1 | /*
|
---|
2 | * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | /*
|
---|
12 | * ECDSA low level APIs are deprecated for public use, but still ok for
|
---|
13 | * internal use.
|
---|
14 | */
|
---|
15 | #include "internal/deprecated.h"
|
---|
16 |
|
---|
17 | #include <openssl/err.h>
|
---|
18 |
|
---|
19 | #include "crypto/bn.h"
|
---|
20 | #include "ec_local.h"
|
---|
21 |
|
---|
22 | #ifndef OPENSSL_NO_EC2M
|
---|
23 |
|
---|
24 | /*
|
---|
25 | * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
|
---|
26 | * are handled by EC_GROUP_new.
|
---|
27 | */
|
---|
28 | int ossl_ec_GF2m_simple_group_init(EC_GROUP *group)
|
---|
29 | {
|
---|
30 | group->field = BN_new();
|
---|
31 | group->a = BN_new();
|
---|
32 | group->b = BN_new();
|
---|
33 |
|
---|
34 | if (group->field == NULL || group->a == NULL || group->b == NULL) {
|
---|
35 | BN_free(group->field);
|
---|
36 | BN_free(group->a);
|
---|
37 | BN_free(group->b);
|
---|
38 | return 0;
|
---|
39 | }
|
---|
40 | return 1;
|
---|
41 | }
|
---|
42 |
|
---|
43 | /*
|
---|
44 | * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
|
---|
45 | * handled by EC_GROUP_free.
|
---|
46 | */
|
---|
47 | void ossl_ec_GF2m_simple_group_finish(EC_GROUP *group)
|
---|
48 | {
|
---|
49 | BN_free(group->field);
|
---|
50 | BN_free(group->a);
|
---|
51 | BN_free(group->b);
|
---|
52 | }
|
---|
53 |
|
---|
54 | /*
|
---|
55 | * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
|
---|
56 | * members are handled by EC_GROUP_clear_free.
|
---|
57 | */
|
---|
58 | void ossl_ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
|
---|
59 | {
|
---|
60 | BN_clear_free(group->field);
|
---|
61 | BN_clear_free(group->a);
|
---|
62 | BN_clear_free(group->b);
|
---|
63 | group->poly[0] = 0;
|
---|
64 | group->poly[1] = 0;
|
---|
65 | group->poly[2] = 0;
|
---|
66 | group->poly[3] = 0;
|
---|
67 | group->poly[4] = 0;
|
---|
68 | group->poly[5] = -1;
|
---|
69 | }
|
---|
70 |
|
---|
71 | /*
|
---|
72 | * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
|
---|
73 | * handled by EC_GROUP_copy.
|
---|
74 | */
|
---|
75 | int ossl_ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
|
---|
76 | {
|
---|
77 | if (!BN_copy(dest->field, src->field))
|
---|
78 | return 0;
|
---|
79 | if (!BN_copy(dest->a, src->a))
|
---|
80 | return 0;
|
---|
81 | if (!BN_copy(dest->b, src->b))
|
---|
82 | return 0;
|
---|
83 | dest->poly[0] = src->poly[0];
|
---|
84 | dest->poly[1] = src->poly[1];
|
---|
85 | dest->poly[2] = src->poly[2];
|
---|
86 | dest->poly[3] = src->poly[3];
|
---|
87 | dest->poly[4] = src->poly[4];
|
---|
88 | dest->poly[5] = src->poly[5];
|
---|
89 | if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
|
---|
90 | NULL)
|
---|
91 | return 0;
|
---|
92 | if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
|
---|
93 | NULL)
|
---|
94 | return 0;
|
---|
95 | bn_set_all_zero(dest->a);
|
---|
96 | bn_set_all_zero(dest->b);
|
---|
97 | return 1;
|
---|
98 | }
|
---|
99 |
|
---|
100 | /* Set the curve parameters of an EC_GROUP structure. */
|
---|
101 | int ossl_ec_GF2m_simple_group_set_curve(EC_GROUP *group,
|
---|
102 | const BIGNUM *p, const BIGNUM *a,
|
---|
103 | const BIGNUM *b, BN_CTX *ctx)
|
---|
104 | {
|
---|
105 | int ret = 0, i;
|
---|
106 |
|
---|
107 | /* group->field */
|
---|
108 | if (!BN_copy(group->field, p))
|
---|
109 | goto err;
|
---|
110 | i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
|
---|
111 | if ((i != 5) && (i != 3)) {
|
---|
112 | ERR_raise(ERR_LIB_EC, EC_R_UNSUPPORTED_FIELD);
|
---|
113 | goto err;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /* group->a */
|
---|
117 | if (!BN_GF2m_mod_arr(group->a, a, group->poly))
|
---|
118 | goto err;
|
---|
119 | if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
|
---|
120 | == NULL)
|
---|
121 | goto err;
|
---|
122 | bn_set_all_zero(group->a);
|
---|
123 |
|
---|
124 | /* group->b */
|
---|
125 | if (!BN_GF2m_mod_arr(group->b, b, group->poly))
|
---|
126 | goto err;
|
---|
127 | if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
|
---|
128 | == NULL)
|
---|
129 | goto err;
|
---|
130 | bn_set_all_zero(group->b);
|
---|
131 |
|
---|
132 | ret = 1;
|
---|
133 | err:
|
---|
134 | return ret;
|
---|
135 | }
|
---|
136 |
|
---|
137 | /*
|
---|
138 | * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
|
---|
139 | * then there values will not be set but the method will return with success.
|
---|
140 | */
|
---|
141 | int ossl_ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
|
---|
142 | BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
|
---|
143 | {
|
---|
144 | int ret = 0;
|
---|
145 |
|
---|
146 | if (p != NULL) {
|
---|
147 | if (!BN_copy(p, group->field))
|
---|
148 | return 0;
|
---|
149 | }
|
---|
150 |
|
---|
151 | if (a != NULL) {
|
---|
152 | if (!BN_copy(a, group->a))
|
---|
153 | goto err;
|
---|
154 | }
|
---|
155 |
|
---|
156 | if (b != NULL) {
|
---|
157 | if (!BN_copy(b, group->b))
|
---|
158 | goto err;
|
---|
159 | }
|
---|
160 |
|
---|
161 | ret = 1;
|
---|
162 |
|
---|
163 | err:
|
---|
164 | return ret;
|
---|
165 | }
|
---|
166 |
|
---|
167 | /*
|
---|
168 | * Gets the degree of the field. For a curve over GF(2^m) this is the value
|
---|
169 | * m.
|
---|
170 | */
|
---|
171 | int ossl_ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
|
---|
172 | {
|
---|
173 | return BN_num_bits(group->field) - 1;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /*
|
---|
177 | * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
|
---|
178 | * elliptic curve <=> b != 0 (mod p)
|
---|
179 | */
|
---|
180 | int ossl_ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
|
---|
181 | BN_CTX *ctx)
|
---|
182 | {
|
---|
183 | int ret = 0;
|
---|
184 | BIGNUM *b;
|
---|
185 | #ifndef FIPS_MODULE
|
---|
186 | BN_CTX *new_ctx = NULL;
|
---|
187 |
|
---|
188 | if (ctx == NULL) {
|
---|
189 | ctx = new_ctx = BN_CTX_new();
|
---|
190 | if (ctx == NULL) {
|
---|
191 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
192 | goto err;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | #endif
|
---|
196 | BN_CTX_start(ctx);
|
---|
197 | b = BN_CTX_get(ctx);
|
---|
198 | if (b == NULL)
|
---|
199 | goto err;
|
---|
200 |
|
---|
201 | if (!BN_GF2m_mod_arr(b, group->b, group->poly))
|
---|
202 | goto err;
|
---|
203 |
|
---|
204 | /*
|
---|
205 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
|
---|
206 | * curve <=> b != 0 (mod p)
|
---|
207 | */
|
---|
208 | if (BN_is_zero(b))
|
---|
209 | goto err;
|
---|
210 |
|
---|
211 | ret = 1;
|
---|
212 |
|
---|
213 | err:
|
---|
214 | BN_CTX_end(ctx);
|
---|
215 | #ifndef FIPS_MODULE
|
---|
216 | BN_CTX_free(new_ctx);
|
---|
217 | #endif
|
---|
218 | return ret;
|
---|
219 | }
|
---|
220 |
|
---|
221 | /* Initializes an EC_POINT. */
|
---|
222 | int ossl_ec_GF2m_simple_point_init(EC_POINT *point)
|
---|
223 | {
|
---|
224 | point->X = BN_new();
|
---|
225 | point->Y = BN_new();
|
---|
226 | point->Z = BN_new();
|
---|
227 |
|
---|
228 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
|
---|
229 | BN_free(point->X);
|
---|
230 | BN_free(point->Y);
|
---|
231 | BN_free(point->Z);
|
---|
232 | return 0;
|
---|
233 | }
|
---|
234 | return 1;
|
---|
235 | }
|
---|
236 |
|
---|
237 | /* Frees an EC_POINT. */
|
---|
238 | void ossl_ec_GF2m_simple_point_finish(EC_POINT *point)
|
---|
239 | {
|
---|
240 | BN_free(point->X);
|
---|
241 | BN_free(point->Y);
|
---|
242 | BN_free(point->Z);
|
---|
243 | }
|
---|
244 |
|
---|
245 | /* Clears and frees an EC_POINT. */
|
---|
246 | void ossl_ec_GF2m_simple_point_clear_finish(EC_POINT *point)
|
---|
247 | {
|
---|
248 | BN_clear_free(point->X);
|
---|
249 | BN_clear_free(point->Y);
|
---|
250 | BN_clear_free(point->Z);
|
---|
251 | point->Z_is_one = 0;
|
---|
252 | }
|
---|
253 |
|
---|
254 | /*
|
---|
255 | * Copy the contents of one EC_POINT into another. Assumes dest is
|
---|
256 | * initialized.
|
---|
257 | */
|
---|
258 | int ossl_ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
|
---|
259 | {
|
---|
260 | if (!BN_copy(dest->X, src->X))
|
---|
261 | return 0;
|
---|
262 | if (!BN_copy(dest->Y, src->Y))
|
---|
263 | return 0;
|
---|
264 | if (!BN_copy(dest->Z, src->Z))
|
---|
265 | return 0;
|
---|
266 | dest->Z_is_one = src->Z_is_one;
|
---|
267 | dest->curve_name = src->curve_name;
|
---|
268 |
|
---|
269 | return 1;
|
---|
270 | }
|
---|
271 |
|
---|
272 | /*
|
---|
273 | * Set an EC_POINT to the point at infinity. A point at infinity is
|
---|
274 | * represented by having Z=0.
|
---|
275 | */
|
---|
276 | int ossl_ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
|
---|
277 | EC_POINT *point)
|
---|
278 | {
|
---|
279 | point->Z_is_one = 0;
|
---|
280 | BN_zero(point->Z);
|
---|
281 | return 1;
|
---|
282 | }
|
---|
283 |
|
---|
284 | /*
|
---|
285 | * Set the coordinates of an EC_POINT using affine coordinates. Note that
|
---|
286 | * the simple implementation only uses affine coordinates.
|
---|
287 | */
|
---|
288 | int ossl_ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
|
---|
289 | EC_POINT *point,
|
---|
290 | const BIGNUM *x,
|
---|
291 | const BIGNUM *y,
|
---|
292 | BN_CTX *ctx)
|
---|
293 | {
|
---|
294 | int ret = 0;
|
---|
295 | if (x == NULL || y == NULL) {
|
---|
296 | ERR_raise(ERR_LIB_EC, ERR_R_PASSED_NULL_PARAMETER);
|
---|
297 | return 0;
|
---|
298 | }
|
---|
299 |
|
---|
300 | if (!BN_copy(point->X, x))
|
---|
301 | goto err;
|
---|
302 | BN_set_negative(point->X, 0);
|
---|
303 | if (!BN_copy(point->Y, y))
|
---|
304 | goto err;
|
---|
305 | BN_set_negative(point->Y, 0);
|
---|
306 | if (!BN_copy(point->Z, BN_value_one()))
|
---|
307 | goto err;
|
---|
308 | BN_set_negative(point->Z, 0);
|
---|
309 | point->Z_is_one = 1;
|
---|
310 | ret = 1;
|
---|
311 |
|
---|
312 | err:
|
---|
313 | return ret;
|
---|
314 | }
|
---|
315 |
|
---|
316 | /*
|
---|
317 | * Gets the affine coordinates of an EC_POINT. Note that the simple
|
---|
318 | * implementation only uses affine coordinates.
|
---|
319 | */
|
---|
320 | int ossl_ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
321 | const EC_POINT *point,
|
---|
322 | BIGNUM *x, BIGNUM *y,
|
---|
323 | BN_CTX *ctx)
|
---|
324 | {
|
---|
325 | int ret = 0;
|
---|
326 |
|
---|
327 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
328 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
|
---|
329 | return 0;
|
---|
330 | }
|
---|
331 |
|
---|
332 | if (BN_cmp(point->Z, BN_value_one())) {
|
---|
333 | ERR_raise(ERR_LIB_EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
334 | return 0;
|
---|
335 | }
|
---|
336 | if (x != NULL) {
|
---|
337 | if (!BN_copy(x, point->X))
|
---|
338 | goto err;
|
---|
339 | BN_set_negative(x, 0);
|
---|
340 | }
|
---|
341 | if (y != NULL) {
|
---|
342 | if (!BN_copy(y, point->Y))
|
---|
343 | goto err;
|
---|
344 | BN_set_negative(y, 0);
|
---|
345 | }
|
---|
346 | ret = 1;
|
---|
347 |
|
---|
348 | err:
|
---|
349 | return ret;
|
---|
350 | }
|
---|
351 |
|
---|
352 | /*
|
---|
353 | * Computes a + b and stores the result in r. r could be a or b, a could be
|
---|
354 | * b. Uses algorithm A.10.2 of IEEE P1363.
|
---|
355 | */
|
---|
356 | int ossl_ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r,
|
---|
357 | const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx)
|
---|
358 | {
|
---|
359 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
|
---|
360 | int ret = 0;
|
---|
361 | #ifndef FIPS_MODULE
|
---|
362 | BN_CTX *new_ctx = NULL;
|
---|
363 | #endif
|
---|
364 |
|
---|
365 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
366 | if (!EC_POINT_copy(r, b))
|
---|
367 | return 0;
|
---|
368 | return 1;
|
---|
369 | }
|
---|
370 |
|
---|
371 | if (EC_POINT_is_at_infinity(group, b)) {
|
---|
372 | if (!EC_POINT_copy(r, a))
|
---|
373 | return 0;
|
---|
374 | return 1;
|
---|
375 | }
|
---|
376 |
|
---|
377 | #ifndef FIPS_MODULE
|
---|
378 | if (ctx == NULL) {
|
---|
379 | ctx = new_ctx = BN_CTX_new();
|
---|
380 | if (ctx == NULL)
|
---|
381 | return 0;
|
---|
382 | }
|
---|
383 | #endif
|
---|
384 |
|
---|
385 | BN_CTX_start(ctx);
|
---|
386 | x0 = BN_CTX_get(ctx);
|
---|
387 | y0 = BN_CTX_get(ctx);
|
---|
388 | x1 = BN_CTX_get(ctx);
|
---|
389 | y1 = BN_CTX_get(ctx);
|
---|
390 | x2 = BN_CTX_get(ctx);
|
---|
391 | y2 = BN_CTX_get(ctx);
|
---|
392 | s = BN_CTX_get(ctx);
|
---|
393 | t = BN_CTX_get(ctx);
|
---|
394 | if (t == NULL)
|
---|
395 | goto err;
|
---|
396 |
|
---|
397 | if (a->Z_is_one) {
|
---|
398 | if (!BN_copy(x0, a->X))
|
---|
399 | goto err;
|
---|
400 | if (!BN_copy(y0, a->Y))
|
---|
401 | goto err;
|
---|
402 | } else {
|
---|
403 | if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
|
---|
404 | goto err;
|
---|
405 | }
|
---|
406 | if (b->Z_is_one) {
|
---|
407 | if (!BN_copy(x1, b->X))
|
---|
408 | goto err;
|
---|
409 | if (!BN_copy(y1, b->Y))
|
---|
410 | goto err;
|
---|
411 | } else {
|
---|
412 | if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
|
---|
413 | goto err;
|
---|
414 | }
|
---|
415 |
|
---|
416 | if (BN_GF2m_cmp(x0, x1)) {
|
---|
417 | if (!BN_GF2m_add(t, x0, x1))
|
---|
418 | goto err;
|
---|
419 | if (!BN_GF2m_add(s, y0, y1))
|
---|
420 | goto err;
|
---|
421 | if (!group->meth->field_div(group, s, s, t, ctx))
|
---|
422 | goto err;
|
---|
423 | if (!group->meth->field_sqr(group, x2, s, ctx))
|
---|
424 | goto err;
|
---|
425 | if (!BN_GF2m_add(x2, x2, group->a))
|
---|
426 | goto err;
|
---|
427 | if (!BN_GF2m_add(x2, x2, s))
|
---|
428 | goto err;
|
---|
429 | if (!BN_GF2m_add(x2, x2, t))
|
---|
430 | goto err;
|
---|
431 | } else {
|
---|
432 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
|
---|
433 | if (!EC_POINT_set_to_infinity(group, r))
|
---|
434 | goto err;
|
---|
435 | ret = 1;
|
---|
436 | goto err;
|
---|
437 | }
|
---|
438 | if (!group->meth->field_div(group, s, y1, x1, ctx))
|
---|
439 | goto err;
|
---|
440 | if (!BN_GF2m_add(s, s, x1))
|
---|
441 | goto err;
|
---|
442 |
|
---|
443 | if (!group->meth->field_sqr(group, x2, s, ctx))
|
---|
444 | goto err;
|
---|
445 | if (!BN_GF2m_add(x2, x2, s))
|
---|
446 | goto err;
|
---|
447 | if (!BN_GF2m_add(x2, x2, group->a))
|
---|
448 | goto err;
|
---|
449 | }
|
---|
450 |
|
---|
451 | if (!BN_GF2m_add(y2, x1, x2))
|
---|
452 | goto err;
|
---|
453 | if (!group->meth->field_mul(group, y2, y2, s, ctx))
|
---|
454 | goto err;
|
---|
455 | if (!BN_GF2m_add(y2, y2, x2))
|
---|
456 | goto err;
|
---|
457 | if (!BN_GF2m_add(y2, y2, y1))
|
---|
458 | goto err;
|
---|
459 |
|
---|
460 | if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
|
---|
461 | goto err;
|
---|
462 |
|
---|
463 | ret = 1;
|
---|
464 |
|
---|
465 | err:
|
---|
466 | BN_CTX_end(ctx);
|
---|
467 | #ifndef FIPS_MODULE
|
---|
468 | BN_CTX_free(new_ctx);
|
---|
469 | #endif
|
---|
470 | return ret;
|
---|
471 | }
|
---|
472 |
|
---|
473 | /*
|
---|
474 | * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
|
---|
475 | * A.10.2 of IEEE P1363.
|
---|
476 | */
|
---|
477 | int ossl_ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r,
|
---|
478 | const EC_POINT *a, BN_CTX *ctx)
|
---|
479 | {
|
---|
480 | return ossl_ec_GF2m_simple_add(group, r, a, a, ctx);
|
---|
481 | }
|
---|
482 |
|
---|
483 | int ossl_ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point,
|
---|
484 | BN_CTX *ctx)
|
---|
485 | {
|
---|
486 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
|
---|
487 | /* point is its own inverse */
|
---|
488 | return 1;
|
---|
489 |
|
---|
490 | if (group->meth->make_affine == NULL
|
---|
491 | || !group->meth->make_affine(group, point, ctx))
|
---|
492 | return 0;
|
---|
493 | return BN_GF2m_add(point->Y, point->X, point->Y);
|
---|
494 | }
|
---|
495 |
|
---|
496 | /* Indicates whether the given point is the point at infinity. */
|
---|
497 | int ossl_ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
|
---|
498 | const EC_POINT *point)
|
---|
499 | {
|
---|
500 | return BN_is_zero(point->Z);
|
---|
501 | }
|
---|
502 |
|
---|
503 | /*-
|
---|
504 | * Determines whether the given EC_POINT is an actual point on the curve defined
|
---|
505 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
|
---|
506 | * y^2 + x*y = x^3 + a*x^2 + b.
|
---|
507 | */
|
---|
508 | int ossl_ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
---|
509 | BN_CTX *ctx)
|
---|
510 | {
|
---|
511 | int ret = -1;
|
---|
512 | BIGNUM *lh, *y2;
|
---|
513 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
|
---|
514 | const BIGNUM *, BN_CTX *);
|
---|
515 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
|
---|
516 | #ifndef FIPS_MODULE
|
---|
517 | BN_CTX *new_ctx = NULL;
|
---|
518 | #endif
|
---|
519 |
|
---|
520 | if (EC_POINT_is_at_infinity(group, point))
|
---|
521 | return 1;
|
---|
522 |
|
---|
523 | field_mul = group->meth->field_mul;
|
---|
524 | field_sqr = group->meth->field_sqr;
|
---|
525 |
|
---|
526 | /* only support affine coordinates */
|
---|
527 | if (!point->Z_is_one)
|
---|
528 | return -1;
|
---|
529 |
|
---|
530 | #ifndef FIPS_MODULE
|
---|
531 | if (ctx == NULL) {
|
---|
532 | ctx = new_ctx = BN_CTX_new();
|
---|
533 | if (ctx == NULL)
|
---|
534 | return -1;
|
---|
535 | }
|
---|
536 | #endif
|
---|
537 |
|
---|
538 | BN_CTX_start(ctx);
|
---|
539 | y2 = BN_CTX_get(ctx);
|
---|
540 | lh = BN_CTX_get(ctx);
|
---|
541 | if (lh == NULL)
|
---|
542 | goto err;
|
---|
543 |
|
---|
544 | /*-
|
---|
545 | * We have a curve defined by a Weierstrass equation
|
---|
546 | * y^2 + x*y = x^3 + a*x^2 + b.
|
---|
547 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
|
---|
548 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0
|
---|
549 | */
|
---|
550 | if (!BN_GF2m_add(lh, point->X, group->a))
|
---|
551 | goto err;
|
---|
552 | if (!field_mul(group, lh, lh, point->X, ctx))
|
---|
553 | goto err;
|
---|
554 | if (!BN_GF2m_add(lh, lh, point->Y))
|
---|
555 | goto err;
|
---|
556 | if (!field_mul(group, lh, lh, point->X, ctx))
|
---|
557 | goto err;
|
---|
558 | if (!BN_GF2m_add(lh, lh, group->b))
|
---|
559 | goto err;
|
---|
560 | if (!field_sqr(group, y2, point->Y, ctx))
|
---|
561 | goto err;
|
---|
562 | if (!BN_GF2m_add(lh, lh, y2))
|
---|
563 | goto err;
|
---|
564 | ret = BN_is_zero(lh);
|
---|
565 |
|
---|
566 | err:
|
---|
567 | BN_CTX_end(ctx);
|
---|
568 | #ifndef FIPS_MODULE
|
---|
569 | BN_CTX_free(new_ctx);
|
---|
570 | #endif
|
---|
571 | return ret;
|
---|
572 | }
|
---|
573 |
|
---|
574 | /*-
|
---|
575 | * Indicates whether two points are equal.
|
---|
576 | * Return values:
|
---|
577 | * -1 error
|
---|
578 | * 0 equal (in affine coordinates)
|
---|
579 | * 1 not equal
|
---|
580 | */
|
---|
581 | int ossl_ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
|
---|
582 | const EC_POINT *b, BN_CTX *ctx)
|
---|
583 | {
|
---|
584 | BIGNUM *aX, *aY, *bX, *bY;
|
---|
585 | int ret = -1;
|
---|
586 | #ifndef FIPS_MODULE
|
---|
587 | BN_CTX *new_ctx = NULL;
|
---|
588 | #endif
|
---|
589 |
|
---|
590 | if (EC_POINT_is_at_infinity(group, a)) {
|
---|
591 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
|
---|
592 | }
|
---|
593 |
|
---|
594 | if (EC_POINT_is_at_infinity(group, b))
|
---|
595 | return 1;
|
---|
596 |
|
---|
597 | if (a->Z_is_one && b->Z_is_one) {
|
---|
598 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
|
---|
599 | }
|
---|
600 |
|
---|
601 | #ifndef FIPS_MODULE
|
---|
602 | if (ctx == NULL) {
|
---|
603 | ctx = new_ctx = BN_CTX_new();
|
---|
604 | if (ctx == NULL)
|
---|
605 | return -1;
|
---|
606 | }
|
---|
607 | #endif
|
---|
608 |
|
---|
609 | BN_CTX_start(ctx);
|
---|
610 | aX = BN_CTX_get(ctx);
|
---|
611 | aY = BN_CTX_get(ctx);
|
---|
612 | bX = BN_CTX_get(ctx);
|
---|
613 | bY = BN_CTX_get(ctx);
|
---|
614 | if (bY == NULL)
|
---|
615 | goto err;
|
---|
616 |
|
---|
617 | if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
|
---|
618 | goto err;
|
---|
619 | if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
|
---|
620 | goto err;
|
---|
621 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
|
---|
622 |
|
---|
623 | err:
|
---|
624 | BN_CTX_end(ctx);
|
---|
625 | #ifndef FIPS_MODULE
|
---|
626 | BN_CTX_free(new_ctx);
|
---|
627 | #endif
|
---|
628 | return ret;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /* Forces the given EC_POINT to internally use affine coordinates. */
|
---|
632 | int ossl_ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
|
---|
633 | BN_CTX *ctx)
|
---|
634 | {
|
---|
635 | BIGNUM *x, *y;
|
---|
636 | int ret = 0;
|
---|
637 | #ifndef FIPS_MODULE
|
---|
638 | BN_CTX *new_ctx = NULL;
|
---|
639 | #endif
|
---|
640 |
|
---|
641 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
|
---|
642 | return 1;
|
---|
643 |
|
---|
644 | #ifndef FIPS_MODULE
|
---|
645 | if (ctx == NULL) {
|
---|
646 | ctx = new_ctx = BN_CTX_new();
|
---|
647 | if (ctx == NULL)
|
---|
648 | return 0;
|
---|
649 | }
|
---|
650 | #endif
|
---|
651 |
|
---|
652 | BN_CTX_start(ctx);
|
---|
653 | x = BN_CTX_get(ctx);
|
---|
654 | y = BN_CTX_get(ctx);
|
---|
655 | if (y == NULL)
|
---|
656 | goto err;
|
---|
657 |
|
---|
658 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
|
---|
659 | goto err;
|
---|
660 | if (!BN_copy(point->X, x))
|
---|
661 | goto err;
|
---|
662 | if (!BN_copy(point->Y, y))
|
---|
663 | goto err;
|
---|
664 | if (!BN_one(point->Z))
|
---|
665 | goto err;
|
---|
666 | point->Z_is_one = 1;
|
---|
667 |
|
---|
668 | ret = 1;
|
---|
669 |
|
---|
670 | err:
|
---|
671 | BN_CTX_end(ctx);
|
---|
672 | #ifndef FIPS_MODULE
|
---|
673 | BN_CTX_free(new_ctx);
|
---|
674 | #endif
|
---|
675 | return ret;
|
---|
676 | }
|
---|
677 |
|
---|
678 | /*
|
---|
679 | * Forces each of the EC_POINTs in the given array to use affine coordinates.
|
---|
680 | */
|
---|
681 | int ossl_ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
|
---|
682 | EC_POINT *points[], BN_CTX *ctx)
|
---|
683 | {
|
---|
684 | size_t i;
|
---|
685 |
|
---|
686 | for (i = 0; i < num; i++) {
|
---|
687 | if (!group->meth->make_affine(group, points[i], ctx))
|
---|
688 | return 0;
|
---|
689 | }
|
---|
690 |
|
---|
691 | return 1;
|
---|
692 | }
|
---|
693 |
|
---|
694 | /* Wrapper to simple binary polynomial field multiplication implementation. */
|
---|
695 | int ossl_ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
|
---|
696 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
697 | {
|
---|
698 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
|
---|
699 | }
|
---|
700 |
|
---|
701 | /* Wrapper to simple binary polynomial field squaring implementation. */
|
---|
702 | int ossl_ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
|
---|
703 | const BIGNUM *a, BN_CTX *ctx)
|
---|
704 | {
|
---|
705 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
|
---|
706 | }
|
---|
707 |
|
---|
708 | /* Wrapper to simple binary polynomial field division implementation. */
|
---|
709 | int ossl_ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
|
---|
710 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
711 | {
|
---|
712 | return BN_GF2m_mod_div(r, a, b, group->field, ctx);
|
---|
713 | }
|
---|
714 |
|
---|
715 | /*-
|
---|
716 | * Lopez-Dahab ladder, pre step.
|
---|
717 | * See e.g. "Guide to ECC" Alg 3.40.
|
---|
718 | * Modified to blind s and r independently.
|
---|
719 | * s:= p, r := 2p
|
---|
720 | */
|
---|
721 | static
|
---|
722 | int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
|
---|
723 | EC_POINT *r, EC_POINT *s,
|
---|
724 | EC_POINT *p, BN_CTX *ctx)
|
---|
725 | {
|
---|
726 | /* if p is not affine, something is wrong */
|
---|
727 | if (p->Z_is_one == 0)
|
---|
728 | return 0;
|
---|
729 |
|
---|
730 | /* s blinding: make sure lambda (s->Z here) is not zero */
|
---|
731 | do {
|
---|
732 | if (!BN_priv_rand_ex(s->Z, BN_num_bits(group->field) - 1,
|
---|
733 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) {
|
---|
734 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
735 | return 0;
|
---|
736 | }
|
---|
737 | } while (BN_is_zero(s->Z));
|
---|
738 |
|
---|
739 | /* if field_encode defined convert between representations */
|
---|
740 | if ((group->meth->field_encode != NULL
|
---|
741 | && !group->meth->field_encode(group, s->Z, s->Z, ctx))
|
---|
742 | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
|
---|
743 | return 0;
|
---|
744 |
|
---|
745 | /* r blinding: make sure lambda (r->Y here for storage) is not zero */
|
---|
746 | do {
|
---|
747 | if (!BN_priv_rand_ex(r->Y, BN_num_bits(group->field) - 1,
|
---|
748 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx)) {
|
---|
749 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
750 | return 0;
|
---|
751 | }
|
---|
752 | } while (BN_is_zero(r->Y));
|
---|
753 |
|
---|
754 | if ((group->meth->field_encode != NULL
|
---|
755 | && !group->meth->field_encode(group, r->Y, r->Y, ctx))
|
---|
756 | || !group->meth->field_sqr(group, r->Z, p->X, ctx)
|
---|
757 | || !group->meth->field_sqr(group, r->X, r->Z, ctx)
|
---|
758 | || !BN_GF2m_add(r->X, r->X, group->b)
|
---|
759 | || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
|
---|
760 | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
|
---|
761 | return 0;
|
---|
762 |
|
---|
763 | s->Z_is_one = 0;
|
---|
764 | r->Z_is_one = 0;
|
---|
765 |
|
---|
766 | return 1;
|
---|
767 | }
|
---|
768 |
|
---|
769 | /*-
|
---|
770 | * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
|
---|
771 | * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
|
---|
772 | * s := r + s, r := 2r
|
---|
773 | */
|
---|
774 | static
|
---|
775 | int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
|
---|
776 | EC_POINT *r, EC_POINT *s,
|
---|
777 | EC_POINT *p, BN_CTX *ctx)
|
---|
778 | {
|
---|
779 | if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
|
---|
780 | || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
|
---|
781 | || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
|
---|
782 | || !group->meth->field_sqr(group, r->Z, r->X, ctx)
|
---|
783 | || !BN_GF2m_add(s->Z, r->Y, s->X)
|
---|
784 | || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
|
---|
785 | || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
|
---|
786 | || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
|
---|
787 | || !BN_GF2m_add(s->X, s->X, r->Y)
|
---|
788 | || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
|
---|
789 | || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
|
---|
790 | || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
|
---|
791 | || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
|
---|
792 | || !BN_GF2m_add(r->X, r->Y, s->Y))
|
---|
793 | return 0;
|
---|
794 |
|
---|
795 | return 1;
|
---|
796 | }
|
---|
797 |
|
---|
798 | /*-
|
---|
799 | * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
|
---|
800 | * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
|
---|
801 | * without Precomputation" (Lopez and Dahab, CHES 1999),
|
---|
802 | * Appendix Alg Mxy.
|
---|
803 | */
|
---|
804 | static
|
---|
805 | int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
|
---|
806 | EC_POINT *r, EC_POINT *s,
|
---|
807 | EC_POINT *p, BN_CTX *ctx)
|
---|
808 | {
|
---|
809 | int ret = 0;
|
---|
810 | BIGNUM *t0, *t1, *t2 = NULL;
|
---|
811 |
|
---|
812 | if (BN_is_zero(r->Z))
|
---|
813 | return EC_POINT_set_to_infinity(group, r);
|
---|
814 |
|
---|
815 | if (BN_is_zero(s->Z)) {
|
---|
816 | if (!EC_POINT_copy(r, p)
|
---|
817 | || !EC_POINT_invert(group, r, ctx)) {
|
---|
818 | ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
|
---|
819 | return 0;
|
---|
820 | }
|
---|
821 | return 1;
|
---|
822 | }
|
---|
823 |
|
---|
824 | BN_CTX_start(ctx);
|
---|
825 | t0 = BN_CTX_get(ctx);
|
---|
826 | t1 = BN_CTX_get(ctx);
|
---|
827 | t2 = BN_CTX_get(ctx);
|
---|
828 | if (t2 == NULL) {
|
---|
829 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
830 | goto err;
|
---|
831 | }
|
---|
832 |
|
---|
833 | if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
|
---|
834 | || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
|
---|
835 | || !BN_GF2m_add(t1, r->X, t1)
|
---|
836 | || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
|
---|
837 | || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
|
---|
838 | || !BN_GF2m_add(t2, t2, s->X)
|
---|
839 | || !group->meth->field_mul(group, t1, t1, t2, ctx)
|
---|
840 | || !group->meth->field_sqr(group, t2, p->X, ctx)
|
---|
841 | || !BN_GF2m_add(t2, p->Y, t2)
|
---|
842 | || !group->meth->field_mul(group, t2, t2, t0, ctx)
|
---|
843 | || !BN_GF2m_add(t1, t2, t1)
|
---|
844 | || !group->meth->field_mul(group, t2, p->X, t0, ctx)
|
---|
845 | || !group->meth->field_inv(group, t2, t2, ctx)
|
---|
846 | || !group->meth->field_mul(group, t1, t1, t2, ctx)
|
---|
847 | || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
|
---|
848 | || !BN_GF2m_add(t2, p->X, r->X)
|
---|
849 | || !group->meth->field_mul(group, t2, t2, t1, ctx)
|
---|
850 | || !BN_GF2m_add(r->Y, p->Y, t2)
|
---|
851 | || !BN_one(r->Z))
|
---|
852 | goto err;
|
---|
853 |
|
---|
854 | r->Z_is_one = 1;
|
---|
855 |
|
---|
856 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
|
---|
857 | BN_set_negative(r->X, 0);
|
---|
858 | BN_set_negative(r->Y, 0);
|
---|
859 |
|
---|
860 | ret = 1;
|
---|
861 |
|
---|
862 | err:
|
---|
863 | BN_CTX_end(ctx);
|
---|
864 | return ret;
|
---|
865 | }
|
---|
866 |
|
---|
867 | static
|
---|
868 | int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
|
---|
869 | const BIGNUM *scalar, size_t num,
|
---|
870 | const EC_POINT *points[],
|
---|
871 | const BIGNUM *scalars[],
|
---|
872 | BN_CTX *ctx)
|
---|
873 | {
|
---|
874 | int ret = 0;
|
---|
875 | EC_POINT *t = NULL;
|
---|
876 |
|
---|
877 | /*-
|
---|
878 | * We limit use of the ladder only to the following cases:
|
---|
879 | * - r := scalar * G
|
---|
880 | * Fixed point mul: scalar != NULL && num == 0;
|
---|
881 | * - r := scalars[0] * points[0]
|
---|
882 | * Variable point mul: scalar == NULL && num == 1;
|
---|
883 | * - r := scalar * G + scalars[0] * points[0]
|
---|
884 | * used, e.g., in ECDSA verification: scalar != NULL && num == 1
|
---|
885 | *
|
---|
886 | * In any other case (num > 1) we use the default wNAF implementation.
|
---|
887 | *
|
---|
888 | * We also let the default implementation handle degenerate cases like group
|
---|
889 | * order or cofactor set to 0.
|
---|
890 | */
|
---|
891 | if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
|
---|
892 | return ossl_ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
|
---|
893 |
|
---|
894 | if (scalar != NULL && num == 0)
|
---|
895 | /* Fixed point multiplication */
|
---|
896 | return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
|
---|
897 |
|
---|
898 | if (scalar == NULL && num == 1)
|
---|
899 | /* Variable point multiplication */
|
---|
900 | return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
|
---|
901 |
|
---|
902 | /*-
|
---|
903 | * Double point multiplication:
|
---|
904 | * r := scalar * G + scalars[0] * points[0]
|
---|
905 | */
|
---|
906 |
|
---|
907 | if ((t = EC_POINT_new(group)) == NULL) {
|
---|
908 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
909 | return 0;
|
---|
910 | }
|
---|
911 |
|
---|
912 | if (!ossl_ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
|
---|
913 | || !ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
|
---|
914 | || !EC_POINT_add(group, r, t, r, ctx))
|
---|
915 | goto err;
|
---|
916 |
|
---|
917 | ret = 1;
|
---|
918 |
|
---|
919 | err:
|
---|
920 | EC_POINT_free(t);
|
---|
921 | return ret;
|
---|
922 | }
|
---|
923 |
|
---|
924 | /*-
|
---|
925 | * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
|
---|
926 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
|
---|
927 | * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
|
---|
928 | */
|
---|
929 | static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
|
---|
930 | const BIGNUM *a, BN_CTX *ctx)
|
---|
931 | {
|
---|
932 | int ret;
|
---|
933 |
|
---|
934 | if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
|
---|
935 | ERR_raise(ERR_LIB_EC, EC_R_CANNOT_INVERT);
|
---|
936 | return ret;
|
---|
937 | }
|
---|
938 |
|
---|
939 | const EC_METHOD *EC_GF2m_simple_method(void)
|
---|
940 | {
|
---|
941 | static const EC_METHOD ret = {
|
---|
942 | EC_FLAGS_DEFAULT_OCT,
|
---|
943 | NID_X9_62_characteristic_two_field,
|
---|
944 | ossl_ec_GF2m_simple_group_init,
|
---|
945 | ossl_ec_GF2m_simple_group_finish,
|
---|
946 | ossl_ec_GF2m_simple_group_clear_finish,
|
---|
947 | ossl_ec_GF2m_simple_group_copy,
|
---|
948 | ossl_ec_GF2m_simple_group_set_curve,
|
---|
949 | ossl_ec_GF2m_simple_group_get_curve,
|
---|
950 | ossl_ec_GF2m_simple_group_get_degree,
|
---|
951 | ossl_ec_group_simple_order_bits,
|
---|
952 | ossl_ec_GF2m_simple_group_check_discriminant,
|
---|
953 | ossl_ec_GF2m_simple_point_init,
|
---|
954 | ossl_ec_GF2m_simple_point_finish,
|
---|
955 | ossl_ec_GF2m_simple_point_clear_finish,
|
---|
956 | ossl_ec_GF2m_simple_point_copy,
|
---|
957 | ossl_ec_GF2m_simple_point_set_to_infinity,
|
---|
958 | ossl_ec_GF2m_simple_point_set_affine_coordinates,
|
---|
959 | ossl_ec_GF2m_simple_point_get_affine_coordinates,
|
---|
960 | 0, /* point_set_compressed_coordinates */
|
---|
961 | 0, /* point2oct */
|
---|
962 | 0, /* oct2point */
|
---|
963 | ossl_ec_GF2m_simple_add,
|
---|
964 | ossl_ec_GF2m_simple_dbl,
|
---|
965 | ossl_ec_GF2m_simple_invert,
|
---|
966 | ossl_ec_GF2m_simple_is_at_infinity,
|
---|
967 | ossl_ec_GF2m_simple_is_on_curve,
|
---|
968 | ossl_ec_GF2m_simple_cmp,
|
---|
969 | ossl_ec_GF2m_simple_make_affine,
|
---|
970 | ossl_ec_GF2m_simple_points_make_affine,
|
---|
971 | ec_GF2m_simple_points_mul,
|
---|
972 | 0, /* precompute_mult */
|
---|
973 | 0, /* have_precompute_mult */
|
---|
974 | ossl_ec_GF2m_simple_field_mul,
|
---|
975 | ossl_ec_GF2m_simple_field_sqr,
|
---|
976 | ossl_ec_GF2m_simple_field_div,
|
---|
977 | ec_GF2m_simple_field_inv,
|
---|
978 | 0, /* field_encode */
|
---|
979 | 0, /* field_decode */
|
---|
980 | 0, /* field_set_to_one */
|
---|
981 | ossl_ec_key_simple_priv2oct,
|
---|
982 | ossl_ec_key_simple_oct2priv,
|
---|
983 | 0, /* set private */
|
---|
984 | ossl_ec_key_simple_generate_key,
|
---|
985 | ossl_ec_key_simple_check_key,
|
---|
986 | ossl_ec_key_simple_generate_public_key,
|
---|
987 | 0, /* keycopy */
|
---|
988 | 0, /* keyfinish */
|
---|
989 | ossl_ecdh_simple_compute_key,
|
---|
990 | ossl_ecdsa_simple_sign_setup,
|
---|
991 | ossl_ecdsa_simple_sign_sig,
|
---|
992 | ossl_ecdsa_simple_verify_sig,
|
---|
993 | 0, /* field_inverse_mod_ord */
|
---|
994 | 0, /* blind_coordinates */
|
---|
995 | ec_GF2m_simple_ladder_pre,
|
---|
996 | ec_GF2m_simple_ladder_step,
|
---|
997 | ec_GF2m_simple_ladder_post
|
---|
998 | };
|
---|
999 |
|
---|
1000 | return &ret;
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | #endif
|
---|