1 | /*
|
---|
2 | * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* Copyright 2011 Google Inc.
|
---|
11 | *
|
---|
12 | * Licensed under the Apache License, Version 2.0 (the "License");
|
---|
13 | *
|
---|
14 | * you may not use this file except in compliance with the License.
|
---|
15 | * You may obtain a copy of the License at
|
---|
16 | *
|
---|
17 | * http://www.apache.org/licenses/LICENSE-2.0
|
---|
18 | *
|
---|
19 | * Unless required by applicable law or agreed to in writing, software
|
---|
20 | * distributed under the License is distributed on an "AS IS" BASIS,
|
---|
21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
---|
22 | * See the License for the specific language governing permissions and
|
---|
23 | * limitations under the License.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /*
|
---|
27 | * ECDSA low level APIs are deprecated for public use, but still ok for
|
---|
28 | * internal use.
|
---|
29 | */
|
---|
30 | #include "internal/deprecated.h"
|
---|
31 |
|
---|
32 | /*
|
---|
33 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
|
---|
34 | *
|
---|
35 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
|
---|
36 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
|
---|
37 | * work which got its smarts from Daniel J. Bernstein's work on the same.
|
---|
38 | */
|
---|
39 |
|
---|
40 | #include <openssl/e_os2.h>
|
---|
41 |
|
---|
42 | #include <string.h>
|
---|
43 | #include <openssl/err.h>
|
---|
44 | #include "ec_local.h"
|
---|
45 |
|
---|
46 | #include "internal/numbers.h"
|
---|
47 |
|
---|
48 | #ifndef INT128_MAX
|
---|
49 | # error "Your compiler doesn't appear to support 128-bit integer types"
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | typedef uint8_t u8;
|
---|
53 | typedef uint64_t u64;
|
---|
54 |
|
---|
55 | /*
|
---|
56 | * The underlying field. P521 operates over GF(2^521-1). We can serialize an
|
---|
57 | * element of this field into 66 bytes where the most significant byte
|
---|
58 | * contains only a single bit. We call this an felem_bytearray.
|
---|
59 | */
|
---|
60 |
|
---|
61 | typedef u8 felem_bytearray[66];
|
---|
62 |
|
---|
63 | /*
|
---|
64 | * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
|
---|
65 | * These values are big-endian.
|
---|
66 | */
|
---|
67 | static const felem_bytearray nistp521_curve_params[5] = {
|
---|
68 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
|
---|
69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
70 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
71 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
74 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
75 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
76 | 0xff, 0xff},
|
---|
77 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
|
---|
78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
79 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
80 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
81 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
82 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
83 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
84 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
---|
85 | 0xff, 0xfc},
|
---|
86 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
|
---|
87 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
|
---|
88 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
|
---|
89 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
|
---|
90 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
|
---|
91 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
|
---|
92 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
|
---|
93 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
|
---|
94 | 0x3f, 0x00},
|
---|
95 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
|
---|
96 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
|
---|
97 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
|
---|
98 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
|
---|
99 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
|
---|
100 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
|
---|
101 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
|
---|
102 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
|
---|
103 | 0xbd, 0x66},
|
---|
104 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
|
---|
105 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
|
---|
106 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
|
---|
107 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
|
---|
108 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
|
---|
109 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
|
---|
110 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
|
---|
111 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
|
---|
112 | 0x66, 0x50}
|
---|
113 | };
|
---|
114 |
|
---|
115 | /*-
|
---|
116 | * The representation of field elements.
|
---|
117 | * ------------------------------------
|
---|
118 | *
|
---|
119 | * We represent field elements with nine values. These values are either 64 or
|
---|
120 | * 128 bits and the field element represented is:
|
---|
121 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p)
|
---|
122 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only
|
---|
123 | * 58 bits apart, but are greater than 58 bits in length, the most significant
|
---|
124 | * bits of each limb overlap with the least significant bits of the next.
|
---|
125 | *
|
---|
126 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
|
---|
127 | * 'largefelem' */
|
---|
128 |
|
---|
129 | #define NLIMBS 9
|
---|
130 |
|
---|
131 | typedef uint64_t limb;
|
---|
132 | typedef limb limb_aX __attribute((__aligned__(1)));
|
---|
133 | typedef limb felem[NLIMBS];
|
---|
134 | typedef uint128_t largefelem[NLIMBS];
|
---|
135 |
|
---|
136 | static const limb bottom57bits = 0x1ffffffffffffff;
|
---|
137 | static const limb bottom58bits = 0x3ffffffffffffff;
|
---|
138 |
|
---|
139 | /*
|
---|
140 | * bin66_to_felem takes a little-endian byte array and converts it into felem
|
---|
141 | * form. This assumes that the CPU is little-endian.
|
---|
142 | */
|
---|
143 | static void bin66_to_felem(felem out, const u8 in[66])
|
---|
144 | {
|
---|
145 | out[0] = (*((limb *) & in[0])) & bottom58bits;
|
---|
146 | out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits;
|
---|
147 | out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits;
|
---|
148 | out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits;
|
---|
149 | out[4] = (*((limb_aX *) & in[29])) & bottom58bits;
|
---|
150 | out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits;
|
---|
151 | out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits;
|
---|
152 | out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits;
|
---|
153 | out[8] = (*((limb_aX *) & in[58])) & bottom57bits;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /*
|
---|
157 | * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte
|
---|
158 | * array. This assumes that the CPU is little-endian.
|
---|
159 | */
|
---|
160 | static void felem_to_bin66(u8 out[66], const felem in)
|
---|
161 | {
|
---|
162 | memset(out, 0, 66);
|
---|
163 | (*((limb *) & out[0])) = in[0];
|
---|
164 | (*((limb_aX *) & out[7])) |= in[1] << 2;
|
---|
165 | (*((limb_aX *) & out[14])) |= in[2] << 4;
|
---|
166 | (*((limb_aX *) & out[21])) |= in[3] << 6;
|
---|
167 | (*((limb_aX *) & out[29])) = in[4];
|
---|
168 | (*((limb_aX *) & out[36])) |= in[5] << 2;
|
---|
169 | (*((limb_aX *) & out[43])) |= in[6] << 4;
|
---|
170 | (*((limb_aX *) & out[50])) |= in[7] << 6;
|
---|
171 | (*((limb_aX *) & out[58])) = in[8];
|
---|
172 | }
|
---|
173 |
|
---|
174 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
|
---|
175 | static int BN_to_felem(felem out, const BIGNUM *bn)
|
---|
176 | {
|
---|
177 | felem_bytearray b_out;
|
---|
178 | int num_bytes;
|
---|
179 |
|
---|
180 | if (BN_is_negative(bn)) {
|
---|
181 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
182 | return 0;
|
---|
183 | }
|
---|
184 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
|
---|
185 | if (num_bytes < 0) {
|
---|
186 | ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
|
---|
187 | return 0;
|
---|
188 | }
|
---|
189 | bin66_to_felem(out, b_out);
|
---|
190 | return 1;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
|
---|
194 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
|
---|
195 | {
|
---|
196 | felem_bytearray b_out;
|
---|
197 | felem_to_bin66(b_out, in);
|
---|
198 | return BN_lebin2bn(b_out, sizeof(b_out), out);
|
---|
199 | }
|
---|
200 |
|
---|
201 | /*-
|
---|
202 | * Field operations
|
---|
203 | * ----------------
|
---|
204 | */
|
---|
205 |
|
---|
206 | static void felem_one(felem out)
|
---|
207 | {
|
---|
208 | out[0] = 1;
|
---|
209 | out[1] = 0;
|
---|
210 | out[2] = 0;
|
---|
211 | out[3] = 0;
|
---|
212 | out[4] = 0;
|
---|
213 | out[5] = 0;
|
---|
214 | out[6] = 0;
|
---|
215 | out[7] = 0;
|
---|
216 | out[8] = 0;
|
---|
217 | }
|
---|
218 |
|
---|
219 | static void felem_assign(felem out, const felem in)
|
---|
220 | {
|
---|
221 | out[0] = in[0];
|
---|
222 | out[1] = in[1];
|
---|
223 | out[2] = in[2];
|
---|
224 | out[3] = in[3];
|
---|
225 | out[4] = in[4];
|
---|
226 | out[5] = in[5];
|
---|
227 | out[6] = in[6];
|
---|
228 | out[7] = in[7];
|
---|
229 | out[8] = in[8];
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* felem_sum64 sets out = out + in. */
|
---|
233 | static void felem_sum64(felem out, const felem in)
|
---|
234 | {
|
---|
235 | out[0] += in[0];
|
---|
236 | out[1] += in[1];
|
---|
237 | out[2] += in[2];
|
---|
238 | out[3] += in[3];
|
---|
239 | out[4] += in[4];
|
---|
240 | out[5] += in[5];
|
---|
241 | out[6] += in[6];
|
---|
242 | out[7] += in[7];
|
---|
243 | out[8] += in[8];
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* felem_scalar sets out = in * scalar */
|
---|
247 | static void felem_scalar(felem out, const felem in, limb scalar)
|
---|
248 | {
|
---|
249 | out[0] = in[0] * scalar;
|
---|
250 | out[1] = in[1] * scalar;
|
---|
251 | out[2] = in[2] * scalar;
|
---|
252 | out[3] = in[3] * scalar;
|
---|
253 | out[4] = in[4] * scalar;
|
---|
254 | out[5] = in[5] * scalar;
|
---|
255 | out[6] = in[6] * scalar;
|
---|
256 | out[7] = in[7] * scalar;
|
---|
257 | out[8] = in[8] * scalar;
|
---|
258 | }
|
---|
259 |
|
---|
260 | /* felem_scalar64 sets out = out * scalar */
|
---|
261 | static void felem_scalar64(felem out, limb scalar)
|
---|
262 | {
|
---|
263 | out[0] *= scalar;
|
---|
264 | out[1] *= scalar;
|
---|
265 | out[2] *= scalar;
|
---|
266 | out[3] *= scalar;
|
---|
267 | out[4] *= scalar;
|
---|
268 | out[5] *= scalar;
|
---|
269 | out[6] *= scalar;
|
---|
270 | out[7] *= scalar;
|
---|
271 | out[8] *= scalar;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /* felem_scalar128 sets out = out * scalar */
|
---|
275 | static void felem_scalar128(largefelem out, limb scalar)
|
---|
276 | {
|
---|
277 | out[0] *= scalar;
|
---|
278 | out[1] *= scalar;
|
---|
279 | out[2] *= scalar;
|
---|
280 | out[3] *= scalar;
|
---|
281 | out[4] *= scalar;
|
---|
282 | out[5] *= scalar;
|
---|
283 | out[6] *= scalar;
|
---|
284 | out[7] *= scalar;
|
---|
285 | out[8] *= scalar;
|
---|
286 | }
|
---|
287 |
|
---|
288 | /*-
|
---|
289 | * felem_neg sets |out| to |-in|
|
---|
290 | * On entry:
|
---|
291 | * in[i] < 2^59 + 2^14
|
---|
292 | * On exit:
|
---|
293 | * out[i] < 2^62
|
---|
294 | */
|
---|
295 | static void felem_neg(felem out, const felem in)
|
---|
296 | {
|
---|
297 | /* In order to prevent underflow, we subtract from 0 mod p. */
|
---|
298 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
|
---|
299 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
|
---|
300 |
|
---|
301 | out[0] = two62m3 - in[0];
|
---|
302 | out[1] = two62m2 - in[1];
|
---|
303 | out[2] = two62m2 - in[2];
|
---|
304 | out[3] = two62m2 - in[3];
|
---|
305 | out[4] = two62m2 - in[4];
|
---|
306 | out[5] = two62m2 - in[5];
|
---|
307 | out[6] = two62m2 - in[6];
|
---|
308 | out[7] = two62m2 - in[7];
|
---|
309 | out[8] = two62m2 - in[8];
|
---|
310 | }
|
---|
311 |
|
---|
312 | /*-
|
---|
313 | * felem_diff64 subtracts |in| from |out|
|
---|
314 | * On entry:
|
---|
315 | * in[i] < 2^59 + 2^14
|
---|
316 | * On exit:
|
---|
317 | * out[i] < out[i] + 2^62
|
---|
318 | */
|
---|
319 | static void felem_diff64(felem out, const felem in)
|
---|
320 | {
|
---|
321 | /*
|
---|
322 | * In order to prevent underflow, we add 0 mod p before subtracting.
|
---|
323 | */
|
---|
324 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
|
---|
325 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
|
---|
326 |
|
---|
327 | out[0] += two62m3 - in[0];
|
---|
328 | out[1] += two62m2 - in[1];
|
---|
329 | out[2] += two62m2 - in[2];
|
---|
330 | out[3] += two62m2 - in[3];
|
---|
331 | out[4] += two62m2 - in[4];
|
---|
332 | out[5] += two62m2 - in[5];
|
---|
333 | out[6] += two62m2 - in[6];
|
---|
334 | out[7] += two62m2 - in[7];
|
---|
335 | out[8] += two62m2 - in[8];
|
---|
336 | }
|
---|
337 |
|
---|
338 | /*-
|
---|
339 | * felem_diff_128_64 subtracts |in| from |out|
|
---|
340 | * On entry:
|
---|
341 | * in[i] < 2^62 + 2^17
|
---|
342 | * On exit:
|
---|
343 | * out[i] < out[i] + 2^63
|
---|
344 | */
|
---|
345 | static void felem_diff_128_64(largefelem out, const felem in)
|
---|
346 | {
|
---|
347 | /*
|
---|
348 | * In order to prevent underflow, we add 64p mod p (which is equivalent
|
---|
349 | * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521
|
---|
350 | * digit number with all bits set to 1. See "The representation of field
|
---|
351 | * elements" comment above for a description of how limbs are used to
|
---|
352 | * represent a number. 64p is represented with 8 limbs containing a number
|
---|
353 | * with 58 bits set and one limb with a number with 57 bits set.
|
---|
354 | */
|
---|
355 | static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6);
|
---|
356 | static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5);
|
---|
357 |
|
---|
358 | out[0] += two63m6 - in[0];
|
---|
359 | out[1] += two63m5 - in[1];
|
---|
360 | out[2] += two63m5 - in[2];
|
---|
361 | out[3] += two63m5 - in[3];
|
---|
362 | out[4] += two63m5 - in[4];
|
---|
363 | out[5] += two63m5 - in[5];
|
---|
364 | out[6] += two63m5 - in[6];
|
---|
365 | out[7] += two63m5 - in[7];
|
---|
366 | out[8] += two63m5 - in[8];
|
---|
367 | }
|
---|
368 |
|
---|
369 | /*-
|
---|
370 | * felem_diff_128_64 subtracts |in| from |out|
|
---|
371 | * On entry:
|
---|
372 | * in[i] < 2^126
|
---|
373 | * On exit:
|
---|
374 | * out[i] < out[i] + 2^127 - 2^69
|
---|
375 | */
|
---|
376 | static void felem_diff128(largefelem out, const largefelem in)
|
---|
377 | {
|
---|
378 | /*
|
---|
379 | * In order to prevent underflow, we add 0 mod p before subtracting.
|
---|
380 | */
|
---|
381 | static const uint128_t two127m70 =
|
---|
382 | (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
|
---|
383 | static const uint128_t two127m69 =
|
---|
384 | (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
|
---|
385 |
|
---|
386 | out[0] += (two127m70 - in[0]);
|
---|
387 | out[1] += (two127m69 - in[1]);
|
---|
388 | out[2] += (two127m69 - in[2]);
|
---|
389 | out[3] += (two127m69 - in[3]);
|
---|
390 | out[4] += (two127m69 - in[4]);
|
---|
391 | out[5] += (two127m69 - in[5]);
|
---|
392 | out[6] += (two127m69 - in[6]);
|
---|
393 | out[7] += (two127m69 - in[7]);
|
---|
394 | out[8] += (two127m69 - in[8]);
|
---|
395 | }
|
---|
396 |
|
---|
397 | /*-
|
---|
398 | * felem_square sets |out| = |in|^2
|
---|
399 | * On entry:
|
---|
400 | * in[i] < 2^62
|
---|
401 | * On exit:
|
---|
402 | * out[i] < 17 * max(in[i]) * max(in[i])
|
---|
403 | */
|
---|
404 | static void felem_square_ref(largefelem out, const felem in)
|
---|
405 | {
|
---|
406 | felem inx2, inx4;
|
---|
407 | felem_scalar(inx2, in, 2);
|
---|
408 | felem_scalar(inx4, in, 4);
|
---|
409 |
|
---|
410 | /*-
|
---|
411 | * We have many cases were we want to do
|
---|
412 | * in[x] * in[y] +
|
---|
413 | * in[y] * in[x]
|
---|
414 | * This is obviously just
|
---|
415 | * 2 * in[x] * in[y]
|
---|
416 | * However, rather than do the doubling on the 128 bit result, we
|
---|
417 | * double one of the inputs to the multiplication by reading from
|
---|
418 | * |inx2|
|
---|
419 | */
|
---|
420 |
|
---|
421 | out[0] = ((uint128_t) in[0]) * in[0];
|
---|
422 | out[1] = ((uint128_t) in[0]) * inx2[1];
|
---|
423 | out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
|
---|
424 | out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
|
---|
425 | out[4] = ((uint128_t) in[0]) * inx2[4] +
|
---|
426 | ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
|
---|
427 | out[5] = ((uint128_t) in[0]) * inx2[5] +
|
---|
428 | ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
|
---|
429 | out[6] = ((uint128_t) in[0]) * inx2[6] +
|
---|
430 | ((uint128_t) in[1]) * inx2[5] +
|
---|
431 | ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
|
---|
432 | out[7] = ((uint128_t) in[0]) * inx2[7] +
|
---|
433 | ((uint128_t) in[1]) * inx2[6] +
|
---|
434 | ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
|
---|
435 | out[8] = ((uint128_t) in[0]) * inx2[8] +
|
---|
436 | ((uint128_t) in[1]) * inx2[7] +
|
---|
437 | ((uint128_t) in[2]) * inx2[6] +
|
---|
438 | ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
|
---|
439 |
|
---|
440 | /*
|
---|
441 | * The remaining limbs fall above 2^521, with the first falling at 2^522.
|
---|
442 | * They correspond to locations one bit up from the limbs produced above
|
---|
443 | * so we would have to multiply by two to align them. Again, rather than
|
---|
444 | * operate on the 128-bit result, we double one of the inputs to the
|
---|
445 | * multiplication. If we want to double for both this reason, and the
|
---|
446 | * reason above, then we end up multiplying by four.
|
---|
447 | */
|
---|
448 |
|
---|
449 | /* 9 */
|
---|
450 | out[0] += ((uint128_t) in[1]) * inx4[8] +
|
---|
451 | ((uint128_t) in[2]) * inx4[7] +
|
---|
452 | ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
|
---|
453 |
|
---|
454 | /* 10 */
|
---|
455 | out[1] += ((uint128_t) in[2]) * inx4[8] +
|
---|
456 | ((uint128_t) in[3]) * inx4[7] +
|
---|
457 | ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
|
---|
458 |
|
---|
459 | /* 11 */
|
---|
460 | out[2] += ((uint128_t) in[3]) * inx4[8] +
|
---|
461 | ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
|
---|
462 |
|
---|
463 | /* 12 */
|
---|
464 | out[3] += ((uint128_t) in[4]) * inx4[8] +
|
---|
465 | ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
|
---|
466 |
|
---|
467 | /* 13 */
|
---|
468 | out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
|
---|
469 |
|
---|
470 | /* 14 */
|
---|
471 | out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
|
---|
472 |
|
---|
473 | /* 15 */
|
---|
474 | out[6] += ((uint128_t) in[7]) * inx4[8];
|
---|
475 |
|
---|
476 | /* 16 */
|
---|
477 | out[7] += ((uint128_t) in[8]) * inx2[8];
|
---|
478 | }
|
---|
479 |
|
---|
480 | /*-
|
---|
481 | * felem_mul sets |out| = |in1| * |in2|
|
---|
482 | * On entry:
|
---|
483 | * in1[i] < 2^64
|
---|
484 | * in2[i] < 2^63
|
---|
485 | * On exit:
|
---|
486 | * out[i] < 17 * max(in1[i]) * max(in2[i])
|
---|
487 | */
|
---|
488 | static void felem_mul_ref(largefelem out, const felem in1, const felem in2)
|
---|
489 | {
|
---|
490 | felem in2x2;
|
---|
491 | felem_scalar(in2x2, in2, 2);
|
---|
492 |
|
---|
493 | out[0] = ((uint128_t) in1[0]) * in2[0];
|
---|
494 |
|
---|
495 | out[1] = ((uint128_t) in1[0]) * in2[1] +
|
---|
496 | ((uint128_t) in1[1]) * in2[0];
|
---|
497 |
|
---|
498 | out[2] = ((uint128_t) in1[0]) * in2[2] +
|
---|
499 | ((uint128_t) in1[1]) * in2[1] +
|
---|
500 | ((uint128_t) in1[2]) * in2[0];
|
---|
501 |
|
---|
502 | out[3] = ((uint128_t) in1[0]) * in2[3] +
|
---|
503 | ((uint128_t) in1[1]) * in2[2] +
|
---|
504 | ((uint128_t) in1[2]) * in2[1] +
|
---|
505 | ((uint128_t) in1[3]) * in2[0];
|
---|
506 |
|
---|
507 | out[4] = ((uint128_t) in1[0]) * in2[4] +
|
---|
508 | ((uint128_t) in1[1]) * in2[3] +
|
---|
509 | ((uint128_t) in1[2]) * in2[2] +
|
---|
510 | ((uint128_t) in1[3]) * in2[1] +
|
---|
511 | ((uint128_t) in1[4]) * in2[0];
|
---|
512 |
|
---|
513 | out[5] = ((uint128_t) in1[0]) * in2[5] +
|
---|
514 | ((uint128_t) in1[1]) * in2[4] +
|
---|
515 | ((uint128_t) in1[2]) * in2[3] +
|
---|
516 | ((uint128_t) in1[3]) * in2[2] +
|
---|
517 | ((uint128_t) in1[4]) * in2[1] +
|
---|
518 | ((uint128_t) in1[5]) * in2[0];
|
---|
519 |
|
---|
520 | out[6] = ((uint128_t) in1[0]) * in2[6] +
|
---|
521 | ((uint128_t) in1[1]) * in2[5] +
|
---|
522 | ((uint128_t) in1[2]) * in2[4] +
|
---|
523 | ((uint128_t) in1[3]) * in2[3] +
|
---|
524 | ((uint128_t) in1[4]) * in2[2] +
|
---|
525 | ((uint128_t) in1[5]) * in2[1] +
|
---|
526 | ((uint128_t) in1[6]) * in2[0];
|
---|
527 |
|
---|
528 | out[7] = ((uint128_t) in1[0]) * in2[7] +
|
---|
529 | ((uint128_t) in1[1]) * in2[6] +
|
---|
530 | ((uint128_t) in1[2]) * in2[5] +
|
---|
531 | ((uint128_t) in1[3]) * in2[4] +
|
---|
532 | ((uint128_t) in1[4]) * in2[3] +
|
---|
533 | ((uint128_t) in1[5]) * in2[2] +
|
---|
534 | ((uint128_t) in1[6]) * in2[1] +
|
---|
535 | ((uint128_t) in1[7]) * in2[0];
|
---|
536 |
|
---|
537 | out[8] = ((uint128_t) in1[0]) * in2[8] +
|
---|
538 | ((uint128_t) in1[1]) * in2[7] +
|
---|
539 | ((uint128_t) in1[2]) * in2[6] +
|
---|
540 | ((uint128_t) in1[3]) * in2[5] +
|
---|
541 | ((uint128_t) in1[4]) * in2[4] +
|
---|
542 | ((uint128_t) in1[5]) * in2[3] +
|
---|
543 | ((uint128_t) in1[6]) * in2[2] +
|
---|
544 | ((uint128_t) in1[7]) * in2[1] +
|
---|
545 | ((uint128_t) in1[8]) * in2[0];
|
---|
546 |
|
---|
547 | /* See comment in felem_square about the use of in2x2 here */
|
---|
548 |
|
---|
549 | out[0] += ((uint128_t) in1[1]) * in2x2[8] +
|
---|
550 | ((uint128_t) in1[2]) * in2x2[7] +
|
---|
551 | ((uint128_t) in1[3]) * in2x2[6] +
|
---|
552 | ((uint128_t) in1[4]) * in2x2[5] +
|
---|
553 | ((uint128_t) in1[5]) * in2x2[4] +
|
---|
554 | ((uint128_t) in1[6]) * in2x2[3] +
|
---|
555 | ((uint128_t) in1[7]) * in2x2[2] +
|
---|
556 | ((uint128_t) in1[8]) * in2x2[1];
|
---|
557 |
|
---|
558 | out[1] += ((uint128_t) in1[2]) * in2x2[8] +
|
---|
559 | ((uint128_t) in1[3]) * in2x2[7] +
|
---|
560 | ((uint128_t) in1[4]) * in2x2[6] +
|
---|
561 | ((uint128_t) in1[5]) * in2x2[5] +
|
---|
562 | ((uint128_t) in1[6]) * in2x2[4] +
|
---|
563 | ((uint128_t) in1[7]) * in2x2[3] +
|
---|
564 | ((uint128_t) in1[8]) * in2x2[2];
|
---|
565 |
|
---|
566 | out[2] += ((uint128_t) in1[3]) * in2x2[8] +
|
---|
567 | ((uint128_t) in1[4]) * in2x2[7] +
|
---|
568 | ((uint128_t) in1[5]) * in2x2[6] +
|
---|
569 | ((uint128_t) in1[6]) * in2x2[5] +
|
---|
570 | ((uint128_t) in1[7]) * in2x2[4] +
|
---|
571 | ((uint128_t) in1[8]) * in2x2[3];
|
---|
572 |
|
---|
573 | out[3] += ((uint128_t) in1[4]) * in2x2[8] +
|
---|
574 | ((uint128_t) in1[5]) * in2x2[7] +
|
---|
575 | ((uint128_t) in1[6]) * in2x2[6] +
|
---|
576 | ((uint128_t) in1[7]) * in2x2[5] +
|
---|
577 | ((uint128_t) in1[8]) * in2x2[4];
|
---|
578 |
|
---|
579 | out[4] += ((uint128_t) in1[5]) * in2x2[8] +
|
---|
580 | ((uint128_t) in1[6]) * in2x2[7] +
|
---|
581 | ((uint128_t) in1[7]) * in2x2[6] +
|
---|
582 | ((uint128_t) in1[8]) * in2x2[5];
|
---|
583 |
|
---|
584 | out[5] += ((uint128_t) in1[6]) * in2x2[8] +
|
---|
585 | ((uint128_t) in1[7]) * in2x2[7] +
|
---|
586 | ((uint128_t) in1[8]) * in2x2[6];
|
---|
587 |
|
---|
588 | out[6] += ((uint128_t) in1[7]) * in2x2[8] +
|
---|
589 | ((uint128_t) in1[8]) * in2x2[7];
|
---|
590 |
|
---|
591 | out[7] += ((uint128_t) in1[8]) * in2x2[8];
|
---|
592 | }
|
---|
593 |
|
---|
594 | static const limb bottom52bits = 0xfffffffffffff;
|
---|
595 |
|
---|
596 | /*-
|
---|
597 | * felem_reduce converts a largefelem to an felem.
|
---|
598 | * On entry:
|
---|
599 | * in[i] < 2^128
|
---|
600 | * On exit:
|
---|
601 | * out[i] < 2^59 + 2^14
|
---|
602 | */
|
---|
603 | static void felem_reduce(felem out, const largefelem in)
|
---|
604 | {
|
---|
605 | u64 overflow1, overflow2;
|
---|
606 |
|
---|
607 | out[0] = ((limb) in[0]) & bottom58bits;
|
---|
608 | out[1] = ((limb) in[1]) & bottom58bits;
|
---|
609 | out[2] = ((limb) in[2]) & bottom58bits;
|
---|
610 | out[3] = ((limb) in[3]) & bottom58bits;
|
---|
611 | out[4] = ((limb) in[4]) & bottom58bits;
|
---|
612 | out[5] = ((limb) in[5]) & bottom58bits;
|
---|
613 | out[6] = ((limb) in[6]) & bottom58bits;
|
---|
614 | out[7] = ((limb) in[7]) & bottom58bits;
|
---|
615 | out[8] = ((limb) in[8]) & bottom58bits;
|
---|
616 |
|
---|
617 | /* out[i] < 2^58 */
|
---|
618 |
|
---|
619 | out[1] += ((limb) in[0]) >> 58;
|
---|
620 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
|
---|
621 | /*-
|
---|
622 | * out[1] < 2^58 + 2^6 + 2^58
|
---|
623 | * = 2^59 + 2^6
|
---|
624 | */
|
---|
625 | out[2] += ((limb) (in[0] >> 64)) >> 52;
|
---|
626 |
|
---|
627 | out[2] += ((limb) in[1]) >> 58;
|
---|
628 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
|
---|
629 | out[3] += ((limb) (in[1] >> 64)) >> 52;
|
---|
630 |
|
---|
631 | out[3] += ((limb) in[2]) >> 58;
|
---|
632 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
|
---|
633 | out[4] += ((limb) (in[2] >> 64)) >> 52;
|
---|
634 |
|
---|
635 | out[4] += ((limb) in[3]) >> 58;
|
---|
636 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
|
---|
637 | out[5] += ((limb) (in[3] >> 64)) >> 52;
|
---|
638 |
|
---|
639 | out[5] += ((limb) in[4]) >> 58;
|
---|
640 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
|
---|
641 | out[6] += ((limb) (in[4] >> 64)) >> 52;
|
---|
642 |
|
---|
643 | out[6] += ((limb) in[5]) >> 58;
|
---|
644 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
|
---|
645 | out[7] += ((limb) (in[5] >> 64)) >> 52;
|
---|
646 |
|
---|
647 | out[7] += ((limb) in[6]) >> 58;
|
---|
648 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
|
---|
649 | out[8] += ((limb) (in[6] >> 64)) >> 52;
|
---|
650 |
|
---|
651 | out[8] += ((limb) in[7]) >> 58;
|
---|
652 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
|
---|
653 | /*-
|
---|
654 | * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
|
---|
655 | * < 2^59 + 2^13
|
---|
656 | */
|
---|
657 | overflow1 = ((limb) (in[7] >> 64)) >> 52;
|
---|
658 |
|
---|
659 | overflow1 += ((limb) in[8]) >> 58;
|
---|
660 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
|
---|
661 | overflow2 = ((limb) (in[8] >> 64)) >> 52;
|
---|
662 |
|
---|
663 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */
|
---|
664 | overflow2 <<= 1; /* overflow2 < 2^13 */
|
---|
665 |
|
---|
666 | out[0] += overflow1; /* out[0] < 2^60 */
|
---|
667 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */
|
---|
668 |
|
---|
669 | out[1] += out[0] >> 58;
|
---|
670 | out[0] &= bottom58bits;
|
---|
671 | /*-
|
---|
672 | * out[0] < 2^58
|
---|
673 | * out[1] < 2^59 + 2^6 + 2^13 + 2^2
|
---|
674 | * < 2^59 + 2^14
|
---|
675 | */
|
---|
676 | }
|
---|
677 |
|
---|
678 | #if defined(ECP_NISTP521_ASM)
|
---|
679 | void felem_square_wrapper(largefelem out, const felem in);
|
---|
680 | void felem_mul_wrapper(largefelem out, const felem in1, const felem in2);
|
---|
681 |
|
---|
682 | static void (*felem_square_p)(largefelem out, const felem in) =
|
---|
683 | felem_square_wrapper;
|
---|
684 | static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) =
|
---|
685 | felem_mul_wrapper;
|
---|
686 |
|
---|
687 | void p521_felem_square(largefelem out, const felem in);
|
---|
688 | void p521_felem_mul(largefelem out, const felem in1, const felem in2);
|
---|
689 |
|
---|
690 | # if defined(_ARCH_PPC64)
|
---|
691 | # include "crypto/ppc_arch.h"
|
---|
692 | # endif
|
---|
693 |
|
---|
694 | void felem_select(void)
|
---|
695 | {
|
---|
696 | # if defined(_ARCH_PPC64)
|
---|
697 | if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) {
|
---|
698 | felem_square_p = p521_felem_square;
|
---|
699 | felem_mul_p = p521_felem_mul;
|
---|
700 |
|
---|
701 | return;
|
---|
702 | }
|
---|
703 | # endif
|
---|
704 |
|
---|
705 | /* Default */
|
---|
706 | felem_square_p = felem_square_ref;
|
---|
707 | felem_mul_p = felem_mul_ref;
|
---|
708 | }
|
---|
709 |
|
---|
710 | void felem_square_wrapper(largefelem out, const felem in)
|
---|
711 | {
|
---|
712 | felem_select();
|
---|
713 | felem_square_p(out, in);
|
---|
714 | }
|
---|
715 |
|
---|
716 | void felem_mul_wrapper(largefelem out, const felem in1, const felem in2)
|
---|
717 | {
|
---|
718 | felem_select();
|
---|
719 | felem_mul_p(out, in1, in2);
|
---|
720 | }
|
---|
721 |
|
---|
722 | # define felem_square felem_square_p
|
---|
723 | # define felem_mul felem_mul_p
|
---|
724 | #else
|
---|
725 | # define felem_square felem_square_ref
|
---|
726 | # define felem_mul felem_mul_ref
|
---|
727 | #endif
|
---|
728 |
|
---|
729 | static void felem_square_reduce(felem out, const felem in)
|
---|
730 | {
|
---|
731 | largefelem tmp;
|
---|
732 | felem_square(tmp, in);
|
---|
733 | felem_reduce(out, tmp);
|
---|
734 | }
|
---|
735 |
|
---|
736 | static void felem_mul_reduce(felem out, const felem in1, const felem in2)
|
---|
737 | {
|
---|
738 | largefelem tmp;
|
---|
739 | felem_mul(tmp, in1, in2);
|
---|
740 | felem_reduce(out, tmp);
|
---|
741 | }
|
---|
742 |
|
---|
743 | /*-
|
---|
744 | * felem_inv calculates |out| = |in|^{-1}
|
---|
745 | *
|
---|
746 | * Based on Fermat's Little Theorem:
|
---|
747 | * a^p = a (mod p)
|
---|
748 | * a^{p-1} = 1 (mod p)
|
---|
749 | * a^{p-2} = a^{-1} (mod p)
|
---|
750 | */
|
---|
751 | static void felem_inv(felem out, const felem in)
|
---|
752 | {
|
---|
753 | felem ftmp, ftmp2, ftmp3, ftmp4;
|
---|
754 | largefelem tmp;
|
---|
755 | unsigned i;
|
---|
756 |
|
---|
757 | felem_square(tmp, in);
|
---|
758 | felem_reduce(ftmp, tmp); /* 2^1 */
|
---|
759 | felem_mul(tmp, in, ftmp);
|
---|
760 | felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
|
---|
761 | felem_assign(ftmp2, ftmp);
|
---|
762 | felem_square(tmp, ftmp);
|
---|
763 | felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
|
---|
764 | felem_mul(tmp, in, ftmp);
|
---|
765 | felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */
|
---|
766 | felem_square(tmp, ftmp);
|
---|
767 | felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */
|
---|
768 |
|
---|
769 | felem_square(tmp, ftmp2);
|
---|
770 | felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */
|
---|
771 | felem_square(tmp, ftmp3);
|
---|
772 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */
|
---|
773 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
774 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */
|
---|
775 |
|
---|
776 | felem_assign(ftmp2, ftmp3);
|
---|
777 | felem_square(tmp, ftmp3);
|
---|
778 | felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */
|
---|
779 | felem_square(tmp, ftmp3);
|
---|
780 | felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */
|
---|
781 | felem_square(tmp, ftmp3);
|
---|
782 | felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */
|
---|
783 | felem_square(tmp, ftmp3);
|
---|
784 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */
|
---|
785 | felem_assign(ftmp4, ftmp3);
|
---|
786 | felem_mul(tmp, ftmp3, ftmp);
|
---|
787 | felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */
|
---|
788 | felem_square(tmp, ftmp4);
|
---|
789 | felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */
|
---|
790 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
791 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */
|
---|
792 | felem_assign(ftmp2, ftmp3);
|
---|
793 |
|
---|
794 | for (i = 0; i < 8; i++) {
|
---|
795 | felem_square(tmp, ftmp3);
|
---|
796 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
|
---|
797 | }
|
---|
798 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
799 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */
|
---|
800 | felem_assign(ftmp2, ftmp3);
|
---|
801 |
|
---|
802 | for (i = 0; i < 16; i++) {
|
---|
803 | felem_square(tmp, ftmp3);
|
---|
804 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
|
---|
805 | }
|
---|
806 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
807 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */
|
---|
808 | felem_assign(ftmp2, ftmp3);
|
---|
809 |
|
---|
810 | for (i = 0; i < 32; i++) {
|
---|
811 | felem_square(tmp, ftmp3);
|
---|
812 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
|
---|
813 | }
|
---|
814 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
815 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */
|
---|
816 | felem_assign(ftmp2, ftmp3);
|
---|
817 |
|
---|
818 | for (i = 0; i < 64; i++) {
|
---|
819 | felem_square(tmp, ftmp3);
|
---|
820 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
|
---|
821 | }
|
---|
822 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
823 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */
|
---|
824 | felem_assign(ftmp2, ftmp3);
|
---|
825 |
|
---|
826 | for (i = 0; i < 128; i++) {
|
---|
827 | felem_square(tmp, ftmp3);
|
---|
828 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
|
---|
829 | }
|
---|
830 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
831 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */
|
---|
832 | felem_assign(ftmp2, ftmp3);
|
---|
833 |
|
---|
834 | for (i = 0; i < 256; i++) {
|
---|
835 | felem_square(tmp, ftmp3);
|
---|
836 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
|
---|
837 | }
|
---|
838 | felem_mul(tmp, ftmp3, ftmp2);
|
---|
839 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */
|
---|
840 |
|
---|
841 | for (i = 0; i < 9; i++) {
|
---|
842 | felem_square(tmp, ftmp3);
|
---|
843 | felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
|
---|
844 | }
|
---|
845 | felem_mul(tmp, ftmp3, ftmp4);
|
---|
846 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */
|
---|
847 | felem_mul(tmp, ftmp3, in);
|
---|
848 | felem_reduce(out, tmp); /* 2^512 - 3 */
|
---|
849 | }
|
---|
850 |
|
---|
851 | /* This is 2^521-1, expressed as an felem */
|
---|
852 | static const felem kPrime = {
|
---|
853 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
|
---|
854 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
|
---|
855 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
|
---|
856 | };
|
---|
857 |
|
---|
858 | /*-
|
---|
859 | * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
|
---|
860 | * otherwise.
|
---|
861 | * On entry:
|
---|
862 | * in[i] < 2^59 + 2^14
|
---|
863 | */
|
---|
864 | static limb felem_is_zero(const felem in)
|
---|
865 | {
|
---|
866 | felem ftmp;
|
---|
867 | limb is_zero, is_p;
|
---|
868 | felem_assign(ftmp, in);
|
---|
869 |
|
---|
870 | ftmp[0] += ftmp[8] >> 57;
|
---|
871 | ftmp[8] &= bottom57bits;
|
---|
872 | /* ftmp[8] < 2^57 */
|
---|
873 | ftmp[1] += ftmp[0] >> 58;
|
---|
874 | ftmp[0] &= bottom58bits;
|
---|
875 | ftmp[2] += ftmp[1] >> 58;
|
---|
876 | ftmp[1] &= bottom58bits;
|
---|
877 | ftmp[3] += ftmp[2] >> 58;
|
---|
878 | ftmp[2] &= bottom58bits;
|
---|
879 | ftmp[4] += ftmp[3] >> 58;
|
---|
880 | ftmp[3] &= bottom58bits;
|
---|
881 | ftmp[5] += ftmp[4] >> 58;
|
---|
882 | ftmp[4] &= bottom58bits;
|
---|
883 | ftmp[6] += ftmp[5] >> 58;
|
---|
884 | ftmp[5] &= bottom58bits;
|
---|
885 | ftmp[7] += ftmp[6] >> 58;
|
---|
886 | ftmp[6] &= bottom58bits;
|
---|
887 | ftmp[8] += ftmp[7] >> 58;
|
---|
888 | ftmp[7] &= bottom58bits;
|
---|
889 | /* ftmp[8] < 2^57 + 4 */
|
---|
890 |
|
---|
891 | /*
|
---|
892 | * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
|
---|
893 | * than our bound for ftmp[8]. Therefore we only have to check if the
|
---|
894 | * zero is zero or 2^521-1.
|
---|
895 | */
|
---|
896 |
|
---|
897 | is_zero = 0;
|
---|
898 | is_zero |= ftmp[0];
|
---|
899 | is_zero |= ftmp[1];
|
---|
900 | is_zero |= ftmp[2];
|
---|
901 | is_zero |= ftmp[3];
|
---|
902 | is_zero |= ftmp[4];
|
---|
903 | is_zero |= ftmp[5];
|
---|
904 | is_zero |= ftmp[6];
|
---|
905 | is_zero |= ftmp[7];
|
---|
906 | is_zero |= ftmp[8];
|
---|
907 |
|
---|
908 | is_zero--;
|
---|
909 | /*
|
---|
910 | * We know that ftmp[i] < 2^63, therefore the only way that the top bit
|
---|
911 | * can be set is if is_zero was 0 before the decrement.
|
---|
912 | */
|
---|
913 | is_zero = 0 - (is_zero >> 63);
|
---|
914 |
|
---|
915 | is_p = ftmp[0] ^ kPrime[0];
|
---|
916 | is_p |= ftmp[1] ^ kPrime[1];
|
---|
917 | is_p |= ftmp[2] ^ kPrime[2];
|
---|
918 | is_p |= ftmp[3] ^ kPrime[3];
|
---|
919 | is_p |= ftmp[4] ^ kPrime[4];
|
---|
920 | is_p |= ftmp[5] ^ kPrime[5];
|
---|
921 | is_p |= ftmp[6] ^ kPrime[6];
|
---|
922 | is_p |= ftmp[7] ^ kPrime[7];
|
---|
923 | is_p |= ftmp[8] ^ kPrime[8];
|
---|
924 |
|
---|
925 | is_p--;
|
---|
926 | is_p = 0 - (is_p >> 63);
|
---|
927 |
|
---|
928 | is_zero |= is_p;
|
---|
929 | return is_zero;
|
---|
930 | }
|
---|
931 |
|
---|
932 | static int felem_is_zero_int(const void *in)
|
---|
933 | {
|
---|
934 | return (int)(felem_is_zero(in) & ((limb) 1));
|
---|
935 | }
|
---|
936 |
|
---|
937 | /*-
|
---|
938 | * felem_contract converts |in| to its unique, minimal representation.
|
---|
939 | * On entry:
|
---|
940 | * in[i] < 2^59 + 2^14
|
---|
941 | */
|
---|
942 | static void felem_contract(felem out, const felem in)
|
---|
943 | {
|
---|
944 | limb is_p, is_greater, sign;
|
---|
945 | static const limb two58 = ((limb) 1) << 58;
|
---|
946 |
|
---|
947 | felem_assign(out, in);
|
---|
948 |
|
---|
949 | out[0] += out[8] >> 57;
|
---|
950 | out[8] &= bottom57bits;
|
---|
951 | /* out[8] < 2^57 */
|
---|
952 | out[1] += out[0] >> 58;
|
---|
953 | out[0] &= bottom58bits;
|
---|
954 | out[2] += out[1] >> 58;
|
---|
955 | out[1] &= bottom58bits;
|
---|
956 | out[3] += out[2] >> 58;
|
---|
957 | out[2] &= bottom58bits;
|
---|
958 | out[4] += out[3] >> 58;
|
---|
959 | out[3] &= bottom58bits;
|
---|
960 | out[5] += out[4] >> 58;
|
---|
961 | out[4] &= bottom58bits;
|
---|
962 | out[6] += out[5] >> 58;
|
---|
963 | out[5] &= bottom58bits;
|
---|
964 | out[7] += out[6] >> 58;
|
---|
965 | out[6] &= bottom58bits;
|
---|
966 | out[8] += out[7] >> 58;
|
---|
967 | out[7] &= bottom58bits;
|
---|
968 | /* out[8] < 2^57 + 4 */
|
---|
969 |
|
---|
970 | /*
|
---|
971 | * If the value is greater than 2^521-1 then we have to subtract 2^521-1
|
---|
972 | * out. See the comments in felem_is_zero regarding why we don't test for
|
---|
973 | * other multiples of the prime.
|
---|
974 | */
|
---|
975 |
|
---|
976 | /*
|
---|
977 | * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
|
---|
978 | */
|
---|
979 |
|
---|
980 | is_p = out[0] ^ kPrime[0];
|
---|
981 | is_p |= out[1] ^ kPrime[1];
|
---|
982 | is_p |= out[2] ^ kPrime[2];
|
---|
983 | is_p |= out[3] ^ kPrime[3];
|
---|
984 | is_p |= out[4] ^ kPrime[4];
|
---|
985 | is_p |= out[5] ^ kPrime[5];
|
---|
986 | is_p |= out[6] ^ kPrime[6];
|
---|
987 | is_p |= out[7] ^ kPrime[7];
|
---|
988 | is_p |= out[8] ^ kPrime[8];
|
---|
989 |
|
---|
990 | is_p--;
|
---|
991 | is_p &= is_p << 32;
|
---|
992 | is_p &= is_p << 16;
|
---|
993 | is_p &= is_p << 8;
|
---|
994 | is_p &= is_p << 4;
|
---|
995 | is_p &= is_p << 2;
|
---|
996 | is_p &= is_p << 1;
|
---|
997 | is_p = 0 - (is_p >> 63);
|
---|
998 | is_p = ~is_p;
|
---|
999 |
|
---|
1000 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
|
---|
1001 |
|
---|
1002 | out[0] &= is_p;
|
---|
1003 | out[1] &= is_p;
|
---|
1004 | out[2] &= is_p;
|
---|
1005 | out[3] &= is_p;
|
---|
1006 | out[4] &= is_p;
|
---|
1007 | out[5] &= is_p;
|
---|
1008 | out[6] &= is_p;
|
---|
1009 | out[7] &= is_p;
|
---|
1010 | out[8] &= is_p;
|
---|
1011 |
|
---|
1012 | /*
|
---|
1013 | * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
|
---|
1014 | * 57 is greater than zero as (2^521-1) + x >= 2^522
|
---|
1015 | */
|
---|
1016 | is_greater = out[8] >> 57;
|
---|
1017 | is_greater |= is_greater << 32;
|
---|
1018 | is_greater |= is_greater << 16;
|
---|
1019 | is_greater |= is_greater << 8;
|
---|
1020 | is_greater |= is_greater << 4;
|
---|
1021 | is_greater |= is_greater << 2;
|
---|
1022 | is_greater |= is_greater << 1;
|
---|
1023 | is_greater = 0 - (is_greater >> 63);
|
---|
1024 |
|
---|
1025 | out[0] -= kPrime[0] & is_greater;
|
---|
1026 | out[1] -= kPrime[1] & is_greater;
|
---|
1027 | out[2] -= kPrime[2] & is_greater;
|
---|
1028 | out[3] -= kPrime[3] & is_greater;
|
---|
1029 | out[4] -= kPrime[4] & is_greater;
|
---|
1030 | out[5] -= kPrime[5] & is_greater;
|
---|
1031 | out[6] -= kPrime[6] & is_greater;
|
---|
1032 | out[7] -= kPrime[7] & is_greater;
|
---|
1033 | out[8] -= kPrime[8] & is_greater;
|
---|
1034 |
|
---|
1035 | /* Eliminate negative coefficients */
|
---|
1036 | sign = -(out[0] >> 63);
|
---|
1037 | out[0] += (two58 & sign);
|
---|
1038 | out[1] -= (1 & sign);
|
---|
1039 | sign = -(out[1] >> 63);
|
---|
1040 | out[1] += (two58 & sign);
|
---|
1041 | out[2] -= (1 & sign);
|
---|
1042 | sign = -(out[2] >> 63);
|
---|
1043 | out[2] += (two58 & sign);
|
---|
1044 | out[3] -= (1 & sign);
|
---|
1045 | sign = -(out[3] >> 63);
|
---|
1046 | out[3] += (two58 & sign);
|
---|
1047 | out[4] -= (1 & sign);
|
---|
1048 | sign = -(out[4] >> 63);
|
---|
1049 | out[4] += (two58 & sign);
|
---|
1050 | out[5] -= (1 & sign);
|
---|
1051 | sign = -(out[0] >> 63);
|
---|
1052 | out[5] += (two58 & sign);
|
---|
1053 | out[6] -= (1 & sign);
|
---|
1054 | sign = -(out[6] >> 63);
|
---|
1055 | out[6] += (two58 & sign);
|
---|
1056 | out[7] -= (1 & sign);
|
---|
1057 | sign = -(out[7] >> 63);
|
---|
1058 | out[7] += (two58 & sign);
|
---|
1059 | out[8] -= (1 & sign);
|
---|
1060 | sign = -(out[5] >> 63);
|
---|
1061 | out[5] += (two58 & sign);
|
---|
1062 | out[6] -= (1 & sign);
|
---|
1063 | sign = -(out[6] >> 63);
|
---|
1064 | out[6] += (two58 & sign);
|
---|
1065 | out[7] -= (1 & sign);
|
---|
1066 | sign = -(out[7] >> 63);
|
---|
1067 | out[7] += (two58 & sign);
|
---|
1068 | out[8] -= (1 & sign);
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | /*-
|
---|
1072 | * Group operations
|
---|
1073 | * ----------------
|
---|
1074 | *
|
---|
1075 | * Building on top of the field operations we have the operations on the
|
---|
1076 | * elliptic curve group itself. Points on the curve are represented in Jacobian
|
---|
1077 | * coordinates */
|
---|
1078 |
|
---|
1079 | /*-
|
---|
1080 | * point_double calculates 2*(x_in, y_in, z_in)
|
---|
1081 | *
|
---|
1082 | * The method is taken from:
|
---|
1083 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
---|
1084 | *
|
---|
1085 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
|
---|
1086 | * while x_out == y_in is not (maybe this works, but it's not tested). */
|
---|
1087 | static void
|
---|
1088 | point_double(felem x_out, felem y_out, felem z_out,
|
---|
1089 | const felem x_in, const felem y_in, const felem z_in)
|
---|
1090 | {
|
---|
1091 | largefelem tmp, tmp2;
|
---|
1092 | felem delta, gamma, beta, alpha, ftmp, ftmp2;
|
---|
1093 |
|
---|
1094 | felem_assign(ftmp, x_in);
|
---|
1095 | felem_assign(ftmp2, x_in);
|
---|
1096 |
|
---|
1097 | /* delta = z^2 */
|
---|
1098 | felem_square(tmp, z_in);
|
---|
1099 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */
|
---|
1100 |
|
---|
1101 | /* gamma = y^2 */
|
---|
1102 | felem_square(tmp, y_in);
|
---|
1103 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */
|
---|
1104 |
|
---|
1105 | /* beta = x*gamma */
|
---|
1106 | felem_mul(tmp, x_in, gamma);
|
---|
1107 | felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */
|
---|
1108 |
|
---|
1109 | /* alpha = 3*(x-delta)*(x+delta) */
|
---|
1110 | felem_diff64(ftmp, delta);
|
---|
1111 | /* ftmp[i] < 2^61 */
|
---|
1112 | felem_sum64(ftmp2, delta);
|
---|
1113 | /* ftmp2[i] < 2^60 + 2^15 */
|
---|
1114 | felem_scalar64(ftmp2, 3);
|
---|
1115 | /* ftmp2[i] < 3*2^60 + 3*2^15 */
|
---|
1116 | felem_mul(tmp, ftmp, ftmp2);
|
---|
1117 | /*-
|
---|
1118 | * tmp[i] < 17(3*2^121 + 3*2^76)
|
---|
1119 | * = 61*2^121 + 61*2^76
|
---|
1120 | * < 64*2^121 + 64*2^76
|
---|
1121 | * = 2^127 + 2^82
|
---|
1122 | * < 2^128
|
---|
1123 | */
|
---|
1124 | felem_reduce(alpha, tmp);
|
---|
1125 |
|
---|
1126 | /* x' = alpha^2 - 8*beta */
|
---|
1127 | felem_square(tmp, alpha);
|
---|
1128 | /*
|
---|
1129 | * tmp[i] < 17*2^120 < 2^125
|
---|
1130 | */
|
---|
1131 | felem_assign(ftmp, beta);
|
---|
1132 | felem_scalar64(ftmp, 8);
|
---|
1133 | /* ftmp[i] < 2^62 + 2^17 */
|
---|
1134 | felem_diff_128_64(tmp, ftmp);
|
---|
1135 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
|
---|
1136 | felem_reduce(x_out, tmp);
|
---|
1137 |
|
---|
1138 | /* z' = (y + z)^2 - gamma - delta */
|
---|
1139 | felem_sum64(delta, gamma);
|
---|
1140 | /* delta[i] < 2^60 + 2^15 */
|
---|
1141 | felem_assign(ftmp, y_in);
|
---|
1142 | felem_sum64(ftmp, z_in);
|
---|
1143 | /* ftmp[i] < 2^60 + 2^15 */
|
---|
1144 | felem_square(tmp, ftmp);
|
---|
1145 | /*
|
---|
1146 | * tmp[i] < 17(2^122) < 2^127
|
---|
1147 | */
|
---|
1148 | felem_diff_128_64(tmp, delta);
|
---|
1149 | /* tmp[i] < 2^127 + 2^63 */
|
---|
1150 | felem_reduce(z_out, tmp);
|
---|
1151 |
|
---|
1152 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */
|
---|
1153 | felem_scalar64(beta, 4);
|
---|
1154 | /* beta[i] < 2^61 + 2^16 */
|
---|
1155 | felem_diff64(beta, x_out);
|
---|
1156 | /* beta[i] < 2^61 + 2^60 + 2^16 */
|
---|
1157 | felem_mul(tmp, alpha, beta);
|
---|
1158 | /*-
|
---|
1159 | * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
|
---|
1160 | * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
|
---|
1161 | * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
|
---|
1162 | * < 2^128
|
---|
1163 | */
|
---|
1164 | felem_square(tmp2, gamma);
|
---|
1165 | /*-
|
---|
1166 | * tmp2[i] < 17*(2^59 + 2^14)^2
|
---|
1167 | * = 17*(2^118 + 2^74 + 2^28)
|
---|
1168 | */
|
---|
1169 | felem_scalar128(tmp2, 8);
|
---|
1170 | /*-
|
---|
1171 | * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
|
---|
1172 | * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
|
---|
1173 | * < 2^126
|
---|
1174 | */
|
---|
1175 | felem_diff128(tmp, tmp2);
|
---|
1176 | /*-
|
---|
1177 | * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
|
---|
1178 | * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
|
---|
1179 | * 2^74 + 2^69 + 2^34 + 2^30
|
---|
1180 | * < 2^128
|
---|
1181 | */
|
---|
1182 | felem_reduce(y_out, tmp);
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | /* copy_conditional copies in to out iff mask is all ones. */
|
---|
1186 | static void copy_conditional(felem out, const felem in, limb mask)
|
---|
1187 | {
|
---|
1188 | unsigned i;
|
---|
1189 | for (i = 0; i < NLIMBS; ++i) {
|
---|
1190 | const limb tmp = mask & (in[i] ^ out[i]);
|
---|
1191 | out[i] ^= tmp;
|
---|
1192 | }
|
---|
1193 | }
|
---|
1194 |
|
---|
1195 | /*-
|
---|
1196 | * point_add calculates (x1, y1, z1) + (x2, y2, z2)
|
---|
1197 | *
|
---|
1198 | * The method is taken from
|
---|
1199 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
|
---|
1200 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
|
---|
1201 | *
|
---|
1202 | * This function includes a branch for checking whether the two input points
|
---|
1203 | * are equal (while not equal to the point at infinity). See comment below
|
---|
1204 | * on constant-time.
|
---|
1205 | */
|
---|
1206 | static void point_add(felem x3, felem y3, felem z3,
|
---|
1207 | const felem x1, const felem y1, const felem z1,
|
---|
1208 | const int mixed, const felem x2, const felem y2,
|
---|
1209 | const felem z2)
|
---|
1210 | {
|
---|
1211 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
|
---|
1212 | largefelem tmp, tmp2;
|
---|
1213 | limb x_equal, y_equal, z1_is_zero, z2_is_zero;
|
---|
1214 | limb points_equal;
|
---|
1215 |
|
---|
1216 | z1_is_zero = felem_is_zero(z1);
|
---|
1217 | z2_is_zero = felem_is_zero(z2);
|
---|
1218 |
|
---|
1219 | /* ftmp = z1z1 = z1**2 */
|
---|
1220 | felem_square(tmp, z1);
|
---|
1221 | felem_reduce(ftmp, tmp);
|
---|
1222 |
|
---|
1223 | if (!mixed) {
|
---|
1224 | /* ftmp2 = z2z2 = z2**2 */
|
---|
1225 | felem_square(tmp, z2);
|
---|
1226 | felem_reduce(ftmp2, tmp);
|
---|
1227 |
|
---|
1228 | /* u1 = ftmp3 = x1*z2z2 */
|
---|
1229 | felem_mul(tmp, x1, ftmp2);
|
---|
1230 | felem_reduce(ftmp3, tmp);
|
---|
1231 |
|
---|
1232 | /* ftmp5 = z1 + z2 */
|
---|
1233 | felem_assign(ftmp5, z1);
|
---|
1234 | felem_sum64(ftmp5, z2);
|
---|
1235 | /* ftmp5[i] < 2^61 */
|
---|
1236 |
|
---|
1237 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
|
---|
1238 | felem_square(tmp, ftmp5);
|
---|
1239 | /* tmp[i] < 17*2^122 */
|
---|
1240 | felem_diff_128_64(tmp, ftmp);
|
---|
1241 | /* tmp[i] < 17*2^122 + 2^63 */
|
---|
1242 | felem_diff_128_64(tmp, ftmp2);
|
---|
1243 | /* tmp[i] < 17*2^122 + 2^64 */
|
---|
1244 | felem_reduce(ftmp5, tmp);
|
---|
1245 |
|
---|
1246 | /* ftmp2 = z2 * z2z2 */
|
---|
1247 | felem_mul(tmp, ftmp2, z2);
|
---|
1248 | felem_reduce(ftmp2, tmp);
|
---|
1249 |
|
---|
1250 | /* s1 = ftmp6 = y1 * z2**3 */
|
---|
1251 | felem_mul(tmp, y1, ftmp2);
|
---|
1252 | felem_reduce(ftmp6, tmp);
|
---|
1253 | } else {
|
---|
1254 | /*
|
---|
1255 | * We'll assume z2 = 1 (special case z2 = 0 is handled later)
|
---|
1256 | */
|
---|
1257 |
|
---|
1258 | /* u1 = ftmp3 = x1*z2z2 */
|
---|
1259 | felem_assign(ftmp3, x1);
|
---|
1260 |
|
---|
1261 | /* ftmp5 = 2*z1z2 */
|
---|
1262 | felem_scalar(ftmp5, z1, 2);
|
---|
1263 |
|
---|
1264 | /* s1 = ftmp6 = y1 * z2**3 */
|
---|
1265 | felem_assign(ftmp6, y1);
|
---|
1266 | }
|
---|
1267 |
|
---|
1268 | /* u2 = x2*z1z1 */
|
---|
1269 | felem_mul(tmp, x2, ftmp);
|
---|
1270 | /* tmp[i] < 17*2^120 */
|
---|
1271 |
|
---|
1272 | /* h = ftmp4 = u2 - u1 */
|
---|
1273 | felem_diff_128_64(tmp, ftmp3);
|
---|
1274 | /* tmp[i] < 17*2^120 + 2^63 */
|
---|
1275 | felem_reduce(ftmp4, tmp);
|
---|
1276 |
|
---|
1277 | x_equal = felem_is_zero(ftmp4);
|
---|
1278 |
|
---|
1279 | /* z_out = ftmp5 * h */
|
---|
1280 | felem_mul(tmp, ftmp5, ftmp4);
|
---|
1281 | felem_reduce(z_out, tmp);
|
---|
1282 |
|
---|
1283 | /* ftmp = z1 * z1z1 */
|
---|
1284 | felem_mul(tmp, ftmp, z1);
|
---|
1285 | felem_reduce(ftmp, tmp);
|
---|
1286 |
|
---|
1287 | /* s2 = tmp = y2 * z1**3 */
|
---|
1288 | felem_mul(tmp, y2, ftmp);
|
---|
1289 | /* tmp[i] < 17*2^120 */
|
---|
1290 |
|
---|
1291 | /* r = ftmp5 = (s2 - s1)*2 */
|
---|
1292 | felem_diff_128_64(tmp, ftmp6);
|
---|
1293 | /* tmp[i] < 17*2^120 + 2^63 */
|
---|
1294 | felem_reduce(ftmp5, tmp);
|
---|
1295 | y_equal = felem_is_zero(ftmp5);
|
---|
1296 | felem_scalar64(ftmp5, 2);
|
---|
1297 | /* ftmp5[i] < 2^61 */
|
---|
1298 |
|
---|
1299 | /*
|
---|
1300 | * The formulae are incorrect if the points are equal, in affine coordinates
|
---|
1301 | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
---|
1302 | * happens.
|
---|
1303 | *
|
---|
1304 | * We use bitwise operations to avoid potential side-channels introduced by
|
---|
1305 | * the short-circuiting behaviour of boolean operators.
|
---|
1306 | *
|
---|
1307 | * The special case of either point being the point at infinity (z1 and/or
|
---|
1308 | * z2 are zero), is handled separately later on in this function, so we
|
---|
1309 | * avoid jumping to point_double here in those special cases.
|
---|
1310 | *
|
---|
1311 | * Notice the comment below on the implications of this branching for timing
|
---|
1312 | * leaks and why it is considered practically irrelevant.
|
---|
1313 | */
|
---|
1314 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
|
---|
1315 |
|
---|
1316 | if (points_equal) {
|
---|
1317 | /*
|
---|
1318 | * This is obviously not constant-time but it will almost-never happen
|
---|
1319 | * for ECDH / ECDSA. The case where it can happen is during scalar-mult
|
---|
1320 | * where the intermediate value gets very close to the group order.
|
---|
1321 | * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits
|
---|
1322 | * for the scalar, it's possible for the intermediate value to be a small
|
---|
1323 | * negative multiple of the base point, and for the final signed digit
|
---|
1324 | * to be the same value. We believe that this only occurs for the scalar
|
---|
1325 | * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
|
---|
1326 | * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
|
---|
1327 | * 71e913863f7, in that case the penultimate intermediate is -9G and
|
---|
1328 | * the final digit is also -9G. Since this only happens for a single
|
---|
1329 | * scalar, the timing leak is irrelevant. (Any attacker who wanted to
|
---|
1330 | * check whether a secret scalar was that exact value, can already do
|
---|
1331 | * so.)
|
---|
1332 | */
|
---|
1333 | point_double(x3, y3, z3, x1, y1, z1);
|
---|
1334 | return;
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | /* I = ftmp = (2h)**2 */
|
---|
1338 | felem_assign(ftmp, ftmp4);
|
---|
1339 | felem_scalar64(ftmp, 2);
|
---|
1340 | /* ftmp[i] < 2^61 */
|
---|
1341 | felem_square(tmp, ftmp);
|
---|
1342 | /* tmp[i] < 17*2^122 */
|
---|
1343 | felem_reduce(ftmp, tmp);
|
---|
1344 |
|
---|
1345 | /* J = ftmp2 = h * I */
|
---|
1346 | felem_mul(tmp, ftmp4, ftmp);
|
---|
1347 | felem_reduce(ftmp2, tmp);
|
---|
1348 |
|
---|
1349 | /* V = ftmp4 = U1 * I */
|
---|
1350 | felem_mul(tmp, ftmp3, ftmp);
|
---|
1351 | felem_reduce(ftmp4, tmp);
|
---|
1352 |
|
---|
1353 | /* x_out = r**2 - J - 2V */
|
---|
1354 | felem_square(tmp, ftmp5);
|
---|
1355 | /* tmp[i] < 17*2^122 */
|
---|
1356 | felem_diff_128_64(tmp, ftmp2);
|
---|
1357 | /* tmp[i] < 17*2^122 + 2^63 */
|
---|
1358 | felem_assign(ftmp3, ftmp4);
|
---|
1359 | felem_scalar64(ftmp4, 2);
|
---|
1360 | /* ftmp4[i] < 2^61 */
|
---|
1361 | felem_diff_128_64(tmp, ftmp4);
|
---|
1362 | /* tmp[i] < 17*2^122 + 2^64 */
|
---|
1363 | felem_reduce(x_out, tmp);
|
---|
1364 |
|
---|
1365 | /* y_out = r(V-x_out) - 2 * s1 * J */
|
---|
1366 | felem_diff64(ftmp3, x_out);
|
---|
1367 | /*
|
---|
1368 | * ftmp3[i] < 2^60 + 2^60 = 2^61
|
---|
1369 | */
|
---|
1370 | felem_mul(tmp, ftmp5, ftmp3);
|
---|
1371 | /* tmp[i] < 17*2^122 */
|
---|
1372 | felem_mul(tmp2, ftmp6, ftmp2);
|
---|
1373 | /* tmp2[i] < 17*2^120 */
|
---|
1374 | felem_scalar128(tmp2, 2);
|
---|
1375 | /* tmp2[i] < 17*2^121 */
|
---|
1376 | felem_diff128(tmp, tmp2);
|
---|
1377 | /*-
|
---|
1378 | * tmp[i] < 2^127 - 2^69 + 17*2^122
|
---|
1379 | * = 2^126 - 2^122 - 2^6 - 2^2 - 1
|
---|
1380 | * < 2^127
|
---|
1381 | */
|
---|
1382 | felem_reduce(y_out, tmp);
|
---|
1383 |
|
---|
1384 | copy_conditional(x_out, x2, z1_is_zero);
|
---|
1385 | copy_conditional(x_out, x1, z2_is_zero);
|
---|
1386 | copy_conditional(y_out, y2, z1_is_zero);
|
---|
1387 | copy_conditional(y_out, y1, z2_is_zero);
|
---|
1388 | copy_conditional(z_out, z2, z1_is_zero);
|
---|
1389 | copy_conditional(z_out, z1, z2_is_zero);
|
---|
1390 | felem_assign(x3, x_out);
|
---|
1391 | felem_assign(y3, y_out);
|
---|
1392 | felem_assign(z3, z_out);
|
---|
1393 | }
|
---|
1394 |
|
---|
1395 | /*-
|
---|
1396 | * Base point pre computation
|
---|
1397 | * --------------------------
|
---|
1398 | *
|
---|
1399 | * Two different sorts of precomputed tables are used in the following code.
|
---|
1400 | * Each contain various points on the curve, where each point is three field
|
---|
1401 | * elements (x, y, z).
|
---|
1402 | *
|
---|
1403 | * For the base point table, z is usually 1 (0 for the point at infinity).
|
---|
1404 | * This table has 16 elements:
|
---|
1405 | * index | bits | point
|
---|
1406 | * ------+---------+------------------------------
|
---|
1407 | * 0 | 0 0 0 0 | 0G
|
---|
1408 | * 1 | 0 0 0 1 | 1G
|
---|
1409 | * 2 | 0 0 1 0 | 2^130G
|
---|
1410 | * 3 | 0 0 1 1 | (2^130 + 1)G
|
---|
1411 | * 4 | 0 1 0 0 | 2^260G
|
---|
1412 | * 5 | 0 1 0 1 | (2^260 + 1)G
|
---|
1413 | * 6 | 0 1 1 0 | (2^260 + 2^130)G
|
---|
1414 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
|
---|
1415 | * 8 | 1 0 0 0 | 2^390G
|
---|
1416 | * 9 | 1 0 0 1 | (2^390 + 1)G
|
---|
1417 | * 10 | 1 0 1 0 | (2^390 + 2^130)G
|
---|
1418 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
|
---|
1419 | * 12 | 1 1 0 0 | (2^390 + 2^260)G
|
---|
1420 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
|
---|
1421 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
|
---|
1422 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
|
---|
1423 | *
|
---|
1424 | * The reason for this is so that we can clock bits into four different
|
---|
1425 | * locations when doing simple scalar multiplies against the base point.
|
---|
1426 | *
|
---|
1427 | * Tables for other points have table[i] = iG for i in 0 .. 16. */
|
---|
1428 |
|
---|
1429 | /* gmul is the table of precomputed base points */
|
---|
1430 | static const felem gmul[16][3] = {
|
---|
1431 | {{0, 0, 0, 0, 0, 0, 0, 0, 0},
|
---|
1432 | {0, 0, 0, 0, 0, 0, 0, 0, 0},
|
---|
1433 | {0, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1434 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
|
---|
1435 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
|
---|
1436 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
|
---|
1437 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
|
---|
1438 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
|
---|
1439 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
|
---|
1440 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1441 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
|
---|
1442 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
|
---|
1443 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
|
---|
1444 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
|
---|
1445 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
|
---|
1446 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
|
---|
1447 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1448 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
|
---|
1449 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
|
---|
1450 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
|
---|
1451 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
|
---|
1452 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
|
---|
1453 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
|
---|
1454 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1455 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
|
---|
1456 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
|
---|
1457 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
|
---|
1458 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
|
---|
1459 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
|
---|
1460 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
|
---|
1461 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1462 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
|
---|
1463 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
|
---|
1464 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
|
---|
1465 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
|
---|
1466 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
|
---|
1467 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
|
---|
1468 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1469 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
|
---|
1470 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
|
---|
1471 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
|
---|
1472 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
|
---|
1473 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
|
---|
1474 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
|
---|
1475 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1476 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
|
---|
1477 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
|
---|
1478 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
|
---|
1479 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
|
---|
1480 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
|
---|
1481 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
|
---|
1482 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1483 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
|
---|
1484 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
|
---|
1485 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
|
---|
1486 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
|
---|
1487 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
|
---|
1488 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
|
---|
1489 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1490 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
|
---|
1491 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
|
---|
1492 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
|
---|
1493 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
|
---|
1494 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
|
---|
1495 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
|
---|
1496 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1497 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
|
---|
1498 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
|
---|
1499 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
|
---|
1500 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
|
---|
1501 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
|
---|
1502 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
|
---|
1503 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1504 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
|
---|
1505 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
|
---|
1506 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
|
---|
1507 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
|
---|
1508 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
|
---|
1509 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
|
---|
1510 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1511 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
|
---|
1512 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
|
---|
1513 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
|
---|
1514 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
|
---|
1515 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
|
---|
1516 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
|
---|
1517 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1518 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
|
---|
1519 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
|
---|
1520 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
|
---|
1521 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
|
---|
1522 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
|
---|
1523 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
|
---|
1524 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1525 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
|
---|
1526 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
|
---|
1527 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
|
---|
1528 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
|
---|
1529 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
|
---|
1530 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
|
---|
1531 | {1, 0, 0, 0, 0, 0, 0, 0, 0}},
|
---|
1532 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
|
---|
1533 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
|
---|
1534 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
|
---|
1535 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
|
---|
1536 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
|
---|
1537 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
|
---|
1538 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}
|
---|
1539 | };
|
---|
1540 |
|
---|
1541 | /*
|
---|
1542 | * select_point selects the |idx|th point from a precomputation table and
|
---|
1543 | * copies it to out.
|
---|
1544 | */
|
---|
1545 | /* pre_comp below is of the size provided in |size| */
|
---|
1546 | static void select_point(const limb idx, unsigned int size,
|
---|
1547 | const felem pre_comp[][3], felem out[3])
|
---|
1548 | {
|
---|
1549 | unsigned i, j;
|
---|
1550 | limb *outlimbs = &out[0][0];
|
---|
1551 |
|
---|
1552 | memset(out, 0, sizeof(*out) * 3);
|
---|
1553 |
|
---|
1554 | for (i = 0; i < size; i++) {
|
---|
1555 | const limb *inlimbs = &pre_comp[i][0][0];
|
---|
1556 | limb mask = i ^ idx;
|
---|
1557 | mask |= mask >> 4;
|
---|
1558 | mask |= mask >> 2;
|
---|
1559 | mask |= mask >> 1;
|
---|
1560 | mask &= 1;
|
---|
1561 | mask--;
|
---|
1562 | for (j = 0; j < NLIMBS * 3; j++)
|
---|
1563 | outlimbs[j] |= inlimbs[j] & mask;
|
---|
1564 | }
|
---|
1565 | }
|
---|
1566 |
|
---|
1567 | /* get_bit returns the |i|th bit in |in| */
|
---|
1568 | static char get_bit(const felem_bytearray in, int i)
|
---|
1569 | {
|
---|
1570 | if (i < 0)
|
---|
1571 | return 0;
|
---|
1572 | return (in[i >> 3] >> (i & 7)) & 1;
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 | /*
|
---|
1576 | * Interleaved point multiplication using precomputed point multiples: The
|
---|
1577 | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
|
---|
1578 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
|
---|
1579 | * generator, using certain (large) precomputed multiples in g_pre_comp.
|
---|
1580 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out
|
---|
1581 | */
|
---|
1582 | static void batch_mul(felem x_out, felem y_out, felem z_out,
|
---|
1583 | const felem_bytearray scalars[],
|
---|
1584 | const unsigned num_points, const u8 *g_scalar,
|
---|
1585 | const int mixed, const felem pre_comp[][17][3],
|
---|
1586 | const felem g_pre_comp[16][3])
|
---|
1587 | {
|
---|
1588 | int i, skip;
|
---|
1589 | unsigned num, gen_mul = (g_scalar != NULL);
|
---|
1590 | felem nq[3], tmp[4];
|
---|
1591 | limb bits;
|
---|
1592 | u8 sign, digit;
|
---|
1593 |
|
---|
1594 | /* set nq to the point at infinity */
|
---|
1595 | memset(nq, 0, sizeof(nq));
|
---|
1596 |
|
---|
1597 | /*
|
---|
1598 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples
|
---|
1599 | * of the generator (last quarter of rounds) and additions of other
|
---|
1600 | * points multiples (every 5th round).
|
---|
1601 | */
|
---|
1602 | skip = 1; /* save two point operations in the first
|
---|
1603 | * round */
|
---|
1604 | for (i = (num_points ? 520 : 130); i >= 0; --i) {
|
---|
1605 | /* double */
|
---|
1606 | if (!skip)
|
---|
1607 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
|
---|
1608 |
|
---|
1609 | /* add multiples of the generator */
|
---|
1610 | if (gen_mul && (i <= 130)) {
|
---|
1611 | bits = get_bit(g_scalar, i + 390) << 3;
|
---|
1612 | if (i < 130) {
|
---|
1613 | bits |= get_bit(g_scalar, i + 260) << 2;
|
---|
1614 | bits |= get_bit(g_scalar, i + 130) << 1;
|
---|
1615 | bits |= get_bit(g_scalar, i);
|
---|
1616 | }
|
---|
1617 | /* select the point to add, in constant time */
|
---|
1618 | select_point(bits, 16, g_pre_comp, tmp);
|
---|
1619 | if (!skip) {
|
---|
1620 | /* The 1 argument below is for "mixed" */
|
---|
1621 | point_add(nq[0], nq[1], nq[2],
|
---|
1622 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
|
---|
1623 | } else {
|
---|
1624 | memcpy(nq, tmp, 3 * sizeof(felem));
|
---|
1625 | skip = 0;
|
---|
1626 | }
|
---|
1627 | }
|
---|
1628 |
|
---|
1629 | /* do other additions every 5 doublings */
|
---|
1630 | if (num_points && (i % 5 == 0)) {
|
---|
1631 | /* loop over all scalars */
|
---|
1632 | for (num = 0; num < num_points; ++num) {
|
---|
1633 | bits = get_bit(scalars[num], i + 4) << 5;
|
---|
1634 | bits |= get_bit(scalars[num], i + 3) << 4;
|
---|
1635 | bits |= get_bit(scalars[num], i + 2) << 3;
|
---|
1636 | bits |= get_bit(scalars[num], i + 1) << 2;
|
---|
1637 | bits |= get_bit(scalars[num], i) << 1;
|
---|
1638 | bits |= get_bit(scalars[num], i - 1);
|
---|
1639 | ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
|
---|
1640 |
|
---|
1641 | /*
|
---|
1642 | * select the point to add or subtract, in constant time
|
---|
1643 | */
|
---|
1644 | select_point(digit, 17, pre_comp[num], tmp);
|
---|
1645 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
|
---|
1646 | * point */
|
---|
1647 | copy_conditional(tmp[1], tmp[3], (-(limb) sign));
|
---|
1648 |
|
---|
1649 | if (!skip) {
|
---|
1650 | point_add(nq[0], nq[1], nq[2],
|
---|
1651 | nq[0], nq[1], nq[2],
|
---|
1652 | mixed, tmp[0], tmp[1], tmp[2]);
|
---|
1653 | } else {
|
---|
1654 | memcpy(nq, tmp, 3 * sizeof(felem));
|
---|
1655 | skip = 0;
|
---|
1656 | }
|
---|
1657 | }
|
---|
1658 | }
|
---|
1659 | }
|
---|
1660 | felem_assign(x_out, nq[0]);
|
---|
1661 | felem_assign(y_out, nq[1]);
|
---|
1662 | felem_assign(z_out, nq[2]);
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | /* Precomputation for the group generator. */
|
---|
1666 | struct nistp521_pre_comp_st {
|
---|
1667 | felem g_pre_comp[16][3];
|
---|
1668 | CRYPTO_REF_COUNT references;
|
---|
1669 | CRYPTO_RWLOCK *lock;
|
---|
1670 | };
|
---|
1671 |
|
---|
1672 | const EC_METHOD *EC_GFp_nistp521_method(void)
|
---|
1673 | {
|
---|
1674 | static const EC_METHOD ret = {
|
---|
1675 | EC_FLAGS_DEFAULT_OCT,
|
---|
1676 | NID_X9_62_prime_field,
|
---|
1677 | ossl_ec_GFp_nistp521_group_init,
|
---|
1678 | ossl_ec_GFp_simple_group_finish,
|
---|
1679 | ossl_ec_GFp_simple_group_clear_finish,
|
---|
1680 | ossl_ec_GFp_nist_group_copy,
|
---|
1681 | ossl_ec_GFp_nistp521_group_set_curve,
|
---|
1682 | ossl_ec_GFp_simple_group_get_curve,
|
---|
1683 | ossl_ec_GFp_simple_group_get_degree,
|
---|
1684 | ossl_ec_group_simple_order_bits,
|
---|
1685 | ossl_ec_GFp_simple_group_check_discriminant,
|
---|
1686 | ossl_ec_GFp_simple_point_init,
|
---|
1687 | ossl_ec_GFp_simple_point_finish,
|
---|
1688 | ossl_ec_GFp_simple_point_clear_finish,
|
---|
1689 | ossl_ec_GFp_simple_point_copy,
|
---|
1690 | ossl_ec_GFp_simple_point_set_to_infinity,
|
---|
1691 | ossl_ec_GFp_simple_point_set_affine_coordinates,
|
---|
1692 | ossl_ec_GFp_nistp521_point_get_affine_coordinates,
|
---|
1693 | 0 /* point_set_compressed_coordinates */ ,
|
---|
1694 | 0 /* point2oct */ ,
|
---|
1695 | 0 /* oct2point */ ,
|
---|
1696 | ossl_ec_GFp_simple_add,
|
---|
1697 | ossl_ec_GFp_simple_dbl,
|
---|
1698 | ossl_ec_GFp_simple_invert,
|
---|
1699 | ossl_ec_GFp_simple_is_at_infinity,
|
---|
1700 | ossl_ec_GFp_simple_is_on_curve,
|
---|
1701 | ossl_ec_GFp_simple_cmp,
|
---|
1702 | ossl_ec_GFp_simple_make_affine,
|
---|
1703 | ossl_ec_GFp_simple_points_make_affine,
|
---|
1704 | ossl_ec_GFp_nistp521_points_mul,
|
---|
1705 | ossl_ec_GFp_nistp521_precompute_mult,
|
---|
1706 | ossl_ec_GFp_nistp521_have_precompute_mult,
|
---|
1707 | ossl_ec_GFp_nist_field_mul,
|
---|
1708 | ossl_ec_GFp_nist_field_sqr,
|
---|
1709 | 0 /* field_div */ ,
|
---|
1710 | ossl_ec_GFp_simple_field_inv,
|
---|
1711 | 0 /* field_encode */ ,
|
---|
1712 | 0 /* field_decode */ ,
|
---|
1713 | 0, /* field_set_to_one */
|
---|
1714 | ossl_ec_key_simple_priv2oct,
|
---|
1715 | ossl_ec_key_simple_oct2priv,
|
---|
1716 | 0, /* set private */
|
---|
1717 | ossl_ec_key_simple_generate_key,
|
---|
1718 | ossl_ec_key_simple_check_key,
|
---|
1719 | ossl_ec_key_simple_generate_public_key,
|
---|
1720 | 0, /* keycopy */
|
---|
1721 | 0, /* keyfinish */
|
---|
1722 | ossl_ecdh_simple_compute_key,
|
---|
1723 | ossl_ecdsa_simple_sign_setup,
|
---|
1724 | ossl_ecdsa_simple_sign_sig,
|
---|
1725 | ossl_ecdsa_simple_verify_sig,
|
---|
1726 | 0, /* field_inverse_mod_ord */
|
---|
1727 | 0, /* blind_coordinates */
|
---|
1728 | 0, /* ladder_pre */
|
---|
1729 | 0, /* ladder_step */
|
---|
1730 | 0 /* ladder_post */
|
---|
1731 | };
|
---|
1732 |
|
---|
1733 | return &ret;
|
---|
1734 | }
|
---|
1735 |
|
---|
1736 | /******************************************************************************/
|
---|
1737 | /*
|
---|
1738 | * FUNCTIONS TO MANAGE PRECOMPUTATION
|
---|
1739 | */
|
---|
1740 |
|
---|
1741 | static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
|
---|
1742 | {
|
---|
1743 | NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
1744 |
|
---|
1745 | if (ret == NULL) {
|
---|
1746 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1747 | return ret;
|
---|
1748 | }
|
---|
1749 |
|
---|
1750 | ret->references = 1;
|
---|
1751 |
|
---|
1752 | ret->lock = CRYPTO_THREAD_lock_new();
|
---|
1753 | if (ret->lock == NULL) {
|
---|
1754 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1755 | OPENSSL_free(ret);
|
---|
1756 | return NULL;
|
---|
1757 | }
|
---|
1758 | return ret;
|
---|
1759 | }
|
---|
1760 |
|
---|
1761 | NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
|
---|
1762 | {
|
---|
1763 | int i;
|
---|
1764 | if (p != NULL)
|
---|
1765 | CRYPTO_UP_REF(&p->references, &i, p->lock);
|
---|
1766 | return p;
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
|
---|
1770 | {
|
---|
1771 | int i;
|
---|
1772 |
|
---|
1773 | if (p == NULL)
|
---|
1774 | return;
|
---|
1775 |
|
---|
1776 | CRYPTO_DOWN_REF(&p->references, &i, p->lock);
|
---|
1777 | REF_PRINT_COUNT("EC_nistp521", p);
|
---|
1778 | if (i > 0)
|
---|
1779 | return;
|
---|
1780 | REF_ASSERT_ISNT(i < 0);
|
---|
1781 |
|
---|
1782 | CRYPTO_THREAD_lock_free(p->lock);
|
---|
1783 | OPENSSL_free(p);
|
---|
1784 | }
|
---|
1785 |
|
---|
1786 | /******************************************************************************/
|
---|
1787 | /*
|
---|
1788 | * OPENSSL EC_METHOD FUNCTIONS
|
---|
1789 | */
|
---|
1790 |
|
---|
1791 | int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group)
|
---|
1792 | {
|
---|
1793 | int ret;
|
---|
1794 | ret = ossl_ec_GFp_simple_group_init(group);
|
---|
1795 | group->a_is_minus3 = 1;
|
---|
1796 | return ret;
|
---|
1797 | }
|
---|
1798 |
|
---|
1799 | int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
|
---|
1800 | const BIGNUM *a, const BIGNUM *b,
|
---|
1801 | BN_CTX *ctx)
|
---|
1802 | {
|
---|
1803 | int ret = 0;
|
---|
1804 | BIGNUM *curve_p, *curve_a, *curve_b;
|
---|
1805 | #ifndef FIPS_MODULE
|
---|
1806 | BN_CTX *new_ctx = NULL;
|
---|
1807 |
|
---|
1808 | if (ctx == NULL)
|
---|
1809 | ctx = new_ctx = BN_CTX_new();
|
---|
1810 | #endif
|
---|
1811 | if (ctx == NULL)
|
---|
1812 | return 0;
|
---|
1813 |
|
---|
1814 | BN_CTX_start(ctx);
|
---|
1815 | curve_p = BN_CTX_get(ctx);
|
---|
1816 | curve_a = BN_CTX_get(ctx);
|
---|
1817 | curve_b = BN_CTX_get(ctx);
|
---|
1818 | if (curve_b == NULL)
|
---|
1819 | goto err;
|
---|
1820 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
|
---|
1821 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
|
---|
1822 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
|
---|
1823 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
|
---|
1824 | ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
|
---|
1825 | goto err;
|
---|
1826 | }
|
---|
1827 | group->field_mod_func = BN_nist_mod_521;
|
---|
1828 | ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
|
---|
1829 | err:
|
---|
1830 | BN_CTX_end(ctx);
|
---|
1831 | #ifndef FIPS_MODULE
|
---|
1832 | BN_CTX_free(new_ctx);
|
---|
1833 | #endif
|
---|
1834 | return ret;
|
---|
1835 | }
|
---|
1836 |
|
---|
1837 | /*
|
---|
1838 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
|
---|
1839 | * (X/Z^2, Y/Z^3)
|
---|
1840 | */
|
---|
1841 | int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
|
---|
1842 | const EC_POINT *point,
|
---|
1843 | BIGNUM *x, BIGNUM *y,
|
---|
1844 | BN_CTX *ctx)
|
---|
1845 | {
|
---|
1846 | felem z1, z2, x_in, y_in, x_out, y_out;
|
---|
1847 | largefelem tmp;
|
---|
1848 |
|
---|
1849 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
1850 | ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
|
---|
1851 | return 0;
|
---|
1852 | }
|
---|
1853 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
|
---|
1854 | (!BN_to_felem(z1, point->Z)))
|
---|
1855 | return 0;
|
---|
1856 | felem_inv(z2, z1);
|
---|
1857 | felem_square(tmp, z2);
|
---|
1858 | felem_reduce(z1, tmp);
|
---|
1859 | felem_mul(tmp, x_in, z1);
|
---|
1860 | felem_reduce(x_in, tmp);
|
---|
1861 | felem_contract(x_out, x_in);
|
---|
1862 | if (x != NULL) {
|
---|
1863 | if (!felem_to_BN(x, x_out)) {
|
---|
1864 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1865 | return 0;
|
---|
1866 | }
|
---|
1867 | }
|
---|
1868 | felem_mul(tmp, z1, z2);
|
---|
1869 | felem_reduce(z1, tmp);
|
---|
1870 | felem_mul(tmp, y_in, z1);
|
---|
1871 | felem_reduce(y_in, tmp);
|
---|
1872 | felem_contract(y_out, y_in);
|
---|
1873 | if (y != NULL) {
|
---|
1874 | if (!felem_to_BN(y, y_out)) {
|
---|
1875 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1876 | return 0;
|
---|
1877 | }
|
---|
1878 | }
|
---|
1879 | return 1;
|
---|
1880 | }
|
---|
1881 |
|
---|
1882 | /* points below is of size |num|, and tmp_felems is of size |num+1/ */
|
---|
1883 | static void make_points_affine(size_t num, felem points[][3],
|
---|
1884 | felem tmp_felems[])
|
---|
1885 | {
|
---|
1886 | /*
|
---|
1887 | * Runs in constant time, unless an input is the point at infinity (which
|
---|
1888 | * normally shouldn't happen).
|
---|
1889 | */
|
---|
1890 | ossl_ec_GFp_nistp_points_make_affine_internal(num,
|
---|
1891 | points,
|
---|
1892 | sizeof(felem),
|
---|
1893 | tmp_felems,
|
---|
1894 | (void (*)(void *))felem_one,
|
---|
1895 | felem_is_zero_int,
|
---|
1896 | (void (*)(void *, const void *))
|
---|
1897 | felem_assign,
|
---|
1898 | (void (*)(void *, const void *))
|
---|
1899 | felem_square_reduce, (void (*)
|
---|
1900 | (void *,
|
---|
1901 | const void
|
---|
1902 | *,
|
---|
1903 | const void
|
---|
1904 | *))
|
---|
1905 | felem_mul_reduce,
|
---|
1906 | (void (*)(void *, const void *))
|
---|
1907 | felem_inv,
|
---|
1908 | (void (*)(void *, const void *))
|
---|
1909 | felem_contract);
|
---|
1910 | }
|
---|
1911 |
|
---|
1912 | /*
|
---|
1913 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
|
---|
1914 | * values Result is stored in r (r can equal one of the inputs).
|
---|
1915 | */
|
---|
1916 | int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
|
---|
1917 | const BIGNUM *scalar, size_t num,
|
---|
1918 | const EC_POINT *points[],
|
---|
1919 | const BIGNUM *scalars[], BN_CTX *ctx)
|
---|
1920 | {
|
---|
1921 | int ret = 0;
|
---|
1922 | int j;
|
---|
1923 | int mixed = 0;
|
---|
1924 | BIGNUM *x, *y, *z, *tmp_scalar;
|
---|
1925 | felem_bytearray g_secret;
|
---|
1926 | felem_bytearray *secrets = NULL;
|
---|
1927 | felem (*pre_comp)[17][3] = NULL;
|
---|
1928 | felem *tmp_felems = NULL;
|
---|
1929 | unsigned i;
|
---|
1930 | int num_bytes;
|
---|
1931 | int have_pre_comp = 0;
|
---|
1932 | size_t num_points = num;
|
---|
1933 | felem x_in, y_in, z_in, x_out, y_out, z_out;
|
---|
1934 | NISTP521_PRE_COMP *pre = NULL;
|
---|
1935 | felem(*g_pre_comp)[3] = NULL;
|
---|
1936 | EC_POINT *generator = NULL;
|
---|
1937 | const EC_POINT *p = NULL;
|
---|
1938 | const BIGNUM *p_scalar = NULL;
|
---|
1939 |
|
---|
1940 | BN_CTX_start(ctx);
|
---|
1941 | x = BN_CTX_get(ctx);
|
---|
1942 | y = BN_CTX_get(ctx);
|
---|
1943 | z = BN_CTX_get(ctx);
|
---|
1944 | tmp_scalar = BN_CTX_get(ctx);
|
---|
1945 | if (tmp_scalar == NULL)
|
---|
1946 | goto err;
|
---|
1947 |
|
---|
1948 | if (scalar != NULL) {
|
---|
1949 | pre = group->pre_comp.nistp521;
|
---|
1950 | if (pre)
|
---|
1951 | /* we have precomputation, try to use it */
|
---|
1952 | g_pre_comp = &pre->g_pre_comp[0];
|
---|
1953 | else
|
---|
1954 | /* try to use the standard precomputation */
|
---|
1955 | g_pre_comp = (felem(*)[3]) gmul;
|
---|
1956 | generator = EC_POINT_new(group);
|
---|
1957 | if (generator == NULL)
|
---|
1958 | goto err;
|
---|
1959 | /* get the generator from precomputation */
|
---|
1960 | if (!felem_to_BN(x, g_pre_comp[1][0]) ||
|
---|
1961 | !felem_to_BN(y, g_pre_comp[1][1]) ||
|
---|
1962 | !felem_to_BN(z, g_pre_comp[1][2])) {
|
---|
1963 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
1964 | goto err;
|
---|
1965 | }
|
---|
1966 | if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
|
---|
1967 | generator,
|
---|
1968 | x, y, z, ctx))
|
---|
1969 | goto err;
|
---|
1970 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
|
---|
1971 | /* precomputation matches generator */
|
---|
1972 | have_pre_comp = 1;
|
---|
1973 | else
|
---|
1974 | /*
|
---|
1975 | * we don't have valid precomputation: treat the generator as a
|
---|
1976 | * random point
|
---|
1977 | */
|
---|
1978 | num_points++;
|
---|
1979 | }
|
---|
1980 |
|
---|
1981 | if (num_points > 0) {
|
---|
1982 | if (num_points >= 2) {
|
---|
1983 | /*
|
---|
1984 | * unless we precompute multiples for just one point, converting
|
---|
1985 | * those into affine form is time well spent
|
---|
1986 | */
|
---|
1987 | mixed = 1;
|
---|
1988 | }
|
---|
1989 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
|
---|
1990 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
|
---|
1991 | if (mixed)
|
---|
1992 | tmp_felems =
|
---|
1993 | OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
|
---|
1994 | if ((secrets == NULL) || (pre_comp == NULL)
|
---|
1995 | || (mixed && (tmp_felems == NULL))) {
|
---|
1996 | ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
1997 | goto err;
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 | /*
|
---|
2001 | * we treat NULL scalars as 0, and NULL points as points at infinity,
|
---|
2002 | * i.e., they contribute nothing to the linear combination
|
---|
2003 | */
|
---|
2004 | for (i = 0; i < num_points; ++i) {
|
---|
2005 | if (i == num) {
|
---|
2006 | /*
|
---|
2007 | * we didn't have a valid precomputation, so we pick the
|
---|
2008 | * generator
|
---|
2009 | */
|
---|
2010 | p = EC_GROUP_get0_generator(group);
|
---|
2011 | p_scalar = scalar;
|
---|
2012 | } else {
|
---|
2013 | /* the i^th point */
|
---|
2014 | p = points[i];
|
---|
2015 | p_scalar = scalars[i];
|
---|
2016 | }
|
---|
2017 | if ((p_scalar != NULL) && (p != NULL)) {
|
---|
2018 | /* reduce scalar to 0 <= scalar < 2^521 */
|
---|
2019 | if ((BN_num_bits(p_scalar) > 521)
|
---|
2020 | || (BN_is_negative(p_scalar))) {
|
---|
2021 | /*
|
---|
2022 | * this is an unusual input, and we don't guarantee
|
---|
2023 | * constant-timeness
|
---|
2024 | */
|
---|
2025 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
|
---|
2026 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
2027 | goto err;
|
---|
2028 | }
|
---|
2029 | num_bytes = BN_bn2lebinpad(tmp_scalar,
|
---|
2030 | secrets[i], sizeof(secrets[i]));
|
---|
2031 | } else {
|
---|
2032 | num_bytes = BN_bn2lebinpad(p_scalar,
|
---|
2033 | secrets[i], sizeof(secrets[i]));
|
---|
2034 | }
|
---|
2035 | if (num_bytes < 0) {
|
---|
2036 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
2037 | goto err;
|
---|
2038 | }
|
---|
2039 | /* precompute multiples */
|
---|
2040 | if ((!BN_to_felem(x_out, p->X)) ||
|
---|
2041 | (!BN_to_felem(y_out, p->Y)) ||
|
---|
2042 | (!BN_to_felem(z_out, p->Z)))
|
---|
2043 | goto err;
|
---|
2044 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
|
---|
2045 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
|
---|
2046 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
|
---|
2047 | for (j = 2; j <= 16; ++j) {
|
---|
2048 | if (j & 1) {
|
---|
2049 | point_add(pre_comp[i][j][0], pre_comp[i][j][1],
|
---|
2050 | pre_comp[i][j][2], pre_comp[i][1][0],
|
---|
2051 | pre_comp[i][1][1], pre_comp[i][1][2], 0,
|
---|
2052 | pre_comp[i][j - 1][0],
|
---|
2053 | pre_comp[i][j - 1][1],
|
---|
2054 | pre_comp[i][j - 1][2]);
|
---|
2055 | } else {
|
---|
2056 | point_double(pre_comp[i][j][0], pre_comp[i][j][1],
|
---|
2057 | pre_comp[i][j][2], pre_comp[i][j / 2][0],
|
---|
2058 | pre_comp[i][j / 2][1],
|
---|
2059 | pre_comp[i][j / 2][2]);
|
---|
2060 | }
|
---|
2061 | }
|
---|
2062 | }
|
---|
2063 | }
|
---|
2064 | if (mixed)
|
---|
2065 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
|
---|
2066 | }
|
---|
2067 |
|
---|
2068 | /* the scalar for the generator */
|
---|
2069 | if ((scalar != NULL) && (have_pre_comp)) {
|
---|
2070 | memset(g_secret, 0, sizeof(g_secret));
|
---|
2071 | /* reduce scalar to 0 <= scalar < 2^521 */
|
---|
2072 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
|
---|
2073 | /*
|
---|
2074 | * this is an unusual input, and we don't guarantee
|
---|
2075 | * constant-timeness
|
---|
2076 | */
|
---|
2077 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
|
---|
2078 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
2079 | goto err;
|
---|
2080 | }
|
---|
2081 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
|
---|
2082 | } else {
|
---|
2083 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
|
---|
2084 | }
|
---|
2085 | /* do the multiplication with generator precomputation */
|
---|
2086 | batch_mul(x_out, y_out, z_out,
|
---|
2087 | (const felem_bytearray(*))secrets, num_points,
|
---|
2088 | g_secret,
|
---|
2089 | mixed, (const felem(*)[17][3])pre_comp,
|
---|
2090 | (const felem(*)[3])g_pre_comp);
|
---|
2091 | } else {
|
---|
2092 | /* do the multiplication without generator precomputation */
|
---|
2093 | batch_mul(x_out, y_out, z_out,
|
---|
2094 | (const felem_bytearray(*))secrets, num_points,
|
---|
2095 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
|
---|
2096 | }
|
---|
2097 | /* reduce the output to its unique minimal representation */
|
---|
2098 | felem_contract(x_in, x_out);
|
---|
2099 | felem_contract(y_in, y_out);
|
---|
2100 | felem_contract(z_in, z_out);
|
---|
2101 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
|
---|
2102 | (!felem_to_BN(z, z_in))) {
|
---|
2103 | ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
2104 | goto err;
|
---|
2105 | }
|
---|
2106 | ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
|
---|
2107 | ctx);
|
---|
2108 |
|
---|
2109 | err:
|
---|
2110 | BN_CTX_end(ctx);
|
---|
2111 | EC_POINT_free(generator);
|
---|
2112 | OPENSSL_free(secrets);
|
---|
2113 | OPENSSL_free(pre_comp);
|
---|
2114 | OPENSSL_free(tmp_felems);
|
---|
2115 | return ret;
|
---|
2116 | }
|
---|
2117 |
|
---|
2118 | int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
|
---|
2119 | {
|
---|
2120 | int ret = 0;
|
---|
2121 | NISTP521_PRE_COMP *pre = NULL;
|
---|
2122 | int i, j;
|
---|
2123 | BIGNUM *x, *y;
|
---|
2124 | EC_POINT *generator = NULL;
|
---|
2125 | felem tmp_felems[16];
|
---|
2126 | #ifndef FIPS_MODULE
|
---|
2127 | BN_CTX *new_ctx = NULL;
|
---|
2128 | #endif
|
---|
2129 |
|
---|
2130 | /* throw away old precomputation */
|
---|
2131 | EC_pre_comp_free(group);
|
---|
2132 |
|
---|
2133 | #ifndef FIPS_MODULE
|
---|
2134 | if (ctx == NULL)
|
---|
2135 | ctx = new_ctx = BN_CTX_new();
|
---|
2136 | #endif
|
---|
2137 | if (ctx == NULL)
|
---|
2138 | return 0;
|
---|
2139 |
|
---|
2140 | BN_CTX_start(ctx);
|
---|
2141 | x = BN_CTX_get(ctx);
|
---|
2142 | y = BN_CTX_get(ctx);
|
---|
2143 | if (y == NULL)
|
---|
2144 | goto err;
|
---|
2145 | /* get the generator */
|
---|
2146 | if (group->generator == NULL)
|
---|
2147 | goto err;
|
---|
2148 | generator = EC_POINT_new(group);
|
---|
2149 | if (generator == NULL)
|
---|
2150 | goto err;
|
---|
2151 | BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
|
---|
2152 | BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
|
---|
2153 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
|
---|
2154 | goto err;
|
---|
2155 | if ((pre = nistp521_pre_comp_new()) == NULL)
|
---|
2156 | goto err;
|
---|
2157 | /*
|
---|
2158 | * if the generator is the standard one, use built-in precomputation
|
---|
2159 | */
|
---|
2160 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
|
---|
2161 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
|
---|
2162 | goto done;
|
---|
2163 | }
|
---|
2164 | if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
|
---|
2165 | (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
|
---|
2166 | (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
|
---|
2167 | goto err;
|
---|
2168 | /* compute 2^130*G, 2^260*G, 2^390*G */
|
---|
2169 | for (i = 1; i <= 4; i <<= 1) {
|
---|
2170 | point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
|
---|
2171 | pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
|
---|
2172 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
|
---|
2173 | for (j = 0; j < 129; ++j) {
|
---|
2174 | point_double(pre->g_pre_comp[2 * i][0],
|
---|
2175 | pre->g_pre_comp[2 * i][1],
|
---|
2176 | pre->g_pre_comp[2 * i][2],
|
---|
2177 | pre->g_pre_comp[2 * i][0],
|
---|
2178 | pre->g_pre_comp[2 * i][1],
|
---|
2179 | pre->g_pre_comp[2 * i][2]);
|
---|
2180 | }
|
---|
2181 | }
|
---|
2182 | /* g_pre_comp[0] is the point at infinity */
|
---|
2183 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
|
---|
2184 | /* the remaining multiples */
|
---|
2185 | /* 2^130*G + 2^260*G */
|
---|
2186 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
|
---|
2187 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
|
---|
2188 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
|
---|
2189 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
|
---|
2190 | pre->g_pre_comp[2][2]);
|
---|
2191 | /* 2^130*G + 2^390*G */
|
---|
2192 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
|
---|
2193 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
|
---|
2194 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
|
---|
2195 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
|
---|
2196 | pre->g_pre_comp[2][2]);
|
---|
2197 | /* 2^260*G + 2^390*G */
|
---|
2198 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
|
---|
2199 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
|
---|
2200 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
|
---|
2201 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
|
---|
2202 | pre->g_pre_comp[4][2]);
|
---|
2203 | /* 2^130*G + 2^260*G + 2^390*G */
|
---|
2204 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
|
---|
2205 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
|
---|
2206 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
|
---|
2207 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
|
---|
2208 | pre->g_pre_comp[2][2]);
|
---|
2209 | for (i = 1; i < 8; ++i) {
|
---|
2210 | /* odd multiples: add G */
|
---|
2211 | point_add(pre->g_pre_comp[2 * i + 1][0],
|
---|
2212 | pre->g_pre_comp[2 * i + 1][1],
|
---|
2213 | pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
|
---|
2214 | pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
|
---|
2215 | pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
|
---|
2216 | pre->g_pre_comp[1][2]);
|
---|
2217 | }
|
---|
2218 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
|
---|
2219 |
|
---|
2220 | done:
|
---|
2221 | SETPRECOMP(group, nistp521, pre);
|
---|
2222 | ret = 1;
|
---|
2223 | pre = NULL;
|
---|
2224 | err:
|
---|
2225 | BN_CTX_end(ctx);
|
---|
2226 | EC_POINT_free(generator);
|
---|
2227 | #ifndef FIPS_MODULE
|
---|
2228 | BN_CTX_free(new_ctx);
|
---|
2229 | #endif
|
---|
2230 | EC_nistp521_pre_comp_free(pre);
|
---|
2231 | return ret;
|
---|
2232 | }
|
---|
2233 |
|
---|
2234 | int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
|
---|
2235 | {
|
---|
2236 | return HAVEPRECOMP(group, nistp521);
|
---|
2237 | }
|
---|