1 | /*
|
---|
2 | * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | /*
|
---|
12 | * According to NIST SP800-131A "Transitioning the use of cryptographic
|
---|
13 | * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
|
---|
14 | * allowed for signatures (Table 2) or key transport (Table 5). In the code
|
---|
15 | * below any attempt to generate 1024 bit RSA keys will result in an error (Note
|
---|
16 | * that digital signature verification can still use deprecated 1024 bit keys).
|
---|
17 | *
|
---|
18 | * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
|
---|
19 | * must be generated before the module generates the RSA primes p and q.
|
---|
20 | * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
|
---|
21 | * 3072 bits only, the min/max total length of the auxiliary primes.
|
---|
22 | * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
|
---|
23 | * included here.
|
---|
24 | */
|
---|
25 | #include <stdio.h>
|
---|
26 | #include <openssl/bn.h>
|
---|
27 | #include "bn_local.h"
|
---|
28 | #include "crypto/bn.h"
|
---|
29 | #include "internal/nelem.h"
|
---|
30 |
|
---|
31 | #if BN_BITS2 == 64
|
---|
32 | # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
|
---|
33 | #else
|
---|
34 | # define BN_DEF(lo, hi) lo, hi
|
---|
35 | #endif
|
---|
36 |
|
---|
37 | /* 1 / sqrt(2) * 2^256, rounded up */
|
---|
38 | static const BN_ULONG inv_sqrt_2_val[] = {
|
---|
39 | BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
|
---|
40 | BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
|
---|
41 | };
|
---|
42 |
|
---|
43 | const BIGNUM ossl_bn_inv_sqrt_2 = {
|
---|
44 | (BN_ULONG *)inv_sqrt_2_val,
|
---|
45 | OSSL_NELEM(inv_sqrt_2_val),
|
---|
46 | OSSL_NELEM(inv_sqrt_2_val),
|
---|
47 | 0,
|
---|
48 | BN_FLG_STATIC_DATA
|
---|
49 | };
|
---|
50 |
|
---|
51 | /*
|
---|
52 | * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
|
---|
53 | * (FIPS 186-5 has an entry for >= 4096 bits).
|
---|
54 | *
|
---|
55 | * Params:
|
---|
56 | * nbits The key size in bits.
|
---|
57 | * Returns:
|
---|
58 | * The minimum size of the auxiliary primes or 0 if nbits is invalid.
|
---|
59 | */
|
---|
60 | static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
|
---|
61 | {
|
---|
62 | if (nbits >= 4096)
|
---|
63 | return 201;
|
---|
64 | if (nbits >= 3072)
|
---|
65 | return 171;
|
---|
66 | if (nbits >= 2048)
|
---|
67 | return 141;
|
---|
68 | return 0;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*
|
---|
72 | * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
|
---|
73 | * len(q1) + len(q2) for p,q Probable Primes".
|
---|
74 | * (FIPS 186-5 has an entry for >= 4096 bits).
|
---|
75 | * Params:
|
---|
76 | * nbits The key size in bits.
|
---|
77 | * Returns:
|
---|
78 | * The maximum length or 0 if nbits is invalid.
|
---|
79 | */
|
---|
80 | static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
|
---|
81 | {
|
---|
82 | if (nbits >= 4096)
|
---|
83 | return 2030;
|
---|
84 | if (nbits >= 3072)
|
---|
85 | return 1518;
|
---|
86 | if (nbits >= 2048)
|
---|
87 | return 1007;
|
---|
88 | return 0;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /*
|
---|
92 | * Find the first odd integer that is a probable prime.
|
---|
93 | *
|
---|
94 | * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
|
---|
95 | *
|
---|
96 | * Params:
|
---|
97 | * Xp1 The passed in starting point to find a probably prime.
|
---|
98 | * p1 The returned probable prime (first odd integer >= Xp1)
|
---|
99 | * ctx A BN_CTX object.
|
---|
100 | * cb An optional BIGNUM callback.
|
---|
101 | * Returns: 1 on success otherwise it returns 0.
|
---|
102 | */
|
---|
103 | static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
|
---|
104 | BIGNUM *p1, BN_CTX *ctx,
|
---|
105 | BN_GENCB *cb)
|
---|
106 | {
|
---|
107 | int ret = 0;
|
---|
108 | int i = 0;
|
---|
109 | int tmp = 0;
|
---|
110 |
|
---|
111 | if (BN_copy(p1, Xp1) == NULL)
|
---|
112 | return 0;
|
---|
113 | BN_set_flags(p1, BN_FLG_CONSTTIME);
|
---|
114 |
|
---|
115 | /* Find the first odd number >= Xp1 that is probably prime */
|
---|
116 | for(;;) {
|
---|
117 | i++;
|
---|
118 | BN_GENCB_call(cb, 0, i);
|
---|
119 | /* MR test with trial division */
|
---|
120 | tmp = BN_check_prime(p1, ctx, cb);
|
---|
121 | if (tmp > 0)
|
---|
122 | break;
|
---|
123 | if (tmp < 0)
|
---|
124 | goto err;
|
---|
125 | /* Get next odd number */
|
---|
126 | if (!BN_add_word(p1, 2))
|
---|
127 | goto err;
|
---|
128 | }
|
---|
129 | BN_GENCB_call(cb, 2, i);
|
---|
130 | ret = 1;
|
---|
131 | err:
|
---|
132 | return ret;
|
---|
133 | }
|
---|
134 |
|
---|
135 | /*
|
---|
136 | * Generate a probable prime (p or q).
|
---|
137 | *
|
---|
138 | * See FIPS 186-4 B.3.6 (Steps 4 & 5)
|
---|
139 | *
|
---|
140 | * Params:
|
---|
141 | * p The returned probable prime.
|
---|
142 | * Xpout An optionally returned random number used during generation of p.
|
---|
143 | * p1, p2 The returned auxiliary primes. If NULL they are not returned.
|
---|
144 | * Xp An optional passed in value (that is random number used during
|
---|
145 | * generation of p).
|
---|
146 | * Xp1, Xp2 Optional passed in values that are normally generated
|
---|
147 | * internally. Used to find p1, p2.
|
---|
148 | * nlen The bit length of the modulus (the key size).
|
---|
149 | * e The public exponent.
|
---|
150 | * ctx A BN_CTX object.
|
---|
151 | * cb An optional BIGNUM callback.
|
---|
152 | * Returns: 1 on success otherwise it returns 0.
|
---|
153 | */
|
---|
154 | int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
|
---|
155 | BIGNUM *p1, BIGNUM *p2,
|
---|
156 | const BIGNUM *Xp, const BIGNUM *Xp1,
|
---|
157 | const BIGNUM *Xp2, int nlen,
|
---|
158 | const BIGNUM *e, BN_CTX *ctx,
|
---|
159 | BN_GENCB *cb)
|
---|
160 | {
|
---|
161 | int ret = 0;
|
---|
162 | BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
|
---|
163 | int bitlen;
|
---|
164 |
|
---|
165 | if (p == NULL || Xpout == NULL)
|
---|
166 | return 0;
|
---|
167 |
|
---|
168 | BN_CTX_start(ctx);
|
---|
169 |
|
---|
170 | p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
|
---|
171 | p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
|
---|
172 | Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
|
---|
173 | Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
|
---|
174 | if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
|
---|
175 | goto err;
|
---|
176 |
|
---|
177 | bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
|
---|
178 | if (bitlen == 0)
|
---|
179 | goto err;
|
---|
180 |
|
---|
181 | /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
|
---|
182 | if (Xp1 == NULL) {
|
---|
183 | /* Set the top and bottom bits to make it odd and the correct size */
|
---|
184 | if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
|
---|
185 | 0, ctx))
|
---|
186 | goto err;
|
---|
187 | }
|
---|
188 | /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
|
---|
189 | if (Xp2 == NULL) {
|
---|
190 | /* Set the top and bottom bits to make it odd and the correct size */
|
---|
191 | if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
|
---|
192 | 0, ctx))
|
---|
193 | goto err;
|
---|
194 | }
|
---|
195 |
|
---|
196 | /* (Steps 4.2/5.2) - find first auxiliary probable primes */
|
---|
197 | if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
|
---|
198 | || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
|
---|
199 | goto err;
|
---|
200 | /* (Table B.1) auxiliary prime Max length check */
|
---|
201 | if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
|
---|
202 | bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
|
---|
203 | goto err;
|
---|
204 | /* (Steps 4.3/5.3) - generate prime */
|
---|
205 | if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
|
---|
206 | ctx, cb))
|
---|
207 | goto err;
|
---|
208 | ret = 1;
|
---|
209 | err:
|
---|
210 | /* Zeroize any internally generated values that are not returned */
|
---|
211 | if (p1 == NULL)
|
---|
212 | BN_clear(p1i);
|
---|
213 | if (p2 == NULL)
|
---|
214 | BN_clear(p2i);
|
---|
215 | if (Xp1 == NULL)
|
---|
216 | BN_clear(Xp1i);
|
---|
217 | if (Xp2 == NULL)
|
---|
218 | BN_clear(Xp2i);
|
---|
219 | BN_CTX_end(ctx);
|
---|
220 | return ret;
|
---|
221 | }
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
|
---|
225 | * prime numbers and the Chinese Remainder Theorem.
|
---|
226 | *
|
---|
227 | * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
|
---|
228 | * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
|
---|
229 | *
|
---|
230 | * Params:
|
---|
231 | * Y The returned prime factor (private_prime_factor) of the modulus n.
|
---|
232 | * X The returned random number used during generation of the prime factor.
|
---|
233 | * Xin An optional passed in value for X used for testing purposes.
|
---|
234 | * r1 An auxiliary prime.
|
---|
235 | * r2 An auxiliary prime.
|
---|
236 | * nlen The desired length of n (the RSA modulus).
|
---|
237 | * e The public exponent.
|
---|
238 | * ctx A BN_CTX object.
|
---|
239 | * cb An optional BIGNUM callback object.
|
---|
240 | * Returns: 1 on success otherwise it returns 0.
|
---|
241 | * Assumptions:
|
---|
242 | * Y, X, r1, r2, e are not NULL.
|
---|
243 | */
|
---|
244 | int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
|
---|
245 | const BIGNUM *r1, const BIGNUM *r2,
|
---|
246 | int nlen, const BIGNUM *e, BN_CTX *ctx,
|
---|
247 | BN_GENCB *cb)
|
---|
248 | {
|
---|
249 | int ret = 0;
|
---|
250 | int i, imax;
|
---|
251 | int bits = nlen >> 1;
|
---|
252 | BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
|
---|
253 | BIGNUM *base, *range;
|
---|
254 |
|
---|
255 | BN_CTX_start(ctx);
|
---|
256 |
|
---|
257 | base = BN_CTX_get(ctx);
|
---|
258 | range = BN_CTX_get(ctx);
|
---|
259 | R = BN_CTX_get(ctx);
|
---|
260 | tmp = BN_CTX_get(ctx);
|
---|
261 | r1r2x2 = BN_CTX_get(ctx);
|
---|
262 | y1 = BN_CTX_get(ctx);
|
---|
263 | r1x2 = BN_CTX_get(ctx);
|
---|
264 | if (r1x2 == NULL)
|
---|
265 | goto err;
|
---|
266 |
|
---|
267 | if (Xin != NULL && BN_copy(X, Xin) == NULL)
|
---|
268 | goto err;
|
---|
269 |
|
---|
270 | /*
|
---|
271 | * We need to generate a random number X in the range
|
---|
272 | * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
|
---|
273 | * We can rewrite that as:
|
---|
274 | * base = 1/sqrt(2) * 2^(nlen/2)
|
---|
275 | * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
|
---|
276 | * X = base + random(range)
|
---|
277 | * We only have the first 256 bit of 1/sqrt(2)
|
---|
278 | */
|
---|
279 | if (Xin == NULL) {
|
---|
280 | if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
|
---|
281 | goto err;
|
---|
282 | if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
|
---|
283 | bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
|
---|
284 | || !BN_lshift(range, BN_value_one(), bits)
|
---|
285 | || !BN_sub(range, range, base))
|
---|
286 | goto err;
|
---|
287 | }
|
---|
288 |
|
---|
289 | if (!(BN_lshift1(r1x2, r1)
|
---|
290 | /* (Step 1) GCD(2r1, r2) = 1 */
|
---|
291 | && BN_gcd(tmp, r1x2, r2, ctx)
|
---|
292 | && BN_is_one(tmp)
|
---|
293 | /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
|
---|
294 | && BN_mod_inverse(R, r2, r1x2, ctx)
|
---|
295 | && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
|
---|
296 | && BN_mod_inverse(tmp, r1x2, r2, ctx)
|
---|
297 | && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
|
---|
298 | && BN_sub(R, R, tmp)
|
---|
299 | /* Calculate 2r1r2 */
|
---|
300 | && BN_mul(r1r2x2, r1x2, r2, ctx)))
|
---|
301 | goto err;
|
---|
302 | /* Make positive by adding the modulus */
|
---|
303 | if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
|
---|
304 | goto err;
|
---|
305 |
|
---|
306 | imax = 5 * bits; /* max = 5/2 * nbits */
|
---|
307 | for (;;) {
|
---|
308 | if (Xin == NULL) {
|
---|
309 | /*
|
---|
310 | * (Step 3) Choose Random X such that
|
---|
311 | * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
|
---|
312 | */
|
---|
313 | if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
|
---|
314 | goto end;
|
---|
315 | }
|
---|
316 | /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
|
---|
317 | if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
|
---|
318 | goto err;
|
---|
319 | /* (Step 5) */
|
---|
320 | i = 0;
|
---|
321 | for (;;) {
|
---|
322 | /* (Step 6) */
|
---|
323 | if (BN_num_bits(Y) > bits) {
|
---|
324 | if (Xin == NULL)
|
---|
325 | break; /* Randomly Generated X so Go back to Step 3 */
|
---|
326 | else
|
---|
327 | goto err; /* X is not random so it will always fail */
|
---|
328 | }
|
---|
329 | BN_GENCB_call(cb, 0, 2);
|
---|
330 |
|
---|
331 | /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
|
---|
332 | if (BN_copy(y1, Y) == NULL
|
---|
333 | || !BN_sub_word(y1, 1)
|
---|
334 | || !BN_gcd(tmp, y1, e, ctx))
|
---|
335 | goto err;
|
---|
336 | if (BN_is_one(tmp)) {
|
---|
337 | int rv = BN_check_prime(Y, ctx, cb);
|
---|
338 |
|
---|
339 | if (rv > 0)
|
---|
340 | goto end;
|
---|
341 | if (rv < 0)
|
---|
342 | goto err;
|
---|
343 | }
|
---|
344 | /* (Step 8-10) */
|
---|
345 | if (++i >= imax || !BN_add(Y, Y, r1r2x2))
|
---|
346 | goto err;
|
---|
347 | }
|
---|
348 | }
|
---|
349 | end:
|
---|
350 | ret = 1;
|
---|
351 | BN_GENCB_call(cb, 3, 0);
|
---|
352 | err:
|
---|
353 | BN_clear(y1);
|
---|
354 | BN_CTX_end(ctx);
|
---|
355 | return ret;
|
---|
356 | }
|
---|