1 | /*
|
---|
2 | * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * Helper functions for 128 bit CBC CTS ciphers (Currently AES and Camellia).
|
---|
12 | *
|
---|
13 | * The function dispatch tables are embedded into cipher_aes.c
|
---|
14 | * and cipher_camellia.c using cipher_aes_cts.inc and cipher_camellia_cts.inc
|
---|
15 | */
|
---|
16 |
|
---|
17 | /*
|
---|
18 | * Refer to SP800-38A-Addendum
|
---|
19 | *
|
---|
20 | * Ciphertext stealing encrypts plaintext using a block cipher, without padding
|
---|
21 | * the message to a multiple of the block size, so the ciphertext is the same
|
---|
22 | * size as the plaintext.
|
---|
23 | * It does this by altering processing of the last two blocks of the message.
|
---|
24 | * The processing of all but the last two blocks is unchanged, but a portion of
|
---|
25 | * the second-last block's ciphertext is "stolen" to pad the last plaintext
|
---|
26 | * block. The padded final block is then encrypted as usual.
|
---|
27 | * The final ciphertext for the last two blocks, consists of the partial block
|
---|
28 | * (with the "stolen" portion omitted) plus the full final block,
|
---|
29 | * which are the same size as the original plaintext.
|
---|
30 | * Decryption requires decrypting the final block first, then restoring the
|
---|
31 | * stolen ciphertext to the partial block, which can then be decrypted as usual.
|
---|
32 |
|
---|
33 | * AES_CBC_CTS has 3 variants:
|
---|
34 | * (1) CS1 The NIST variant.
|
---|
35 | * If the length is a multiple of the blocksize it is the same as CBC mode.
|
---|
36 | * otherwise it produces C1||C2||(C(n-1))*||Cn.
|
---|
37 | * Where C(n-1)* is a partial block.
|
---|
38 | * (2) CS2
|
---|
39 | * If the length is a multiple of the blocksize it is the same as CBC mode.
|
---|
40 | * otherwise it produces C1||C2||Cn||(C(n-1))*.
|
---|
41 | * Where C(n-1)* is a partial block.
|
---|
42 | * (3) CS3 The Kerberos5 variant.
|
---|
43 | * Produces C1||C2||Cn||(C(n-1))* regardless of the length.
|
---|
44 | * If the length is a multiple of the blocksize it looks similar to CBC mode
|
---|
45 | * with the last 2 blocks swapped.
|
---|
46 | * Otherwise it is the same as CS2.
|
---|
47 | */
|
---|
48 |
|
---|
49 | #include <openssl/core_names.h>
|
---|
50 | #include "prov/ciphercommon.h"
|
---|
51 | #include "internal/nelem.h"
|
---|
52 | #include "cipher_cts.h"
|
---|
53 |
|
---|
54 | /* The value assigned to 0 is the default */
|
---|
55 | #define CTS_CS1 0
|
---|
56 | #define CTS_CS2 1
|
---|
57 | #define CTS_CS3 2
|
---|
58 |
|
---|
59 | #define CTS_BLOCK_SIZE 16
|
---|
60 |
|
---|
61 | typedef union {
|
---|
62 | size_t align;
|
---|
63 | unsigned char c[CTS_BLOCK_SIZE];
|
---|
64 | } aligned_16bytes;
|
---|
65 |
|
---|
66 | typedef struct cts_mode_name2id_st {
|
---|
67 | unsigned int id;
|
---|
68 | const char *name;
|
---|
69 | } CTS_MODE_NAME2ID;
|
---|
70 |
|
---|
71 | static CTS_MODE_NAME2ID cts_modes[] =
|
---|
72 | {
|
---|
73 | { CTS_CS1, OSSL_CIPHER_CTS_MODE_CS1 },
|
---|
74 | { CTS_CS2, OSSL_CIPHER_CTS_MODE_CS2 },
|
---|
75 | { CTS_CS3, OSSL_CIPHER_CTS_MODE_CS3 },
|
---|
76 | };
|
---|
77 |
|
---|
78 | const char *ossl_cipher_cbc_cts_mode_id2name(unsigned int id)
|
---|
79 | {
|
---|
80 | size_t i;
|
---|
81 |
|
---|
82 | for (i = 0; i < OSSL_NELEM(cts_modes); ++i) {
|
---|
83 | if (cts_modes[i].id == id)
|
---|
84 | return cts_modes[i].name;
|
---|
85 | }
|
---|
86 | return NULL;
|
---|
87 | }
|
---|
88 |
|
---|
89 | int ossl_cipher_cbc_cts_mode_name2id(const char *name)
|
---|
90 | {
|
---|
91 | size_t i;
|
---|
92 |
|
---|
93 | for (i = 0; i < OSSL_NELEM(cts_modes); ++i) {
|
---|
94 | if (OPENSSL_strcasecmp(name, cts_modes[i].name) == 0)
|
---|
95 | return (int)cts_modes[i].id;
|
---|
96 | }
|
---|
97 | return -1;
|
---|
98 | }
|
---|
99 |
|
---|
100 | static size_t cts128_cs1_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
101 | unsigned char *out, size_t len)
|
---|
102 | {
|
---|
103 | aligned_16bytes tmp_in;
|
---|
104 | size_t residue;
|
---|
105 |
|
---|
106 | residue = len % CTS_BLOCK_SIZE;
|
---|
107 | len -= residue;
|
---|
108 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
109 | return 0;
|
---|
110 |
|
---|
111 | if (residue == 0)
|
---|
112 | return len;
|
---|
113 |
|
---|
114 | in += len;
|
---|
115 | out += len;
|
---|
116 |
|
---|
117 | memset(tmp_in.c, 0, sizeof(tmp_in));
|
---|
118 | memcpy(tmp_in.c, in, residue);
|
---|
119 | if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE + residue, tmp_in.c,
|
---|
120 | CTS_BLOCK_SIZE))
|
---|
121 | return 0;
|
---|
122 | return len + residue;
|
---|
123 | }
|
---|
124 |
|
---|
125 | static void do_xor(const unsigned char *in1, const unsigned char *in2,
|
---|
126 | size_t len, unsigned char *out)
|
---|
127 | {
|
---|
128 | size_t i;
|
---|
129 |
|
---|
130 | for (i = 0; i < len; ++i)
|
---|
131 | out[i] = in1[i] ^ in2[i];
|
---|
132 | }
|
---|
133 |
|
---|
134 | static size_t cts128_cs1_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
135 | unsigned char *out, size_t len)
|
---|
136 | {
|
---|
137 | aligned_16bytes mid_iv, ct_mid, cn, pt_last;
|
---|
138 | size_t residue;
|
---|
139 |
|
---|
140 | residue = len % CTS_BLOCK_SIZE;
|
---|
141 | if (residue == 0) {
|
---|
142 | /* If there are no partial blocks then it is the same as CBC mode */
|
---|
143 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
144 | return 0;
|
---|
145 | return len;
|
---|
146 | }
|
---|
147 | /* Process blocks at the start - but leave the last 2 blocks */
|
---|
148 | len -= CTS_BLOCK_SIZE + residue;
|
---|
149 | if (len > 0) {
|
---|
150 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
151 | return 0;
|
---|
152 | in += len;
|
---|
153 | out += len;
|
---|
154 | }
|
---|
155 | /* Save the iv that will be used by the second last block */
|
---|
156 | memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);
|
---|
157 | /* Save the C(n) block */
|
---|
158 | memcpy(cn.c, in + residue, CTS_BLOCK_SIZE);
|
---|
159 |
|
---|
160 | /* Decrypt the last block first using an iv of zero */
|
---|
161 | memset(ctx->iv, 0, CTS_BLOCK_SIZE);
|
---|
162 | if (!ctx->hw->cipher(ctx, pt_last.c, in + residue, CTS_BLOCK_SIZE))
|
---|
163 | return 0;
|
---|
164 |
|
---|
165 | /*
|
---|
166 | * Rebuild the ciphertext of the second last block as a combination of
|
---|
167 | * the decrypted last block + replace the start with the ciphertext bytes
|
---|
168 | * of the partial second last block.
|
---|
169 | */
|
---|
170 | memcpy(ct_mid.c, in, residue);
|
---|
171 | memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);
|
---|
172 | /*
|
---|
173 | * Restore the last partial ciphertext block.
|
---|
174 | * Now that we have the cipher text of the second last block, apply
|
---|
175 | * that to the partial plaintext end block. We have already decrypted the
|
---|
176 | * block using an IV of zero. For decryption the IV is just XORed after
|
---|
177 | * doing an Cipher CBC block - so just XOR in the cipher text.
|
---|
178 | */
|
---|
179 | do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);
|
---|
180 |
|
---|
181 | /* Restore the iv needed by the second last block */
|
---|
182 | memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * Decrypt the second last plaintext block now that we have rebuilt the
|
---|
186 | * ciphertext.
|
---|
187 | */
|
---|
188 | if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))
|
---|
189 | return 0;
|
---|
190 |
|
---|
191 | /* The returned iv is the C(n) block */
|
---|
192 | memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);
|
---|
193 | return len + CTS_BLOCK_SIZE + residue;
|
---|
194 | }
|
---|
195 |
|
---|
196 | static size_t cts128_cs3_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
197 | unsigned char *out, size_t len)
|
---|
198 | {
|
---|
199 | aligned_16bytes tmp_in;
|
---|
200 | size_t residue;
|
---|
201 |
|
---|
202 | if (len < CTS_BLOCK_SIZE) /* CS3 requires at least one block */
|
---|
203 | return 0;
|
---|
204 |
|
---|
205 | /* If we only have one block then just process the aligned block */
|
---|
206 | if (len == CTS_BLOCK_SIZE)
|
---|
207 | return ctx->hw->cipher(ctx, out, in, len) ? len : 0;
|
---|
208 |
|
---|
209 | residue = len % CTS_BLOCK_SIZE;
|
---|
210 | if (residue == 0)
|
---|
211 | residue = CTS_BLOCK_SIZE;
|
---|
212 | len -= residue;
|
---|
213 |
|
---|
214 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
215 | return 0;
|
---|
216 |
|
---|
217 | in += len;
|
---|
218 | out += len;
|
---|
219 |
|
---|
220 | memset(tmp_in.c, 0, sizeof(tmp_in));
|
---|
221 | memcpy(tmp_in.c, in, residue);
|
---|
222 | memcpy(out, out - CTS_BLOCK_SIZE, residue);
|
---|
223 | if (!ctx->hw->cipher(ctx, out - CTS_BLOCK_SIZE, tmp_in.c, CTS_BLOCK_SIZE))
|
---|
224 | return 0;
|
---|
225 | return len + residue;
|
---|
226 | }
|
---|
227 |
|
---|
228 | /*
|
---|
229 | * Note:
|
---|
230 | * The cipher text (in) is of the form C(0), C(1), ., C(n), C(n-1)* where
|
---|
231 | * C(n) is a full block and C(n-1)* can be a partial block
|
---|
232 | * (but could be a full block).
|
---|
233 | * This means that the output plaintext (out) needs to swap the plaintext of
|
---|
234 | * the last two decoded ciphertext blocks.
|
---|
235 | */
|
---|
236 | static size_t cts128_cs3_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
237 | unsigned char *out, size_t len)
|
---|
238 | {
|
---|
239 | aligned_16bytes mid_iv, ct_mid, cn, pt_last;
|
---|
240 | size_t residue;
|
---|
241 |
|
---|
242 | if (len < CTS_BLOCK_SIZE) /* CS3 requires at least one block */
|
---|
243 | return 0;
|
---|
244 |
|
---|
245 | /* If we only have one block then just process the aligned block */
|
---|
246 | if (len == CTS_BLOCK_SIZE)
|
---|
247 | return ctx->hw->cipher(ctx, out, in, len) ? len : 0;
|
---|
248 |
|
---|
249 | /* Process blocks at the start - but leave the last 2 blocks */
|
---|
250 | residue = len % CTS_BLOCK_SIZE;
|
---|
251 | if (residue == 0)
|
---|
252 | residue = CTS_BLOCK_SIZE;
|
---|
253 | len -= CTS_BLOCK_SIZE + residue;
|
---|
254 |
|
---|
255 | if (len > 0) {
|
---|
256 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
257 | return 0;
|
---|
258 | in += len;
|
---|
259 | out += len;
|
---|
260 | }
|
---|
261 | /* Save the iv that will be used by the second last block */
|
---|
262 | memcpy(mid_iv.c, ctx->iv, CTS_BLOCK_SIZE);
|
---|
263 | /* Save the C(n) block : For CS3 it is C(1)||...||C(n-2)||C(n)||C(n-1)* */
|
---|
264 | memcpy(cn.c, in, CTS_BLOCK_SIZE);
|
---|
265 |
|
---|
266 | /* Decrypt the C(n) block first using an iv of zero */
|
---|
267 | memset(ctx->iv, 0, CTS_BLOCK_SIZE);
|
---|
268 | if (!ctx->hw->cipher(ctx, pt_last.c, in, CTS_BLOCK_SIZE))
|
---|
269 | return 0;
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * Rebuild the ciphertext of C(n-1) as a combination of
|
---|
273 | * the decrypted C(n) block + replace the start with the ciphertext bytes
|
---|
274 | * of the partial last block.
|
---|
275 | */
|
---|
276 | memcpy(ct_mid.c, in + CTS_BLOCK_SIZE, residue);
|
---|
277 | if (residue != CTS_BLOCK_SIZE)
|
---|
278 | memcpy(ct_mid.c + residue, pt_last.c + residue, CTS_BLOCK_SIZE - residue);
|
---|
279 | /*
|
---|
280 | * Restore the last partial ciphertext block.
|
---|
281 | * Now that we have the cipher text of the second last block, apply
|
---|
282 | * that to the partial plaintext end block. We have already decrypted the
|
---|
283 | * block using an IV of zero. For decryption the IV is just XORed after
|
---|
284 | * doing an AES block - so just XOR in the ciphertext.
|
---|
285 | */
|
---|
286 | do_xor(ct_mid.c, pt_last.c, residue, out + CTS_BLOCK_SIZE);
|
---|
287 |
|
---|
288 | /* Restore the iv needed by the second last block */
|
---|
289 | memcpy(ctx->iv, mid_iv.c, CTS_BLOCK_SIZE);
|
---|
290 | /*
|
---|
291 | * Decrypt the second last plaintext block now that we have rebuilt the
|
---|
292 | * ciphertext.
|
---|
293 | */
|
---|
294 | if (!ctx->hw->cipher(ctx, out, ct_mid.c, CTS_BLOCK_SIZE))
|
---|
295 | return 0;
|
---|
296 |
|
---|
297 | /* The returned iv is the C(n) block */
|
---|
298 | memcpy(ctx->iv, cn.c, CTS_BLOCK_SIZE);
|
---|
299 | return len + CTS_BLOCK_SIZE + residue;
|
---|
300 | }
|
---|
301 |
|
---|
302 | static size_t cts128_cs2_encrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
303 | unsigned char *out, size_t len)
|
---|
304 | {
|
---|
305 | if (len % CTS_BLOCK_SIZE == 0) {
|
---|
306 | /* If there are no partial blocks then it is the same as CBC mode */
|
---|
307 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
308 | return 0;
|
---|
309 | return len;
|
---|
310 | }
|
---|
311 | /* For partial blocks CS2 is equivalent to CS3 */
|
---|
312 | return cts128_cs3_encrypt(ctx, in, out, len);
|
---|
313 | }
|
---|
314 |
|
---|
315 | static size_t cts128_cs2_decrypt(PROV_CIPHER_CTX *ctx, const unsigned char *in,
|
---|
316 | unsigned char *out, size_t len)
|
---|
317 | {
|
---|
318 | if (len % CTS_BLOCK_SIZE == 0) {
|
---|
319 | /* If there are no partial blocks then it is the same as CBC mode */
|
---|
320 | if (!ctx->hw->cipher(ctx, out, in, len))
|
---|
321 | return 0;
|
---|
322 | return len;
|
---|
323 | }
|
---|
324 | /* For partial blocks CS2 is equivalent to CS3 */
|
---|
325 | return cts128_cs3_decrypt(ctx, in, out, len);
|
---|
326 | }
|
---|
327 |
|
---|
328 | int ossl_cipher_cbc_cts_block_update(void *vctx, unsigned char *out, size_t *outl,
|
---|
329 | size_t outsize, const unsigned char *in,
|
---|
330 | size_t inl)
|
---|
331 | {
|
---|
332 | PROV_CIPHER_CTX *ctx = (PROV_CIPHER_CTX *)vctx;
|
---|
333 | size_t sz = 0;
|
---|
334 |
|
---|
335 | if (inl < CTS_BLOCK_SIZE) /* There must be at least one block for CTS mode */
|
---|
336 | return 0;
|
---|
337 | if (outsize < inl)
|
---|
338 | return 0;
|
---|
339 | if (out == NULL) {
|
---|
340 | *outl = inl;
|
---|
341 | return 1;
|
---|
342 | }
|
---|
343 |
|
---|
344 | /*
|
---|
345 | * Return an error if the update is called multiple times, only one shot
|
---|
346 | * is supported.
|
---|
347 | */
|
---|
348 | if (ctx->updated == 1)
|
---|
349 | return 0;
|
---|
350 |
|
---|
351 | if (ctx->enc) {
|
---|
352 | if (ctx->cts_mode == CTS_CS1)
|
---|
353 | sz = cts128_cs1_encrypt(ctx, in, out, inl);
|
---|
354 | else if (ctx->cts_mode == CTS_CS2)
|
---|
355 | sz = cts128_cs2_encrypt(ctx, in, out, inl);
|
---|
356 | else if (ctx->cts_mode == CTS_CS3)
|
---|
357 | sz = cts128_cs3_encrypt(ctx, in, out, inl);
|
---|
358 | } else {
|
---|
359 | if (ctx->cts_mode == CTS_CS1)
|
---|
360 | sz = cts128_cs1_decrypt(ctx, in, out, inl);
|
---|
361 | else if (ctx->cts_mode == CTS_CS2)
|
---|
362 | sz = cts128_cs2_decrypt(ctx, in, out, inl);
|
---|
363 | else if (ctx->cts_mode == CTS_CS3)
|
---|
364 | sz = cts128_cs3_decrypt(ctx, in, out, inl);
|
---|
365 | }
|
---|
366 | if (sz == 0)
|
---|
367 | return 0;
|
---|
368 | ctx->updated = 1; /* Stop multiple updates being allowed */
|
---|
369 | *outl = sz;
|
---|
370 | return 1;
|
---|
371 | }
|
---|
372 |
|
---|
373 | int ossl_cipher_cbc_cts_block_final(void *vctx, unsigned char *out, size_t *outl,
|
---|
374 | size_t outsize)
|
---|
375 | {
|
---|
376 | *outl = 0;
|
---|
377 | return 1;
|
---|
378 | }
|
---|