1 | /*
|
---|
2 | * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* Copyright 2011 Google Inc.
|
---|
11 | *
|
---|
12 | * Licensed under the Apache License, Version 2.0 (the "License");
|
---|
13 | *
|
---|
14 | * you may not use this file except in compliance with the License.
|
---|
15 | * You may obtain a copy of the License at
|
---|
16 | *
|
---|
17 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
18 | *
|
---|
19 | * Unless required by applicable law or agreed to in writing, software
|
---|
20 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
22 | * See the License for the specific language governing permissions and
|
---|
23 | * limitations under the License.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /*
|
---|
27 | * ECDSA low level APIs are deprecated for public use, but still ok for
|
---|
28 | * internal use.
|
---|
29 | */
|
---|
30 | #include "internal/deprecated.h"
|
---|
31 |
|
---|
32 | /*
|
---|
33 | * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
|
---|
34 | *
|
---|
35 | * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
|
---|
36 | * and Adam Langley's public domain 64-bit C implementation of curve25519
|
---|
37 | */
|
---|
38 |
|
---|
39 | #include <openssl/opensslconf.h>
|
---|
40 |
|
---|
41 | #include <stdint.h>
|
---|
42 | #include <string.h>
|
---|
43 | #include <openssl/err.h>
|
---|
44 | #include "ec_local.h"
|
---|
45 |
|
---|
46 | #include "internal/numbers.h"
|
---|
47 |
|
---|
48 | #ifndef INT128_MAX
|
---|
49 | # error "Your compiler doesn't appear to support 128-bit integer types"
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | typedef uint8_t u8;
|
---|
53 | typedef uint64_t u64;
|
---|
54 |
|
---|
55 | /******************************************************************************/
|
---|
56 | /*-
|
---|
57 | * INTERNAL REPRESENTATION OF FIELD ELEMENTS
|
---|
58 | *
|
---|
59 | * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
|
---|
60 | * using 64-bit coefficients called 'limbs',
|
---|
61 | * and sometimes (for multiplication results) as
|
---|
62 | * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
|
---|
63 | * using 128-bit coefficients called 'widelimbs'.
|
---|
64 | * A 4-limb representation is an 'felem';
|
---|
65 | * a 7-widelimb representation is a 'widefelem'.
|
---|
66 | * Even within felems, bits of adjacent limbs overlap, and we don't always
|
---|
67 | * reduce the representations: we ensure that inputs to each felem
|
---|
68 | * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
|
---|
69 | * and fit into a 128-bit word without overflow. The coefficients are then
|
---|
70 | * again partially reduced to obtain an felem satisfying a_i < 2^57.
|
---|
71 | * We only reduce to the unique minimal representation at the end of the
|
---|
72 | * computation.
|
---|
73 | */
|
---|
74 |
|
---|
75 | typedef uint64_t limb;
|
---|
76 | typedef uint64_t limb_aX __attribute((__aligned__(1)));
|
---|
77 | typedef uint128_t widelimb;
|
---|
78 |
|
---|
79 | typedef limb felem[4];
|
---|
80 | typedef widelimb widefelem[7];
|
---|
81 |
|
---|
82 | /*
|
---|
83 | * Field element represented as a byte array. 28*8 = 224 bits is also the
|
---|
84 | * group order size for the elliptic curve, and we also use this type for
|
---|
85 | * scalars for point multiplication.
|
---|
86 | */
|
---|
87 | typedef u8 felem_bytearray[28];
|
---|
88 |
|
---|
89 | static const felem_bytearray nistp224_curve_params[5] = {
|
---|
90 | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
|
---|
91 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
|
---|
92 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
|
---|
93 | {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
|
---|
94 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
|
---|
95 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
|
---|
96 | {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
|
---|
97 | 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
|
---|
98 | 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
|
---|
99 | {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
|
---|
100 | 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
|
---|
101 | 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
|
---|
102 | {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
|
---|
103 | 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
|
---|
104 | 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
|
---|
105 | };
|
---|
106 |
|
---|
107 | /*-
|
---|
108 | * Precomputed multiples of the standard generator
|
---|
109 | * Points are given in coordinates (X, Y, Z) where Z normally is 1
|
---|
110 | * (0 for the point at infinity).
|
---|
111 | * For each field element, slice a_0 is word 0, etc.
|
---|
112 | *
|
---|
113 | * The table has 2 * 16 elements, starting with the following:
|
---|
114 | * index | bits | point
|
---|
115 | * ------+---------+------------------------------
|
---|
116 | * 0 | 0 0 0 0 | 0G
|
---|
117 | * 1 | 0 0 0 1 | 1G
|
---|
118 | * 2 | 0 0 1 0 | 2^56G
|
---|
119 | * 3 | 0 0 1 1 | (2^56 + 1)G
|
---|
120 | * 4 | 0 1 0 0 | 2^112G
|
---|
121 | * 5 | 0 1 0 1 | (2^112 + 1)G
|
---|
122 | * 6 | 0 1 1 0 | (2^112 + 2^56)G
|
---|
123 | * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
|
---|
124 | * 8 | 1 0 0 0 | 2^168G
|
---|
125 | * 9 | 1 0 0 1 | (2^168 + 1)G
|
---|
126 | * 10 | 1 0 1 0 | (2^168 + 2^56)G
|
---|
127 | * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
|
---|
128 | * 12 | 1 1 0 0 | (2^168 + 2^112)G
|
---|
129 | * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
|
---|
130 | * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
|
---|
131 | * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
|
---|
132 | * followed by a copy of this with each element multiplied by 2^28.
|
---|
133 | *
|
---|
134 | * The reason for this is so that we can clock bits into four different
|
---|
135 | * locations when doing simple scalar multiplies against the base point,
|
---|
136 | * and then another four locations using the second 16 elements.
|
---|
137 | */
|
---|
138 | static const felem gmul[2][16][3] = {
|
---|
139 | {{{0, 0, 0, 0},
|
---|
140 | {0, 0, 0, 0},
|
---|
141 | {0, 0, 0, 0}},
|
---|
142 | {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
|
---|
143 | {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
|
---|
144 | {1, 0, 0, 0}},
|
---|
145 | {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
|
---|
146 | {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
|
---|
147 | {1, 0, 0, 0}},
|
---|
148 | {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
|
---|
149 | {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
|
---|
150 | {1, 0, 0, 0}},
|
---|
151 | {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
|
---|
152 | {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
|
---|
153 | {1, 0, 0, 0}},
|
---|
154 | {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
|
---|
155 | {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
|
---|
156 | {1, 0, 0, 0}},
|
---|
157 | {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
|
---|
158 | {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
|
---|
159 | {1, 0, 0, 0}},
|
---|
160 | {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
|
---|
161 | {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
|
---|
162 | {1, 0, 0, 0}},
|
---|
163 | {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
|
---|
164 | {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
|
---|
165 | {1, 0, 0, 0}},
|
---|
166 | {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
|
---|
167 | {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
|
---|
168 | {1, 0, 0, 0}},
|
---|
169 | {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
|
---|
170 | {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
|
---|
171 | {1, 0, 0, 0}},
|
---|
172 | {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
|
---|
173 | {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
|
---|
174 | {1, 0, 0, 0}},
|
---|
175 | {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
|
---|
176 | {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
|
---|
177 | {1, 0, 0, 0}},
|
---|
178 | {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
|
---|
179 | {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
|
---|
180 | {1, 0, 0, 0}},
|
---|
181 | {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
|
---|
182 | {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
|
---|
183 | {1, 0, 0, 0}},
|
---|
184 | {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
|
---|
185 | {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
|
---|
186 | {1, 0, 0, 0}}},
|
---|
187 | {{{0, 0, 0, 0},
|
---|
188 | {0, 0, 0, 0},
|
---|
189 | {0, 0, 0, 0}},
|
---|
190 | {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
|
---|
191 | {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
|
---|
192 | {1, 0, 0, 0}},
|
---|
193 | {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
|
---|
194 | {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
|
---|
195 | {1, 0, 0, 0}},
|
---|
196 | {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
|
---|
197 | {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
|
---|
198 | {1, 0, 0, 0}},
|
---|
199 | {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
|
---|
200 | {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
|
---|
201 | {1, 0, 0, 0}},
|
---|
202 | {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
|
---|
203 | {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
|
---|
204 | {1, 0, 0, 0}},
|
---|
205 | {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
|
---|
206 | {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
|
---|
207 | {1, 0, 0, 0}},
|
---|
208 | {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
|
---|
209 | {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
|
---|
210 | {1, 0, 0, 0}},
|
---|
211 | {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
|
---|
212 | {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
|
---|
213 | {1, 0, 0, 0}},
|
---|
214 | {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
|
---|
215 | {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
|
---|
216 | {1, 0, 0, 0}},
|
---|
217 | {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
|
---|
218 | {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
|
---|
219 | {1, 0, 0, 0}},
|
---|
220 | {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
|
---|
221 | {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
|
---|
222 | {1, 0, 0, 0}},
|
---|
223 | {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
|
---|
224 | {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
|
---|
225 | {1, 0, 0, 0}},
|
---|
226 | {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
|
---|
227 | {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
|
---|
228 | {1, 0, 0, 0}},
|
---|
229 | {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
|
---|
230 | {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
|
---|
231 | {1, 0, 0, 0}},
|
---|
232 | {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
|
---|
233 | {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
|
---|
234 | {1, 0, 0, 0}}}
|
---|
235 | };
|
---|
236 |
|
---|
237 | /* Precomputation for the group generator. */
|
---|
238 | struct nistp224_pre_comp_st {
|
---|
239 | felem g_pre_comp[2][16][3];
|
---|
240 | CRYPTO_REF_COUNT references;
|
---|
241 | CRYPTO_RWLOCK *lock;
|
---|
242 | };
|
---|
243 |
|
---|
244 | const EC_METHOD *EC_GFp_nistp224_method(void)
|
---|
245 | {
|
---|
246 | static const EC_METHOD ret = {
|
---|
247 | EC_FLAGS_DEFAULT_OCT,
|
---|
248 | NID_X9_62_prime_field,
|
---|
249 | ossl_ec_GFp_nistp224_group_init,
|
---|
250 | ossl_ec_GFp_simple_group_finish,
|
---|
251 | ossl_ec_GFp_simple_group_clear_finish,
|
---|
252 | ossl_ec_GFp_nist_group_copy,
|
---|
253 | ossl_ec_GFp_nistp224_group_set_curve,
|
---|
254 | ossl_ec_GFp_simple_group_get_curve,
|
---|
255 | ossl_ec_GFp_simple_group_get_degree,
|
---|
256 | ossl_ec_group_simple_order_bits,
|
---|
257 | ossl_ec_GFp_simple_group_check_discriminant,
|
---|
258 | ossl_ec_GFp_simple_point_init,
|
---|
259 | ossl_ec_GFp_simple_point_finish,
|
---|
260 | ossl_ec_GFp_simple_point_clear_finish,
|
---|
261 | ossl_ec_GFp_simple_point_copy,
|
---|
262 | ossl_ec_GFp_simple_point_set_to_infinity,
|
---|
263 | ossl_ec_GFp_simple_point_set_affine_coordinates,
|
---|
264 | ossl_ec_GFp_nistp224_point_get_affine_coordinates,
|
---|
265 | 0 /* point_set_compressed_coordinates */ ,
|
---|
266 | 0 /* point2oct */ ,
|
---|
267 | 0 /* oct2point */ ,
|
---|
268 | ossl_ec_GFp_simple_add,
|
---|
269 | ossl_ec_GFp_simple_dbl,
|
---|
270 | ossl_ec_GFp_simple_invert,
|
---|
271 | ossl_ec_GFp_simple_is_at_infinity,
|
---|
272 | ossl_ec_GFp_simple_is_on_curve,
|
---|
273 | ossl_ec_GFp_simple_cmp,
|
---|
274 | ossl_ec_GFp_simple_make_affine,
|
---|
275 | ossl_ec_GFp_simple_points_make_affine,
|
---|
276 | ossl_ec_GFp_nistp224_points_mul,
|
---|
277 | ossl_ec_GFp_nistp224_precompute_mult,
|
---|
278 | ossl_ec_GFp_nistp224_have_precompute_mult,
|
---|
279 | ossl_ec_GFp_nist_field_mul,
|
---|
280 | ossl_ec_GFp_nist_field_sqr,
|
---|
281 | 0 /* field_div */ ,
|
---|
282 | ossl_ec_GFp_simple_field_inv,
|
---|
283 | 0 /* field_encode */ ,
|
---|
284 | 0 /* field_decode */ ,
|
---|
285 | 0, /* field_set_to_one */
|
---|
286 | ossl_ec_key_simple_priv2oct,
|
---|
287 | ossl_ec_key_simple_oct2priv,
|
---|
288 | 0, /* set private */
|
---|
289 | ossl_ec_key_simple_generate_key,
|
---|
290 | ossl_ec_key_simple_check_key,
|
---|
291 | ossl_ec_key_simple_generate_public_key,
|
---|
292 | 0, /* keycopy */
|
---|
293 | 0, /* keyfinish */
|
---|
294 | ossl_ecdh_simple_compute_key,
|
---|
295 | ossl_ecdsa_simple_sign_setup,
|
---|
296 | ossl_ecdsa_simple_sign_sig,
|
---|
297 | ossl_ecdsa_simple_verify_sig,
|
---|
298 | 0, /* field_inverse_mod_ord */
|
---|
299 | 0, /* blind_coordinates */
|
---|
300 | 0, /* ladder_pre */
|
---|
301 | 0, /* ladder_step */
|
---|
302 | 0 /* ladder_post */
|
---|
303 | };
|
---|
304 |
|
---|
305 | return &ret;
|
---|
306 | }
|
---|
307 |
|
---|
308 | /*
|
---|
309 | * Helper functions to convert field elements to/from internal representation
|
---|
310 | */
|
---|
311 | static void bin28_to_felem(felem out, const u8 in[28])
|
---|
312 | {
|
---|
313 | out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
|
---|
314 | out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
|
---|
315 | out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
|
---|
316 | out[3] = (*((const limb_aX *)(in + 20))) >> 8;
|
---|
317 | }
|
---|
318 |
|
---|
319 | static void felem_to_bin28(u8 out[28], const felem in)
|
---|
320 | {
|
---|
321 | unsigned i;
|
---|
322 | for (i = 0; i < 7; ++i) {
|
---|
323 | out[i] = in[0] >> (8 * i);
|
---|
324 | out[i + 7] = in[1] >> (8 * i);
|
---|
325 | out[i + 14] = in[2] >> (8 * i);
|
---|
326 | out[i + 21] = in[3] >> (8 * i);
|
---|
327 | }
|
---|
328 | }
|
---|
329 |
|
---|
330 | /* From OpenSSL BIGNUM to internal representation */
|
---|
331 | static int BN_to_felem(felem out, const BIGNUM *bn)
|
---|
332 | {
|
---|
333 | felem_bytearray b_out;
|
---|
334 | int num_bytes;
|
---|
335 |
|
---|
336 | if (BN_is_negative(bn)) {
|
---|
337 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
338 | return 0;
|
---|
339 | }
|
---|
340 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
---|
341 | if (num_bytes < 0) {
|
---|
342 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
343 | return 0;
|
---|
344 | }
|
---|
345 | bin28_to_felem(out, b_out);
|
---|
346 | return 1;
|
---|
347 | }
|
---|
348 |
|
---|
349 | /* From internal representation to OpenSSL BIGNUM */
|
---|
350 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
|
---|
351 | {
|
---|
352 | felem_bytearray b_out;
|
---|
353 | felem_to_bin28(b_out, in);
|
---|
354 | return BN_lebin2bn(b_out, sizeof(b_out), out);
|
---|
355 | }
|
---|
356 |
|
---|
357 | /******************************************************************************/
|
---|
358 | /*-
|
---|
359 | * FIELD OPERATIONS
|
---|
360 | *
|
---|
361 | * Field operations, using the internal representation of field elements.
|
---|
362 | * NB! These operations are specific to our point multiplication and cannot be
|
---|
363 | * expected to be correct in general - e.g., multiplication with a large scalar
|
---|
364 | * will cause an overflow.
|
---|
365 | *
|
---|
366 | */
|
---|
367 |
|
---|
368 | static void felem_one(felem out)
|
---|
369 | {
|
---|
370 | out[0] = 1;
|
---|
371 | out[1] = 0;
|
---|
372 | out[2] = 0;
|
---|
373 | out[3] = 0;
|
---|
374 | }
|
---|
375 |
|
---|
376 | static void felem_assign(felem out, const felem in)
|
---|
377 | {
|
---|
378 | out[0] = in[0];
|
---|
379 | out[1] = in[1];
|
---|
380 | out[2] = in[2];
|
---|
381 | out[3] = in[3];
|
---|
382 | }
|
---|
383 |
|
---|
384 | /* Sum two field elements: out += in */
|
---|
385 | static void felem_sum(felem out, const felem in)
|
---|
386 | {
|
---|
387 | out[0] += in[0];
|
---|
388 | out[1] += in[1];
|
---|
389 | out[2] += in[2];
|
---|
390 | out[3] += in[3];
|
---|
391 | }
|
---|
392 |
|
---|
393 | /* Subtract field elements: out -= in */
|
---|
394 | /* Assumes in[i] < 2^57 */
|
---|
395 | static void felem_diff(felem out, const felem in)
|
---|
396 | {
|
---|
397 | static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
|
---|
398 | static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
|
---|
399 | static const limb two58m42m2 = (((limb) 1) << 58) -
|
---|
400 | (((limb) 1) << 42) - (((limb) 1) << 2);
|
---|
401 |
|
---|
402 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */
|
---|
403 | out[0] += two58p2;
|
---|
404 | out[1] += two58m42m2;
|
---|
405 | out[2] += two58m2;
|
---|
406 | out[3] += two58m2;
|
---|
407 |
|
---|
408 | out[0] -= in[0];
|
---|
409 | out[1] -= in[1];
|
---|
410 | out[2] -= in[2];
|
---|
411 | out[3] -= in[3];
|
---|
412 | }
|
---|
413 |
|
---|
414 | /* Subtract in unreduced 128-bit mode: out -= in */
|
---|
415 | /* Assumes in[i] < 2^119 */
|
---|
416 | static void widefelem_diff(widefelem out, const widefelem in)
|
---|
417 | {
|
---|
418 | static const widelimb two120 = ((widelimb) 1) << 120;
|
---|
419 | static const widelimb two120m64 = (((widelimb) 1) << 120) -
|
---|
420 | (((widelimb) 1) << 64);
|
---|
421 | static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
|
---|
422 | (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
|
---|
423 |
|
---|
424 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */
|
---|
425 | out[0] += two120;
|
---|
426 | out[1] += two120m64;
|
---|
427 | out[2] += two120m64;
|
---|
428 | out[3] += two120;
|
---|
429 | out[4] += two120m104m64;
|
---|
430 | out[5] += two120m64;
|
---|
431 | out[6] += two120m64;
|
---|
432 |
|
---|
433 | out[0] -= in[0];
|
---|
434 | out[1] -= in[1];
|
---|
435 | out[2] -= in[2];
|
---|
436 | out[3] -= in[3];
|
---|
437 | out[4] -= in[4];
|
---|
438 | out[5] -= in[5];
|
---|
439 | out[6] -= in[6];
|
---|
440 | }
|
---|
441 |
|
---|
442 | /* Subtract in mixed mode: out128 -= in64 */
|
---|
443 | /* in[i] < 2^63 */
|
---|
444 | static void felem_diff_128_64(widefelem out, const felem in)
|
---|
445 | {
|
---|
446 | static const widelimb two64p8 = (((widelimb) 1) << 64) +
|
---|
447 | (((widelimb) 1) << 8);
|
---|
448 | static const widelimb two64m8 = (((widelimb) 1) << 64) -
|
---|
449 | (((widelimb) 1) << 8);
|
---|
450 | static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
|
---|
451 | (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
|
---|
452 |
|
---|
453 | /* Add 0 mod 2^224-2^96+1 to ensure out > in */
|
---|
454 | out[0] += two64p8;
|
---|
455 | out[1] += two64m48m8;
|
---|
456 | out[2] += two64m8;
|
---|
457 | out[3] += two64m8;
|
---|
458 |
|
---|
459 | out[0] -= in[0];
|
---|
460 | out[1] -= in[1];
|
---|
461 | out[2] -= in[2];
|
---|
462 | out[3] -= in[3];
|
---|
463 | }
|
---|
464 |
|
---|
465 | /*
|
---|
466 | * Multiply a field element by a scalar: out = out * scalar The scalars we
|
---|
467 | * actually use are small, so results fit without overflow
|
---|
468 | */
|
---|
469 | static void felem_scalar(felem out, const limb scalar)
|
---|
470 | {
|
---|
471 | out[0] *= scalar;
|
---|
472 | out[1] *= scalar;
|
---|
473 | out[2] *= scalar;
|
---|
474 | out[3] *= scalar;
|
---|
475 | }
|
---|
476 |
|
---|
477 | /*
|
---|
478 | * Multiply an unreduced field element by a scalar: out = out * scalar The
|
---|
479 | * scalars we actually use are small, so results fit without overflow
|
---|
480 | */
|
---|
481 | static void widefelem_scalar(widefelem out, const widelimb scalar)
|
---|
482 | {
|
---|
483 | out[0] *= scalar;
|
---|
484 | out[1] *= scalar;
|
---|
485 | out[2] *= scalar;
|
---|
486 | out[3] *= scalar;
|
---|
487 | out[4] *= scalar;
|
---|
488 | out[5] *= scalar;
|
---|
489 | out[6] *= scalar;
|
---|
490 | }
|
---|
491 |
|
---|
492 | /* Square a field element: out = in^2 */
|
---|
493 | static void felem_square(widefelem out, const felem in)
|
---|
494 | {
|
---|
495 | limb tmp0, tmp1, tmp2;
|
---|
496 | tmp0 = 2 * in[0];
|
---|
497 | tmp1 = 2 * in[1];
|
---|
498 | tmp2 = 2 * in[2];
|
---|
499 | out[0] = ((widelimb) in[0]) * in[0];
|
---|
500 | out[1] = ((widelimb) in[0]) * tmp1;
|
---|
501 | out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
|
---|
502 | out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
|
---|
503 | out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
|
---|
504 | out[5] = ((widelimb) in[3]) * tmp2;
|
---|
505 | out[6] = ((widelimb) in[3]) * in[3];
|
---|
506 | }
|
---|
507 |
|
---|
508 | /* Multiply two field elements: out = in1 * in2 */
|
---|
509 | static void felem_mul(widefelem out, const felem in1, const felem in2)
|
---|
510 | {
|
---|
511 | out[0] = ((widelimb) in1[0]) * in2[0];
|
---|
512 | out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
|
---|
513 | out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
|
---|
514 | ((widelimb) in1[2]) * in2[0];
|
---|
515 | out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
|
---|
516 | ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
|
---|
517 | out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
|
---|
518 | ((widelimb) in1[3]) * in2[1];
|
---|
519 | out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
|
---|
520 | out[6] = ((widelimb) in1[3]) * in2[3];
|
---|
521 | }
|
---|
522 |
|
---|
523 | /*-
|
---|
524 | * Reduce seven 128-bit coefficients to four 64-bit coefficients.
|
---|
525 | * Requires in[i] < 2^126,
|
---|
526 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
|
---|
527 | static void felem_reduce(felem out, const widefelem in)
|
---|
528 | {
|
---|
529 | static const widelimb two127p15 = (((widelimb) 1) << 127) +
|
---|
530 | (((widelimb) 1) << 15);
|
---|
531 | static const widelimb two127m71 = (((widelimb) 1) << 127) -
|
---|
532 | (((widelimb) 1) << 71);
|
---|
533 | static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
|
---|
534 | (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
|
---|
535 | widelimb output[5];
|
---|
536 |
|
---|
537 | /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
|
---|
538 | output[0] = in[0] + two127p15;
|
---|
539 | output[1] = in[1] + two127m71m55;
|
---|
540 | output[2] = in[2] + two127m71;
|
---|
541 | output[3] = in[3];
|
---|
542 | output[4] = in[4];
|
---|
543 |
|
---|
544 | /* Eliminate in[4], in[5], in[6] */
|
---|
545 | output[4] += in[6] >> 16;
|
---|
546 | output[3] += (in[6] & 0xffff) << 40;
|
---|
547 | output[2] -= in[6];
|
---|
548 |
|
---|
549 | output[3] += in[5] >> 16;
|
---|
550 | output[2] += (in[5] & 0xffff) << 40;
|
---|
551 | output[1] -= in[5];
|
---|
552 |
|
---|
553 | output[2] += output[4] >> 16;
|
---|
554 | output[1] += (output[4] & 0xffff) << 40;
|
---|
555 | output[0] -= output[4];
|
---|
556 |
|
---|
557 | /* Carry 2 -> 3 -> 4 */
|
---|
558 | output[3] += output[2] >> 56;
|
---|
559 | output[2] &= 0x00ffffffffffffff;
|
---|
560 |
|
---|
561 | output[4] = output[3] >> 56;
|
---|
562 | output[3] &= 0x00ffffffffffffff;
|
---|
563 |
|
---|
564 | /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
|
---|
565 |
|
---|
566 | /* Eliminate output[4] */
|
---|
567 | output[2] += output[4] >> 16;
|
---|
568 | /* output[2] < 2^56 + 2^56 = 2^57 */
|
---|
569 | output[1] += (output[4] & 0xffff) << 40;
|
---|
570 | output[0] -= output[4];
|
---|
571 |
|
---|
572 | /* Carry 0 -> 1 -> 2 -> 3 */
|
---|
573 | output[1] += output[0] >> 56;
|
---|
574 | out[0] = output[0] & 0x00ffffffffffffff;
|
---|
575 |
|
---|
576 | output[2] += output[1] >> 56;
|
---|
577 | /* output[2] < 2^57 + 2^72 */
|
---|
578 | out[1] = output[1] & 0x00ffffffffffffff;
|
---|
579 | output[3] += output[2] >> 56;
|
---|
580 | /* output[3] <= 2^56 + 2^16 */
|
---|
581 | out[2] = output[2] & 0x00ffffffffffffff;
|
---|
582 |
|
---|
583 | /*-
|
---|
584 | * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
|
---|
585 | * out[3] <= 2^56 + 2^16 (due to final carry),
|
---|
586 | * so out < 2*p
|
---|
587 | */
|
---|
588 | out[3] = output[3];
|
---|
589 | }
|
---|
590 |
|
---|
591 | static void felem_square_reduce(felem out, const felem in)
|
---|
592 | {
|
---|
593 | widefelem tmp;
|
---|
594 | felem_square(tmp, in);
|
---|
595 | felem_reduce(out, tmp);
|
---|
596 | }
|
---|
597 |
|
---|
598 | static void felem_mul_reduce(felem out, const felem in1, const felem in2)
|
---|
599 | {
|
---|
600 | widefelem tmp;
|
---|
601 | felem_mul(tmp, in1, in2);
|
---|
602 | felem_reduce(out, tmp);
|
---|
603 | }
|
---|
604 |
|
---|
605 | /*
|
---|
606 | * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
|
---|
607 | * call felem_reduce first)
|
---|
608 | */
|
---|
609 | static void felem_contract(felem out, const felem in)
|
---|
610 | {
|
---|
611 | static const int64_t two56 = ((limb) 1) << 56;
|
---|
612 | /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
|
---|
613 | /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
|
---|
614 | int64_t tmp[4], a;
|
---|
615 | tmp[0] = in[0];
|
---|
616 | tmp[1] = in[1];
|
---|
617 | tmp[2] = in[2];
|
---|
618 | tmp[3] = in[3];
|
---|
619 | /* Case 1: a = 1 iff in >= 2^224 */
|
---|
620 | a = (in[3] >> 56);
|
---|
621 | tmp[0] -= a;
|
---|
622 | tmp[1] += a << 40;
|
---|
623 | tmp[3] &= 0x00ffffffffffffff;
|
---|
624 | /*
|
---|
625 | * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
|
---|
626 | * and the lower part is non-zero
|
---|
627 | */
|
---|
628 | a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
|
---|
629 | (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
|
---|
630 | a &= 0x00ffffffffffffff;
|
---|
631 | /* turn a into an all-one mask (if a = 0) or an all-zero mask */
|
---|
632 | a = (a - 1) >> 63;
|
---|
633 | /* subtract 2^224 - 2^96 + 1 if a is all-one */
|
---|
634 | tmp[3] &= a ^ 0xffffffffffffffff;
|
---|
635 | tmp[2] &= a ^ 0xffffffffffffffff;
|
---|
636 | tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
|
---|
637 | tmp[0] -= 1 & a;
|
---|
638 |
|
---|
639 | /*
|
---|
640 | * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
|
---|
641 | * non-zero, so we only need one step
|
---|
642 | */
|
---|
643 | a = tmp[0] >> 63;
|
---|
644 | tmp[0] += two56 & a;
|
---|
645 | tmp[1] -= 1 & a;
|
---|
646 |
|
---|
647 | /* carry 1 -> 2 -> 3 */
|
---|
648 | tmp[2] += tmp[1] >> 56;
|
---|
649 | tmp[1] &= 0x00ffffffffffffff;
|
---|
650 |
|
---|
651 | tmp[3] += tmp[2] >> 56;
|
---|
652 | tmp[2] &= 0x00ffffffffffffff;
|
---|
653 |
|
---|
654 | /* Now 0 <= out < p */
|
---|
655 | out[0] = tmp[0];
|
---|
656 | out[1] = tmp[1];
|
---|
657 | out[2] = tmp[2];
|
---|
658 | out[3] = tmp[3];
|
---|
659 | }
|
---|
660 |
|
---|
661 | /*
|
---|
662 | * Get negative value: out = -in
|
---|
663 | * Requires in[i] < 2^63,
|
---|
664 | * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
|
---|
665 | */
|
---|
666 | static void felem_neg(felem out, const felem in)
|
---|
667 | {
|
---|
668 | widefelem tmp;
|
---|
669 |
|
---|
670 | memset(tmp, 0, sizeof(tmp));
|
---|
671 | felem_diff_128_64(tmp, in);
|
---|
672 | felem_reduce(out, tmp);
|
---|
673 | }
|
---|
674 |
|
---|
675 | /*
|
---|
676 | * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
|
---|
677 | * elements are reduced to in < 2^225, so we only need to check three cases:
|
---|
678 | * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
|
---|
679 | */
|
---|
680 | static limb felem_is_zero(const felem in)
|
---|
681 | {
|
---|
682 | limb zero, two224m96p1, two225m97p2;
|
---|
683 |
|
---|
684 | zero = in[0] | in[1] | in[2] | in[3];
|
---|
685 | zero = (((int64_t) (zero) - 1) >> 63) & 1;
|
---|
686 | two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
|
---|
687 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
|
---|
688 | two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
|
---|
689 | two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
|
---|
690 | | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
|
---|
691 | two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
|
---|
692 | return (zero | two224m96p1 | two225m97p2);
|
---|
693 | }
|
---|
694 |
|
---|
695 | static int felem_is_zero_int(const void *in)
|
---|
696 | {
|
---|
697 | return (int)(felem_is_zero(in) & ((limb) 1));
|
---|
698 | }
|
---|
699 |
|
---|
700 | /* Invert a field element */
|
---|
701 | /* Computation chain copied from djb's code */
|
---|
702 | static void felem_inv(felem out, const felem in)
|
---|
703 | {
|
---|
704 | felem ftmp, ftmp2, ftmp3, ftmp4;
|
---|
705 | widefelem tmp;
|
---|
706 | unsigned i;
|
---|
707 |
|
---|
708 | felem_square(tmp, in);
|
---|
709 | felem_reduce(ftmp, tmp); /* 2 */
|
---|
710 | felem_mul(tmp, in, ftmp);
|
---|
711 | felem_reduce(ftmp, tmp); /* 2^2 - 1 */
|
---|
712 | felem_square(tmp, ftmp);
|
---|
713 | felem_reduce(ftmp, tmp); /* 2^3 - 2 */
|
---|
714 | felem_mul(tmp, in, ftmp);
|
---|
715 | felem_reduce(ftmp, tmp); /* 2^3 - 1 */
|
---|
716 | felem_square(tmp, ftmp);
|
---|
717 | felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
|
---|
718 | felem_square(tmp, ftmp2);
|
---|
719 | felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
|
---|
720 | felem_square(tmp, ftmp2);
|
---|
721 | felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
|
---|
722 | felem_mul(tmp, ftmp2, ftmp);
|
---|
723 | felem_reduce(ftmp, tmp); /* 2^6 - 1 */
|
---|
724 | felem_square(tmp, ftmp);
|
---|
725 | felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
|
---|
726 | for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
|
---|
727 | felem_square(tmp, ftmp2);
|
---|
728 | felem_reduce(ftmp2, tmp);
|
---|
729 | }
|
---|
730 | felem_mul(tmp, ftmp2, ftmp);
|
---|
731 | felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
|
---|
732 | felem_square(tmp, ftmp2);
|
---|
733 | felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
|
---|
734 | for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */
|
---|
735 | felem_square(tmp, ftmp3);
|
---|
736 | felem_reduce(ftmp3, tmp);
|
---|
737 | }
|
---|
738 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
739 | felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
|
---|
740 | felem_square(tmp, ftmp2);
|
---|
741 | felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
|
---|
742 | for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */
|
---|
743 | felem_square(tmp, ftmp3);
|
---|
744 | felem_reduce(ftmp3, tmp);
|
---|
745 | }
|
---|
746 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
747 | felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
|
---|
748 | felem_square(tmp, ftmp3);
|
---|
749 | felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
|
---|
750 | for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */
|
---|
751 | felem_square(tmp, ftmp4);
|
---|
752 | felem_reduce(ftmp4, tmp);
|
---|
753 | }
|
---|
754 | felem_mul(tmp, ftmp3, ftmp4);
|
---|
755 | felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
|
---|
756 | felem_square(tmp, ftmp3);
|
---|
757 | felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
|
---|
758 | for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */
|
---|
759 | felem_square(tmp, ftmp4);
|
---|
760 | felem_reduce(ftmp4, tmp);
|
---|
761 | }
|
---|
762 | felem_mul(tmp, ftmp2, ftmp4);
|
---|
763 | felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
|
---|
764 | for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
|
---|
765 | felem_square(tmp, ftmp2);
|
---|
766 | felem_reduce(ftmp2, tmp);
|
---|
767 | }
|
---|
768 | felem_mul(tmp, ftmp2, ftmp);
|
---|
769 | felem_reduce(ftmp, tmp); /* 2^126 - 1 */
|
---|
770 | felem_square(tmp, ftmp);
|
---|
771 | felem_reduce(ftmp, tmp); /* 2^127 - 2 */
|
---|
772 | felem_mul(tmp, ftmp, in);
|
---|
773 | felem_reduce(ftmp, tmp); /* 2^127 - 1 */
|
---|
774 | for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */
|
---|
775 | felem_square(tmp, ftmp);
|
---|
776 | felem_reduce(ftmp, tmp);
|
---|
777 | }
|
---|
778 | felem_mul(tmp, ftmp, ftmp3);
|
---|
779 | felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
|
---|
780 | }
|
---|
781 |
|
---|
782 | /*
|
---|
783 | * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
|
---|
784 | * out to itself.
|
---|
785 | */
|
---|
786 | static void copy_conditional(felem out, const felem in, limb icopy)
|
---|
787 | {
|
---|
788 | unsigned i;
|
---|
789 | /*
|
---|
790 | * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
|
---|
791 | */
|
---|
792 | const limb copy = -icopy;
|
---|
793 | for (i = 0; i < 4; ++i) {
|
---|
794 | const limb tmp = copy & (in[i] ^ out[i]);
|
---|
795 | out[i] ^= tmp;
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | /******************************************************************************/
|
---|
800 | /*-
|
---|
801 | * ELLIPTIC CURVE POINT OPERATIONS
|
---|
802 | *
|
---|
803 | * Points are represented in Jacobian projective coordinates:
|
---|
804 | * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
|
---|
805 | * or to the point at infinity if Z == 0.
|
---|
806 | *
|
---|
807 | */
|
---|
808 |
|
---|
809 | /*-
|
---|
810 | * Double an elliptic curve point:
|
---|
811 | * (X', Y', Z') = 2 * (X, Y, Z), where
|
---|
812 | * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
|
---|
813 | * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
|
---|
814 | * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
|
---|
815 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
|
---|
816 | * while x_out == y_in is not (maybe this works, but it's not tested).
|
---|
817 | */
|
---|
818 | static void
|
---|
819 | point_double(felem x_out, felem y_out, felem z_out,
|
---|
820 | const felem x_in, const felem y_in, const felem z_in)
|
---|
821 | {
|
---|
822 | widefelem tmp, tmp2;
|
---|
823 | felem delta, gamma, beta, alpha, ftmp, ftmp2;
|
---|
824 |
|
---|
825 | felem_assign(ftmp, x_in);
|
---|
826 | felem_assign(ftmp2, x_in);
|
---|
827 |
|
---|
828 | /* delta = z^2 */
|
---|
829 | felem_square(tmp, z_in);
|
---|
830 | felem_reduce(delta, tmp);
|
---|
831 |
|
---|
832 | /* gamma = y^2 */
|
---|
833 | felem_square(tmp, y_in);
|
---|
834 | felem_reduce(gamma, tmp);
|
---|
835 |
|
---|
836 | /* beta = x*gamma */
|
---|
837 | felem_mul(tmp, x_in, gamma);
|
---|
838 | felem_reduce(beta, tmp);
|
---|
839 |
|
---|
840 | /* alpha = 3*(x-delta)*(x+delta) */
|
---|
841 | felem_diff(ftmp, delta);
|
---|
842 | /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
|
---|
843 | felem_sum(ftmp2, delta);
|
---|
844 | /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
|
---|
845 | felem_scalar(ftmp2, 3);
|
---|
846 | /* ftmp2[i] < 3 * 2^58 < 2^60 */
|
---|
847 | felem_mul(tmp, ftmp, ftmp2);
|
---|
848 | /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
|
---|
849 | felem_reduce(alpha, tmp);
|
---|
850 |
|
---|
851 | /* x' = alpha^2 - 8*beta */
|
---|
852 | felem_square(tmp, alpha);
|
---|
853 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
|
---|
854 | felem_assign(ftmp, beta);
|
---|
855 | felem_scalar(ftmp, 8);
|
---|
856 | /* ftmp[i] < 8 * 2^57 = 2^60 */
|
---|
857 | felem_diff_128_64(tmp, ftmp);
|
---|
858 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
|
---|
859 | felem_reduce(x_out, tmp);
|
---|
860 |
|
---|
861 | /* z' = (y + z)^2 - gamma - delta */
|
---|
862 | felem_sum(delta, gamma);
|
---|
863 | /* delta[i] < 2^57 + 2^57 = 2^58 */
|
---|
864 | felem_assign(ftmp, y_in);
|
---|
865 | felem_sum(ftmp, z_in);
|
---|
866 | /* ftmp[i] < 2^57 + 2^57 = 2^58 */
|
---|
867 | felem_square(tmp, ftmp);
|
---|
868 | /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
|
---|
869 | felem_diff_128_64(tmp, delta);
|
---|
870 | /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
|
---|
871 | felem_reduce(z_out, tmp);
|
---|
872 |
|
---|
873 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */
|
---|
874 | felem_scalar(beta, 4);
|
---|
875 | /* beta[i] < 4 * 2^57 = 2^59 */
|
---|
876 | felem_diff(beta, x_out);
|
---|
877 | /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
|
---|
878 | felem_mul(tmp, alpha, beta);
|
---|
879 | /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
|
---|
880 | felem_square(tmp2, gamma);
|
---|
881 | /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
|
---|
882 | widefelem_scalar(tmp2, 8);
|
---|
883 | /* tmp2[i] < 8 * 2^116 = 2^119 */
|
---|
884 | widefelem_diff(tmp, tmp2);
|
---|
885 | /* tmp[i] < 2^119 + 2^120 < 2^121 */
|
---|
886 | felem_reduce(y_out, tmp);
|
---|
887 | }
|
---|
888 |
|
---|
889 | /*-
|
---|
890 | * Add two elliptic curve points:
|
---|
891 | * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
|
---|
892 | * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
|
---|
893 | * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
|
---|
894 | * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
|
---|
895 | * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
|
---|
896 | * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
|
---|
897 | *
|
---|
898 | * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
|
---|
899 | */
|
---|
900 |
|
---|
901 | /*
|
---|
902 | * This function is not entirely constant-time: it includes a branch for
|
---|
903 | * checking whether the two input points are equal, (while not equal to the
|
---|
904 | * point at infinity). This case never happens during single point
|
---|
905 | * multiplication, so there is no timing leak for ECDH or ECDSA signing.
|
---|
906 | */
|
---|
907 | static void point_add(felem x3, felem y3, felem z3,
|
---|
908 | const felem x1, const felem y1, const felem z1,
|
---|
909 | const int mixed, const felem x2, const felem y2,
|
---|
910 | const felem z2)
|
---|
911 | {
|
---|
912 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
|
---|
913 | widefelem tmp, tmp2;
|
---|
914 | limb z1_is_zero, z2_is_zero, x_equal, y_equal;
|
---|
915 | limb points_equal;
|
---|
916 |
|
---|
917 | if (!mixed) {
|
---|
918 | /* ftmp2 = z2^2 */
|
---|
919 | felem_square(tmp, z2);
|
---|
920 | felem_reduce(ftmp2, tmp);
|
---|
921 |
|
---|
922 | /* ftmp4 = z2^3 */
|
---|
923 | felem_mul(tmp, ftmp2, z2);
|
---|
924 | felem_reduce(ftmp4, tmp);
|
---|
925 |
|
---|
926 | /* ftmp4 = z2^3*y1 */
|
---|
927 | felem_mul(tmp2, ftmp4, y1);
|
---|
928 | felem_reduce(ftmp4, tmp2);
|
---|
929 |
|
---|
930 | /* ftmp2 = z2^2*x1 */
|
---|
931 | felem_mul(tmp2, ftmp2, x1);
|
---|
932 | felem_reduce(ftmp2, tmp2);
|
---|
933 | } else {
|
---|
934 | /*
|
---|
935 | * We'll assume z2 = 1 (special case z2 = 0 is handled later)
|
---|
936 | */
|
---|
937 |
|
---|
938 | /* ftmp4 = z2^3*y1 */
|
---|
939 | felem_assign(ftmp4, y1);
|
---|
940 |
|
---|
941 | /* ftmp2 = z2^2*x1 */
|
---|
942 | felem_assign(ftmp2, x1);
|
---|
943 | }
|
---|
944 |
|
---|
945 | /* ftmp = z1^2 */
|
---|
946 | felem_square(tmp, z1);
|
---|
947 | felem_reduce(ftmp, tmp);
|
---|
948 |
|
---|
949 | /* ftmp3 = z1^3 */
|
---|
950 | felem_mul(tmp, ftmp, z1);
|
---|
951 | felem_reduce(ftmp3, tmp);
|
---|
952 |
|
---|
953 | /* tmp = z1^3*y2 */
|
---|
954 | felem_mul(tmp, ftmp3, y2);
|
---|
955 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
|
---|
956 |
|
---|
957 | /* ftmp3 = z1^3*y2 - z2^3*y1 */
|
---|
958 | felem_diff_128_64(tmp, ftmp4);
|
---|
959 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
|
---|
960 | felem_reduce(ftmp3, tmp);
|
---|
961 |
|
---|
962 | /* tmp = z1^2*x2 */
|
---|
963 | felem_mul(tmp, ftmp, x2);
|
---|
964 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
|
---|
965 |
|
---|
966 | /* ftmp = z1^2*x2 - z2^2*x1 */
|
---|
967 | felem_diff_128_64(tmp, ftmp2);
|
---|
968 | /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
|
---|
969 | felem_reduce(ftmp, tmp);
|
---|
970 |
|
---|
971 | /*
|
---|
972 | * The formulae are incorrect if the points are equal, in affine coordinates
|
---|
973 | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
---|
974 | * happens.
|
---|
975 | *
|
---|
976 | * We use bitwise operations to avoid potential side-channels introduced by
|
---|
977 | * the short-circuiting behaviour of boolean operators.
|
---|
978 | */
|
---|
979 | x_equal = felem_is_zero(ftmp);
|
---|
980 | y_equal = felem_is_zero(ftmp3);
|
---|
981 | /*
|
---|
982 | * The special case of either point being the point at infinity (z1 and/or
|
---|
983 | * z2 are zero), is handled separately later on in this function, so we
|
---|
984 | * avoid jumping to point_double here in those special cases.
|
---|
985 | */
|
---|
986 | z1_is_zero = felem_is_zero(z1);
|
---|
987 | z2_is_zero = felem_is_zero(z2);
|
---|
988 |
|
---|
989 | /*
|
---|
990 | * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
|
---|
991 | * specific implementation `felem_is_zero()` returns truth as `0x1`
|
---|
992 | * (rather than `0xff..ff`).
|
---|
993 | *
|
---|
994 | * This implies that `~true` in this implementation becomes
|
---|
995 | * `0xff..fe` (rather than `0x0`): for this reason, to be used in
|
---|
996 | * the if expression, we mask out only the last bit in the next
|
---|
997 | * line.
|
---|
998 | */
|
---|
999 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
|
---|
1000 |
|
---|
1001 | if (points_equal) {
|
---|
1002 | /*
|
---|
1003 | * This is obviously not constant-time but, as mentioned before, this
|
---|
1004 | * case never happens during single point multiplication, so there is no
|
---|
1005 | * timing leak for ECDH or ECDSA signing.
|
---|
1006 | */
|
---|
1007 | point_double(x3, y3, z3, x1, y1, z1);
|
---|
1008 | return;
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | /* ftmp5 = z1*z2 */
|
---|
1012 | if (!mixed) {
|
---|
1013 | felem_mul(tmp, z1, z2);
|
---|
1014 | felem_reduce(ftmp5, tmp);
|
---|
1015 | } else {
|
---|
1016 | /* special case z2 = 0 is handled later */
|
---|
1017 | felem_assign(ftmp5, z1);
|
---|
1018 | }
|
---|
1019 |
|
---|
1020 | /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
|
---|
1021 | felem_mul(tmp, ftmp, ftmp5);
|
---|
1022 | felem_reduce(z_out, tmp);
|
---|
1023 |
|
---|
1024 | /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
|
---|
1025 | felem_assign(ftmp5, ftmp);
|
---|
1026 | felem_square(tmp, ftmp);
|
---|
1027 | felem_reduce(ftmp, tmp);
|
---|
1028 |
|
---|
1029 | /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
|
---|
1030 | felem_mul(tmp, ftmp, ftmp5);
|
---|
1031 | felem_reduce(ftmp5, tmp);
|
---|
1032 |
|
---|
1033 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
|
---|
1034 | felem_mul(tmp, ftmp2, ftmp);
|
---|
1035 | felem_reduce(ftmp2, tmp);
|
---|
1036 |
|
---|
1037 | /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
|
---|
1038 | felem_mul(tmp, ftmp4, ftmp5);
|
---|
1039 | /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
|
---|
1040 |
|
---|
1041 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
|
---|
1042 | felem_square(tmp2, ftmp3);
|
---|
1043 | /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
|
---|
1044 |
|
---|
1045 | /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
|
---|
1046 | felem_diff_128_64(tmp2, ftmp5);
|
---|
1047 | /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
|
---|
1048 |
|
---|
1049 | /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
|
---|
1050 | felem_assign(ftmp5, ftmp2);
|
---|
1051 | felem_scalar(ftmp5, 2);
|
---|
1052 | /* ftmp5[i] < 2 * 2^57 = 2^58 */
|
---|
1053 |
|
---|
1054 | /*-
|
---|
1055 | * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
|
---|
1056 | * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
|
---|
1057 | */
|
---|
1058 | felem_diff_128_64(tmp2, ftmp5);
|
---|
1059 | /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
|
---|
1060 | felem_reduce(x_out, tmp2);
|
---|
1061 |
|
---|
1062 | /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
|
---|
1063 | felem_diff(ftmp2, x_out);
|
---|
1064 | /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
|
---|
1065 |
|
---|
1066 | /*
|
---|
1067 | * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
|
---|
1068 | */
|
---|
1069 | felem_mul(tmp2, ftmp3, ftmp2);
|
---|
1070 | /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
|
---|
1071 |
|
---|
1072 | /*-
|
---|
1073 | * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
|
---|
1074 | * z2^3*y1*(z1^2*x2 - z2^2*x1)^3
|
---|
1075 | */
|
---|
1076 | widefelem_diff(tmp2, tmp);
|
---|
1077 | /* tmp2[i] < 2^118 + 2^120 < 2^121 */
|
---|
1078 | felem_reduce(y_out, tmp2);
|
---|
1079 |
|
---|
1080 | /*
|
---|
1081 | * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
|
---|
1082 | * the point at infinity, so we need to check for this separately
|
---|
1083 | */
|
---|
1084 |
|
---|
1085 | /*
|
---|
1086 | * if point 1 is at infinity, copy point 2 to output, and vice versa
|
---|
1087 | */
|
---|
1088 | copy_conditional(x_out, x2, z1_is_zero);
|
---|
1089 | copy_conditional(x_out, x1, z2_is_zero);
|
---|
1090 | copy_conditional(y_out, y2, z1_is_zero);
|
---|
1091 | copy_conditional(y_out, y1, z2_is_zero);
|
---|
1092 | copy_conditional(z_out, z2, z1_is_zero);
|
---|
1093 | copy_conditional(z_out, z1, z2_is_zero);
|
---|
1094 | felem_assign(x3, x_out);
|
---|
1095 | felem_assign(y3, y_out);
|
---|
1096 | felem_assign(z3, z_out);
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | /*
|
---|
1100 | * select_point selects the |idx|th point from a precomputation table and
|
---|
1101 | * copies it to out.
|
---|
1102 | * The pre_comp array argument should be size of |size| argument
|
---|
1103 | */
|
---|
1104 | static void select_point(const u64 idx, unsigned int size,
|
---|
1105 | const felem pre_comp[][3], felem out[3])
|
---|
1106 | {
|
---|
1107 | unsigned i, j;
|
---|
1108 | limb *outlimbs = &out[0][0];
|
---|
1109 |
|
---|
1110 | memset(out, 0, sizeof(*out) * 3);
|
---|
1111 | for (i = 0; i < size; i++) {
|
---|
1112 | const limb *inlimbs = &pre_comp[i][0][0];
|
---|
1113 | u64 mask = i ^ idx;
|
---|
1114 | mask |= mask >> 4;
|
---|
1115 | mask |= mask >> 2;
|
---|
1116 | mask |= mask >> 1;
|
---|
1117 | mask &= 1;
|
---|
1118 | mask--;
|
---|
1119 | for (j = 0; j < 4 * 3; j++)
|
---|
1120 | outlimbs[j] |= inlimbs[j] & mask;
|
---|
1121 | }
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | /* get_bit returns the |i|th bit in |in| */
|
---|
1125 | static char get_bit(const felem_bytearray in, unsigned i)
|
---|
1126 | {
|
---|
1127 | if (i >= 224)
|
---|
1128 | return 0;
|
---|
1129 | return (in[i >> 3] >> (i & 7)) & 1;
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | /*
|
---|
1133 | * Interleaved point multiplication using precomputed point multiples: The
|
---|
1134 | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
|
---|
1135 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
|
---|
1136 | * generator, using certain (large) precomputed multiples in g_pre_comp.
|
---|
1137 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out
|
---|
1138 | */
|
---|
1139 | static void batch_mul(felem x_out, felem y_out, felem z_out,
|
---|
1140 | const felem_bytearray scalars[],
|
---|
1141 | const unsigned num_points, const u8 *g_scalar,
|
---|
1142 | const int mixed, const felem pre_comp[][17][3],
|
---|
1143 | const felem g_pre_comp[2][16][3])
|
---|
1144 | {
|
---|
1145 | int i, skip;
|
---|
1146 | unsigned num;
|
---|
1147 | unsigned gen_mul = (g_scalar != NULL);
|
---|
1148 | felem nq[3], tmp[4];
|
---|
1149 | u64 bits;
|
---|
1150 | u8 sign, digit;
|
---|
1151 |
|
---|
1152 | /* set nq to the point at infinity */
|
---|
1153 | memset(nq, 0, sizeof(nq));
|
---|
1154 |
|
---|
1155 | /*
|
---|
1156 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples
|
---|
1157 | * of the generator (two in each of the last 28 rounds) and additions of
|
---|
1158 | * other points multiples (every 5th round).
|
---|
1159 | */
|
---|
1160 | skip = 1; /* save two point operations in the first
|
---|
1161 | * round */
|
---|
1162 | for (i = (num_points ? 220 : 27); i >= 0; --i) {
|
---|
1163 | /* double */
|
---|
1164 | if (!skip)
|
---|
1165 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
|
---|
1166 |
|
---|
1167 | /* add multiples of the generator */
|
---|
1168 | if (gen_mul && (i <= 27)) {
|
---|
1169 | /* first, look 28 bits upwards */
|
---|
1170 | bits = get_bit(g_scalar, i + 196) << 3;
|
---|
1171 | bits |= get_bit(g_scalar, i + 140) << 2;
|
---|
1172 | bits |= get_bit(g_scalar, i + 84) << 1;
|
---|
1173 | bits |= get_bit(g_scalar, i + 28);
|
---|
1174 | /* select the point to add, in constant time */
|
---|
1175 | select_point(bits, 16, g_pre_comp[1], tmp);
|
---|
1176 |
|
---|
1177 | if (!skip) {
|
---|
1178 | /* value 1 below is argument for "mixed" */
|
---|
1179 | point_add(nq[0], nq[1], nq[2],
|
---|
1180 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
|
---|
1181 | } else {
|
---|
1182 | memcpy(nq, tmp, 3 * sizeof(felem));
|
---|
1183 | skip = 0;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | /* second, look at the current position */
|
---|
1187 | bits = get_bit(g_scalar, i + 168) << 3;
|
---|
1188 | bits |= get_bit(g_scalar, i + 112) << 2;
|
---|
1189 | bits |= get_bit(g_scalar, i + 56) << 1;
|
---|
1190 | bits |= get_bit(g_scalar, i);
|
---|
1191 | /* select the point to add, in constant time */
|
---|
1192 | select_point(bits, 16, g_pre_comp[0], tmp);
|
---|
1193 | point_add(nq[0], nq[1], nq[2],
|
---|
1194 | nq[0], nq[1], nq[2],
|
---|
1195 | 1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
|
---|
1196 | }
|
---|
1197 |
|
---|
1198 | /* do other additions every 5 doublings */
|
---|
1199 | if (num_points && (i % 5 == 0)) {
|
---|
1200 | /* loop over all scalars */
|
---|
1201 | for (num = 0; num < num_points; ++num) {
|
---|
1202 | bits = get_bit(scalars[num], i + 4) << 5;
|
---|
1203 | bits |= get_bit(scalars[num], i + 3) << 4;
|
---|
1204 | bits |= get_bit(scalars[num], i + 2) << 3;
|
---|
1205 | bits |= get_bit(scalars[num], i + 1) << 2;
|
---|
1206 | bits |= get_bit(scalars[num], i) << 1;
|
---|
1207 | bits |= get_bit(scalars[num], i - 1);
|
---|
1208 | ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
|
---|
1209 |
|
---|
1210 | /* select the point to add or subtract */
|
---|
1211 | select_point(digit, 17, pre_comp[num], tmp);
|
---|
1212 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
|
---|
1213 | * point */
|
---|
1214 | copy_conditional(tmp[1], tmp[3], sign);
|
---|
1215 |
|
---|
1216 | if (!skip) {
|
---|
1217 | point_add(nq[0], nq[1], nq[2],
|
---|
1218 | nq[0], nq[1], nq[2],
|
---|
1219 | mixed, tmp[0], tmp[1], tmp[2]);
|
---|
1220 | } else {
|
---|
1221 | memcpy(nq, tmp, 3 * sizeof(felem));
|
---|
1222 | skip = 0;
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 | }
|
---|
1226 | }
|
---|
1227 | felem_assign(x_out, nq[0]);
|
---|
1228 | felem_assign(y_out, nq[1]);
|
---|
1229 | felem_assign(z_out, nq[2]);
|
---|
1230 | }
|
---|
1231 |
|
---|
1232 | /******************************************************************************/
|
---|
1233 | /*
|
---|
1234 | * FUNCTIONS TO MANAGE PRECOMPUTATION
|
---|
1235 | */
|
---|
1236 |
|
---|
1237 | static NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
|
---|
1238 | {
|
---|
1239 | NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
1240 |
|
---|
1241 | if (!ret) {
|
---|
1242 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1243 | return ret;
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | ret->references = 1;
|
---|
1247 |
|
---|
1248 | ret->lock = CRYPTO_THREAD_lock_new();
|
---|
1249 | if (ret->lock == NULL) {
|
---|
1250 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1251 | OPENSSL_free(ret);
|
---|
1252 | return NULL;
|
---|
1253 | }
|
---|
1254 | return ret;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
|
---|
1258 | {
|
---|
1259 | int i;
|
---|
1260 | if (p != NULL)
|
---|
1261 | CRYPTO_UP_REF(&p->references, &i, p->lock);
|
---|
1262 | return p;
|
---|
1263 | }
|
---|
1264 |
|
---|
1265 | void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
|
---|
1266 | {
|
---|
1267 | int i;
|
---|
1268 |
|
---|
1269 | if (p == NULL)
|
---|
1270 | return;
|
---|
1271 |
|
---|
1272 | CRYPTO_DOWN_REF(&p->references, &i, p->lock);
|
---|
1273 | REF_PRINT_COUNT("EC_nistp224", p);
|
---|
1274 | if (i > 0)
|
---|
1275 | return;
|
---|
1276 | REF_ASSERT_ISNT(i < 0);
|
---|
1277 |
|
---|
1278 | CRYPTO_THREAD_lock_free(p->lock);
|
---|
1279 | OPENSSL_free(p);
|
---|
1280 | }
|
---|
1281 |
|
---|
1282 | /******************************************************************************/
|
---|
1283 | /*
|
---|
1284 | * OPENSSL EC_METHOD FUNCTIONS
|
---|
1285 | */
|
---|
1286 |
|
---|
1287 | int ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
|
---|
1288 | {
|
---|
1289 | int ret;
|
---|
1290 | ret = ossl_ec_GFp_simple_group_init(group);
|
---|
1291 | group->a_is_minus3 = 1;
|
---|
1292 | return ret;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | int ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
---|
1296 | const BIGNUM *a, const BIGNUM *b,
|
---|
1297 | BN_CTX *ctx)
|
---|
1298 | {
|
---|
1299 | int ret = 0;
|
---|
1300 | BIGNUM *curve_p, *curve_a, *curve_b;
|
---|
1301 | #ifndef FIPS_MODULE
|
---|
1302 | BN_CTX *new_ctx = NULL;
|
---|
1303 |
|
---|
1304 | if (ctx == NULL)
|
---|
1305 | ctx = new_ctx = BN_CTX_new();
|
---|
1306 | #endif
|
---|
1307 | if (ctx == NULL)
|
---|
1308 | return 0;
|
---|
1309 |
|
---|
1310 | BN_CTX_start(ctx);
|
---|
1311 | curve_p = BN_CTX_get(ctx);
|
---|
1312 | curve_a = BN_CTX_get(ctx);
|
---|
1313 | curve_b = BN_CTX_get(ctx);
|
---|
1314 | if (curve_b == NULL)
|
---|
1315 | goto err;
|
---|
1316 | BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
|
---|
1317 | BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
|
---|
1318 | BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
|
---|
1319 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
|
---|
1320 | ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
|
---|
1321 | goto err;
|
---|
1322 | }
|
---|
1323 | group->field_mod_func = BN_nist_mod_224;
|
---|
1324 | ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
---|
1325 | err:
|
---|
1326 | BN_CTX_end(ctx);
|
---|
1327 | #ifndef FIPS_MODULE
|
---|
1328 | BN_CTX_free(new_ctx);
|
---|
1329 | #endif
|
---|
1330 | return ret;
|
---|
1331 | }
|
---|
1332 |
|
---|
1333 | /*
|
---|
1334 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
|
---|
1335 | * (X/Z^2, Y/Z^3)
|
---|
1336 | */
|
---|
1337 | int ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
1338 | const EC_POINT *point,
|
---|
1339 | BIGNUM *x, BIGNUM *y,
|
---|
1340 | BN_CTX *ctx)
|
---|
1341 | {
|
---|
1342 | felem z1, z2, x_in, y_in, x_out, y_out;
|
---|
1343 | widefelem tmp;
|
---|
1344 |
|
---|
1345 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
1346 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
|
---|
1347 | return 0;
|
---|
1348 | }
|
---|
1349 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
|
---|
1350 | (!BN_to_felem(z1, point->Z)))
|
---|
1351 | return 0;
|
---|
1352 | felem_inv(z2, z1);
|
---|
1353 | felem_square(tmp, z2);
|
---|
1354 | felem_reduce(z1, tmp);
|
---|
1355 | felem_mul(tmp, x_in, z1);
|
---|
1356 | felem_reduce(x_in, tmp);
|
---|
1357 | felem_contract(x_out, x_in);
|
---|
1358 | if (x != NULL) {
|
---|
1359 | if (!felem_to_BN(x, x_out)) {
|
---|
1360 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1361 | return 0;
|
---|
1362 | }
|
---|
1363 | }
|
---|
1364 | felem_mul(tmp, z1, z2);
|
---|
1365 | felem_reduce(z1, tmp);
|
---|
1366 | felem_mul(tmp, y_in, z1);
|
---|
1367 | felem_reduce(y_in, tmp);
|
---|
1368 | felem_contract(y_out, y_in);
|
---|
1369 | if (y != NULL) {
|
---|
1370 | if (!felem_to_BN(y, y_out)) {
|
---|
1371 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1372 | return 0;
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 | return 1;
|
---|
1376 | }
|
---|
1377 |
|
---|
1378 | static void make_points_affine(size_t num, felem points[ /* num */ ][3],
|
---|
1379 | felem tmp_felems[ /* num+1 */ ])
|
---|
1380 | {
|
---|
1381 | /*
|
---|
1382 | * Runs in constant time, unless an input is the point at infinity (which
|
---|
1383 | * normally shouldn't happen).
|
---|
1384 | */
|
---|
1385 | ossl_ec_GFp_nistp_points_make_affine_internal(num,
|
---|
1386 | points,
|
---|
1387 | sizeof(felem),
|
---|
1388 | tmp_felems,
|
---|
1389 | (void (*)(void *))felem_one,
|
---|
1390 | felem_is_zero_int,
|
---|
1391 | (void (*)(void *, const void *))
|
---|
1392 | felem_assign,
|
---|
1393 | (void (*)(void *, const void *))
|
---|
1394 | felem_square_reduce, (void (*)
|
---|
1395 | (void *,
|
---|
1396 | const void
|
---|
1397 | *,
|
---|
1398 | const void
|
---|
1399 | *))
|
---|
1400 | felem_mul_reduce,
|
---|
1401 | (void (*)(void *, const void *))
|
---|
1402 | felem_inv,
|
---|
1403 | (void (*)(void *, const void *))
|
---|
1404 | felem_contract);
|
---|
1405 | }
|
---|
1406 |
|
---|
1407 | /*
|
---|
1408 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
|
---|
1409 | * values Result is stored in r (r can equal one of the inputs).
|
---|
1410 | */
|
---|
1411 | int ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
|
---|
1412 | const BIGNUM *scalar, size_t num,
|
---|
1413 | const EC_POINT *points[],
|
---|
1414 | const BIGNUM *scalars[], BN_CTX *ctx)
|
---|
1415 | {
|
---|
1416 | int ret = 0;
|
---|
1417 | int j;
|
---|
1418 | unsigned i;
|
---|
1419 | int mixed = 0;
|
---|
1420 | BIGNUM *x, *y, *z, *tmp_scalar;
|
---|
1421 | felem_bytearray g_secret;
|
---|
1422 | felem_bytearray *secrets = NULL;
|
---|
1423 | felem (*pre_comp)[17][3] = NULL;
|
---|
1424 | felem *tmp_felems = NULL;
|
---|
1425 | int num_bytes;
|
---|
1426 | int have_pre_comp = 0;
|
---|
1427 | size_t num_points = num;
|
---|
1428 | felem x_in, y_in, z_in, x_out, y_out, z_out;
|
---|
1429 | NISTP224_PRE_COMP *pre = NULL;
|
---|
1430 | const felem(*g_pre_comp)[16][3] = NULL;
|
---|
1431 | EC_POINT *generator = NULL;
|
---|
1432 | const EC_POINT *p = NULL;
|
---|
1433 | const BIGNUM *p_scalar = NULL;
|
---|
1434 |
|
---|
1435 | BN_CTX_start(ctx);
|
---|
1436 | x = BN_CTX_get(ctx);
|
---|
1437 | y = BN_CTX_get(ctx);
|
---|
1438 | z = BN_CTX_get(ctx);
|
---|
1439 | tmp_scalar = BN_CTX_get(ctx);
|
---|
1440 | if (tmp_scalar == NULL)
|
---|
1441 | goto err;
|
---|
1442 |
|
---|
1443 | if (scalar != NULL) {
|
---|
1444 | pre = group->pre_comp.nistp224;
|
---|
1445 | if (pre)
|
---|
1446 | /* we have precomputation, try to use it */
|
---|
1447 | g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
|
---|
1448 | else
|
---|
1449 | /* try to use the standard precomputation */
|
---|
1450 | g_pre_comp = &gmul[0];
|
---|
1451 | generator = EC_POINT_new(group);
|
---|
1452 | if (generator == NULL)
|
---|
1453 | goto err;
|
---|
1454 | /* get the generator from precomputation */
|
---|
1455 | if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
|
---|
1456 | !felem_to_BN(y, g_pre_comp[0][1][1]) ||
|
---|
1457 | !felem_to_BN(z, g_pre_comp[0][1][2])) {
|
---|
1458 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1459 | goto err;
|
---|
1460 | }
|
---|
1461 | if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
|
---|
1462 | generator,
|
---|
1463 | x, y, z, ctx))
|
---|
1464 | goto err;
|
---|
1465 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
|
---|
1466 | /* precomputation matches generator */
|
---|
1467 | have_pre_comp = 1;
|
---|
1468 | else
|
---|
1469 | /*
|
---|
1470 | * we don't have valid precomputation: treat the generator as a
|
---|
1471 | * random point
|
---|
1472 | */
|
---|
1473 | num_points = num_points + 1;
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 | if (num_points > 0) {
|
---|
1477 | if (num_points >= 3) {
|
---|
1478 | /*
|
---|
1479 | * unless we precompute multiples for just one or two points,
|
---|
1480 | * converting those into affine form is time well spent
|
---|
1481 | */
|
---|
1482 | mixed = 1;
|
---|
1483 | }
|
---|
1484 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
|
---|
1485 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
|
---|
1486 | if (mixed)
|
---|
1487 | tmp_felems =
|
---|
1488 | OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
|
---|
1489 | if ((secrets == NULL) || (pre_comp == NULL)
|
---|
1490 | || (mixed && (tmp_felems == NULL))) {
|
---|
1491 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1492 | goto err;
|
---|
1493 | }
|
---|
1494 |
|
---|
1495 | /*
|
---|
1496 | * we treat NULL scalars as 0, and NULL points as points at infinity,
|
---|
1497 | * i.e., they contribute nothing to the linear combination
|
---|
1498 | */
|
---|
1499 | for (i = 0; i < num_points; ++i) {
|
---|
1500 | if (i == num) {
|
---|
1501 | /* the generator */
|
---|
1502 | p = EC_GROUP_get0_generator(group);
|
---|
1503 | p_scalar = scalar;
|
---|
1504 | } else {
|
---|
1505 | /* the i^th point */
|
---|
1506 | p = points[i];
|
---|
1507 | p_scalar = scalars[i];
|
---|
1508 | }
|
---|
1509 | if ((p_scalar != NULL) && (p != NULL)) {
|
---|
1510 | /* reduce scalar to 0 <= scalar < 2^224 */
|
---|
1511 | if ((BN_num_bits(p_scalar) > 224)
|
---|
1512 | || (BN_is_negative(p_scalar))) {
|
---|
1513 | /*
|
---|
1514 | * this is an unusual input, and we don't guarantee
|
---|
1515 | * constant-timeness
|
---|
1516 | */
|
---|
1517 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
|
---|
1518 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1519 | goto err;
|
---|
1520 | }
|
---|
1521 | num_bytes = BN_bn2lebinpad(tmp_scalar,
|
---|
1522 | secrets[i], sizeof(secrets[i]));
|
---|
1523 | } else {
|
---|
1524 | num_bytes = BN_bn2lebinpad(p_scalar,
|
---|
1525 | secrets[i], sizeof(secrets[i]));
|
---|
1526 | }
|
---|
1527 | if (num_bytes < 0) {
|
---|
1528 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1529 | goto err;
|
---|
1530 | }
|
---|
1531 | /* precompute multiples */
|
---|
1532 | if ((!BN_to_felem(x_out, p->X)) ||
|
---|
1533 | (!BN_to_felem(y_out, p->Y)) ||
|
---|
1534 | (!BN_to_felem(z_out, p->Z)))
|
---|
1535 | goto err;
|
---|
1536 | felem_assign(pre_comp[i][1][0], x_out);
|
---|
1537 | felem_assign(pre_comp[i][1][1], y_out);
|
---|
1538 | felem_assign(pre_comp[i][1][2], z_out);
|
---|
1539 | for (j = 2; j <= 16; ++j) {
|
---|
1540 | if (j & 1) {
|
---|
1541 | point_add(pre_comp[i][j][0], pre_comp[i][j][1],
|
---|
1542 | pre_comp[i][j][2], pre_comp[i][1][0],
|
---|
1543 | pre_comp[i][1][1], pre_comp[i][1][2], 0,
|
---|
1544 | pre_comp[i][j - 1][0],
|
---|
1545 | pre_comp[i][j - 1][1],
|
---|
1546 | pre_comp[i][j - 1][2]);
|
---|
1547 | } else {
|
---|
1548 | point_double(pre_comp[i][j][0], pre_comp[i][j][1],
|
---|
1549 | pre_comp[i][j][2], pre_comp[i][j / 2][0],
|
---|
1550 | pre_comp[i][j / 2][1],
|
---|
1551 | pre_comp[i][j / 2][2]);
|
---|
1552 | }
|
---|
1553 | }
|
---|
1554 | }
|
---|
1555 | }
|
---|
1556 | if (mixed)
|
---|
1557 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 | /* the scalar for the generator */
|
---|
1561 | if ((scalar != NULL) && (have_pre_comp)) {
|
---|
1562 | memset(g_secret, 0, sizeof(g_secret));
|
---|
1563 | /* reduce scalar to 0 <= scalar < 2^224 */
|
---|
1564 | if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
|
---|
1565 | /*
|
---|
1566 | * this is an unusual input, and we don't guarantee
|
---|
1567 | * constant-timeness
|
---|
1568 | */
|
---|
1569 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
|
---|
1570 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1571 | goto err;
|
---|
1572 | }
|
---|
1573 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
---|
1574 | } else {
|
---|
1575 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
---|
1576 | }
|
---|
1577 | /* do the multiplication with generator precomputation */
|
---|
1578 | batch_mul(x_out, y_out, z_out,
|
---|
1579 | (const felem_bytearray(*))secrets, num_points,
|
---|
1580 | g_secret,
|
---|
1581 | mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
|
---|
1582 | } else {
|
---|
1583 | /* do the multiplication without generator precomputation */
|
---|
1584 | batch_mul(x_out, y_out, z_out,
|
---|
1585 | (const felem_bytearray(*))secrets, num_points,
|
---|
1586 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
|
---|
1587 | }
|
---|
1588 | /* reduce the output to its unique minimal representation */
|
---|
1589 | felem_contract(x_in, x_out);
|
---|
1590 | felem_contract(y_in, y_out);
|
---|
1591 | felem_contract(z_in, z_out);
|
---|
1592 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
|
---|
1593 | (!felem_to_BN(z, z_in))) {
|
---|
1594 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1595 | goto err;
|
---|
1596 | }
|
---|
1597 | ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
|
---|
1598 | ctx);
|
---|
1599 |
|
---|
1600 | err:
|
---|
1601 | BN_CTX_end(ctx);
|
---|
1602 | EC_POINT_free(generator);
|
---|
1603 | OPENSSL_free(secrets);
|
---|
1604 | OPENSSL_free(pre_comp);
|
---|
1605 | OPENSSL_free(tmp_felems);
|
---|
1606 | return ret;
|
---|
1607 | }
|
---|
1608 |
|
---|
1609 | int ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
---|
1610 | {
|
---|
1611 | int ret = 0;
|
---|
1612 | NISTP224_PRE_COMP *pre = NULL;
|
---|
1613 | int i, j;
|
---|
1614 | BIGNUM *x, *y;
|
---|
1615 | EC_POINT *generator = NULL;
|
---|
1616 | felem tmp_felems[32];
|
---|
1617 | #ifndef FIPS_MODULE
|
---|
1618 | BN_CTX *new_ctx = NULL;
|
---|
1619 | #endif
|
---|
1620 |
|
---|
1621 | /* throw away old precomputation */
|
---|
1622 | EC_pre_comp_free(group);
|
---|
1623 |
|
---|
1624 | #ifndef FIPS_MODULE
|
---|
1625 | if (ctx == NULL)
|
---|
1626 | ctx = new_ctx = BN_CTX_new();
|
---|
1627 | #endif
|
---|
1628 | if (ctx == NULL)
|
---|
1629 | return 0;
|
---|
1630 |
|
---|
1631 | BN_CTX_start(ctx);
|
---|
1632 | x = BN_CTX_get(ctx);
|
---|
1633 | y = BN_CTX_get(ctx);
|
---|
1634 | if (y == NULL)
|
---|
1635 | goto err;
|
---|
1636 | /* get the generator */
|
---|
1637 | if (group->generator == NULL)
|
---|
1638 | goto err;
|
---|
1639 | generator = EC_POINT_new(group);
|
---|
1640 | if (generator == NULL)
|
---|
1641 | goto err;
|
---|
1642 | BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
|
---|
1643 | BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
|
---|
1644 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
|
---|
1645 | goto err;
|
---|
1646 | if ((pre = nistp224_pre_comp_new()) == NULL)
|
---|
1647 | goto err;
|
---|
1648 | /*
|
---|
1649 | * if the generator is the standard one, use built-in precomputation
|
---|
1650 | */
|
---|
1651 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
|
---|
1652 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
|
---|
1653 | goto done;
|
---|
1654 | }
|
---|
1655 | if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
|
---|
1656 | (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
|
---|
1657 | (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
|
---|
1658 | goto err;
|
---|
1659 | /*
|
---|
1660 | * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
|
---|
1661 | * 2^140*G, 2^196*G for the second one
|
---|
1662 | */
|
---|
1663 | for (i = 1; i <= 8; i <<= 1) {
|
---|
1664 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
|
---|
1665 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
|
---|
1666 | pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
|
---|
1667 | for (j = 0; j < 27; ++j) {
|
---|
1668 | point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
|
---|
1669 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
|
---|
1670 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
|
---|
1671 | }
|
---|
1672 | if (i == 8)
|
---|
1673 | break;
|
---|
1674 | point_double(pre->g_pre_comp[0][2 * i][0],
|
---|
1675 | pre->g_pre_comp[0][2 * i][1],
|
---|
1676 | pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
|
---|
1677 | pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
|
---|
1678 | for (j = 0; j < 27; ++j) {
|
---|
1679 | point_double(pre->g_pre_comp[0][2 * i][0],
|
---|
1680 | pre->g_pre_comp[0][2 * i][1],
|
---|
1681 | pre->g_pre_comp[0][2 * i][2],
|
---|
1682 | pre->g_pre_comp[0][2 * i][0],
|
---|
1683 | pre->g_pre_comp[0][2 * i][1],
|
---|
1684 | pre->g_pre_comp[0][2 * i][2]);
|
---|
1685 | }
|
---|
1686 | }
|
---|
1687 | for (i = 0; i < 2; i++) {
|
---|
1688 | /* g_pre_comp[i][0] is the point at infinity */
|
---|
1689 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
|
---|
1690 | /* the remaining multiples */
|
---|
1691 | /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
|
---|
1692 | point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
|
---|
1693 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
|
---|
1694 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
|
---|
1695 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
1696 | pre->g_pre_comp[i][2][2]);
|
---|
1697 | /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
|
---|
1698 | point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
|
---|
1699 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
|
---|
1700 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
|
---|
1701 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
1702 | pre->g_pre_comp[i][2][2]);
|
---|
1703 | /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
|
---|
1704 | point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
|
---|
1705 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
|
---|
1706 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
|
---|
1707 | 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
|
---|
1708 | pre->g_pre_comp[i][4][2]);
|
---|
1709 | /*
|
---|
1710 | * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
|
---|
1711 | */
|
---|
1712 | point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
|
---|
1713 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
|
---|
1714 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
|
---|
1715 | 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
|
---|
1716 | pre->g_pre_comp[i][2][2]);
|
---|
1717 | for (j = 1; j < 8; ++j) {
|
---|
1718 | /* odd multiples: add G resp. 2^28*G */
|
---|
1719 | point_add(pre->g_pre_comp[i][2 * j + 1][0],
|
---|
1720 | pre->g_pre_comp[i][2 * j + 1][1],
|
---|
1721 | pre->g_pre_comp[i][2 * j + 1][2],
|
---|
1722 | pre->g_pre_comp[i][2 * j][0],
|
---|
1723 | pre->g_pre_comp[i][2 * j][1],
|
---|
1724 | pre->g_pre_comp[i][2 * j][2], 0,
|
---|
1725 | pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
|
---|
1726 | pre->g_pre_comp[i][1][2]);
|
---|
1727 | }
|
---|
1728 | }
|
---|
1729 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
|
---|
1730 |
|
---|
1731 | done:
|
---|
1732 | SETPRECOMP(group, nistp224, pre);
|
---|
1733 | pre = NULL;
|
---|
1734 | ret = 1;
|
---|
1735 | err:
|
---|
1736 | BN_CTX_end(ctx);
|
---|
1737 | EC_POINT_free(generator);
|
---|
1738 | #ifndef FIPS_MODULE
|
---|
1739 | BN_CTX_free(new_ctx);
|
---|
1740 | #endif
|
---|
1741 | EC_nistp224_pre_comp_free(pre);
|
---|
1742 | return ret;
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | int ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
|
---|
1746 | {
|
---|
1747 | return HAVEPRECOMP(group, nistp224);
|
---|
1748 | }
|
---|