|
560 | }
|
---|
561 | }
|
---|
562 | #endif /* BN_MUL_COMBA */
|
---|
563 | #ifdef BN_RECURSION
|
---|
564 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
|
---|
565 | if (i >= -1 && i <= 1) {
|
---|
566 | /*
|
---|
567 | * Find out the power of two lower or equal to the longest of the
|
---|
568 | * two numbers
|
---|
569 | */
|
---|
570 | if (i >= 0) {
|
---|
571 | j = BN_num_bits_word((BN_ULONG)al);
|
---|
572 | }
|
---|
573 | if (i == -1) {
|
---|
574 | j = BN_num_bits_word((BN_ULONG)bl);
|
---|
575 | }
|
---|
576 | j = 1 << (j - 1);
|
---|
577 | assert(j <= al || j <= bl);
|
---|
578 | k = j + j;
|
---|
579 | t = BN_CTX_get(ctx);
|
---|
580 | if (t == NULL)
|
---|
581 | goto err;
|
---|
582 | if (al > j || bl > j) {
|
---|
583 | if (bn_wexpand(t, k * 4) == NULL)
|
---|
584 | goto err;
|
---|
585 | if (bn_wexpand(rr, k * 4) == NULL)
|
---|
586 | goto err;
|
---|
587 | bn_mul_part_recursive(rr->d, a->d, b->d,
|
---|
588 | j, al - j, bl - j, t->d);
|
---|
589 | } else { /* al <= j || bl <= j */
|
---|
590 |
|
---|
591 | if (bn_wexpand(t, k * 2) == NULL)
|
---|
592 | goto err;
|
---|
593 | if (bn_wexpand(rr, k * 2) == NULL)
|
---|
594 | goto err;
|
---|
595 | bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
|
---|
596 | }
|
---|
597 | rr->top = top;
|
---|
598 | goto end;
|
---|
599 | }
|
---|
600 | }
|
---|
601 | #endif /* BN_RECURSION */
|
---|
602 | if (bn_wexpand(rr, top) == NULL)
|
---|
603 | goto err;
|
---|
604 | rr->top = top;
|
---|
605 | bn_mul_normal(rr->d, a->d, al, b->d, bl);
|
---|
606 |
|
---|
607 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
---|
608 | end:
|
---|
609 | #endif
|
---|
610 | rr->neg = a->neg ^ b->neg;
|
---|
611 | rr->flags |= BN_FLG_FIXED_TOP;
|
---|
612 | if (r != rr && BN_copy(r, rr) == NULL)
|
---|
613 | goto err;
|
---|
614 |
|
---|
615 | ret = 1;
|
---|
616 | err:
|
---|
617 | bn_check_top(r);
|
---|
618 | BN_CTX_end(ctx);
|
---|
619 | return ret;
|
---|
620 | }
|
---|
621 |
|
---|
622 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
|
---|
623 | {
|
---|
624 | BN_ULONG *rr;
|
---|
625 |
|
---|
626 | if (na < nb) {
|
---|
627 | int itmp;
|
---|
628 | BN_ULONG *ltmp;
|
---|
629 |
|
---|
630 | itmp = na;
|
---|
631 | na = nb;
|
---|
632 | nb = itmp;
|
---|
633 | ltmp = a;
|
---|
634 | a = b;
|
---|
635 | b = ltmp;
|
---|
636 |
|
---|
637 | }
|
---|
638 | rr = &(r[na]);
|
---|
639 | if (nb <= 0) {
|
---|
640 | (void)bn_mul_words(r, a, na, 0);
|
---|
641 | return;
|
---|
642 | } else
|
---|
643 | rr[0] = bn_mul_words(r, a, na, b[0]);
|
---|
644 |
|
---|
645 | for (;;) {
|
---|
646 | if (--nb <= 0)
|
---|
647 | return;
|
---|
648 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
|
---|
649 | if (--nb <= 0)
|
---|
650 | return;
|
---|
651 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
|
---|
652 | if (--nb <= 0)
|
---|
653 | return;
|
---|
654 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
|
---|
655 | if (--nb <= 0)
|
---|
656 | return;
|
---|
657 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
|
---|
658 | rr += 4;
|
---|
659 | r += 4;
|
---|
660 | b += 4;
|
---|
661 | }
|
---|
662 | }
|
---|
663 |
|
---|
664 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
|
---|
665 | {
|
---|
666 | bn_mul_words(r, a, n, b[0]);
|
---|
667 |
|
---|
668 | for (;;) {
|
---|
669 | if (--n <= 0)
|
---|
670 | return;
|
---|
671 | bn_mul_add_words(&(r[1]), a, n, b[1]);
|
---|
672 | if (--n <= 0)
|
---|
673 | return;
|
---|
674 | bn_mul_add_words(&(r[2]), a, n, b[2]);
|
---|
675 | if (--n <= 0)
|
---|
676 | return;
|
---|
677 | bn_mul_add_words(&(r[3]), a, n, b[3]);
|
---|
678 | if (--n <= 0)
|
---|
679 | return;
|
---|
680 | bn_mul_add_words(&(r[4]), a, n, b[4]);
|
---|
681 | r += 4;
|
---|
682 | b += 4;
|
---|
683 | }
|
---|
684 | }
|
---|