1 | /*
|
---|
2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | */
|
---|
10 |
|
---|
11 | #undef SECONDS
|
---|
12 | #define SECONDS 3
|
---|
13 | #define PKEY_SECONDS 10
|
---|
14 |
|
---|
15 | #define RSA_SECONDS PKEY_SECONDS
|
---|
16 | #define DSA_SECONDS PKEY_SECONDS
|
---|
17 | #define ECDSA_SECONDS PKEY_SECONDS
|
---|
18 | #define ECDH_SECONDS PKEY_SECONDS
|
---|
19 | #define EdDSA_SECONDS PKEY_SECONDS
|
---|
20 | #define SM2_SECONDS PKEY_SECONDS
|
---|
21 | #define FFDH_SECONDS PKEY_SECONDS
|
---|
22 |
|
---|
23 | /* We need to use some deprecated APIs */
|
---|
24 | #define OPENSSL_SUPPRESS_DEPRECATED
|
---|
25 |
|
---|
26 | #include <stdio.h>
|
---|
27 | #include <stdlib.h>
|
---|
28 | #include <string.h>
|
---|
29 | #include <math.h>
|
---|
30 | #include "apps.h"
|
---|
31 | #include "progs.h"
|
---|
32 | #include "internal/numbers.h"
|
---|
33 | #include <openssl/crypto.h>
|
---|
34 | #include <openssl/rand.h>
|
---|
35 | #include <openssl/err.h>
|
---|
36 | #include <openssl/evp.h>
|
---|
37 | #include <openssl/objects.h>
|
---|
38 | #include <openssl/core_names.h>
|
---|
39 | #include <openssl/async.h>
|
---|
40 | #if !defined(OPENSSL_SYS_MSDOS)
|
---|
41 | # include <unistd.h>
|
---|
42 | #endif
|
---|
43 |
|
---|
44 | #if defined(__TANDEM)
|
---|
45 | # if defined(OPENSSL_TANDEM_FLOSS)
|
---|
46 | # include <floss.h(floss_fork)>
|
---|
47 | # endif
|
---|
48 | #endif
|
---|
49 |
|
---|
50 | #if defined(_WIN32)
|
---|
51 | # include <windows.h>
|
---|
52 | #endif
|
---|
53 |
|
---|
54 | #include <openssl/bn.h>
|
---|
55 | #include <openssl/rsa.h>
|
---|
56 | #include "./testrsa.h"
|
---|
57 | #ifndef OPENSSL_NO_DH
|
---|
58 | # include <openssl/dh.h>
|
---|
59 | #endif
|
---|
60 | #include <openssl/x509.h>
|
---|
61 | #include <openssl/dsa.h>
|
---|
62 | #include "./testdsa.h"
|
---|
63 | #include <openssl/modes.h>
|
---|
64 |
|
---|
65 | #ifndef HAVE_FORK
|
---|
66 | # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS)
|
---|
67 | # define HAVE_FORK 0
|
---|
68 | # else
|
---|
69 | # define HAVE_FORK 1
|
---|
70 | # include <sys/wait.h>
|
---|
71 | # endif
|
---|
72 | #endif
|
---|
73 |
|
---|
74 | #if HAVE_FORK
|
---|
75 | # undef NO_FORK
|
---|
76 | #else
|
---|
77 | # define NO_FORK
|
---|
78 | #endif
|
---|
79 |
|
---|
80 | #define MAX_MISALIGNMENT 63
|
---|
81 | #define MAX_ECDH_SIZE 256
|
---|
82 | #define MISALIGN 64
|
---|
83 | #define MAX_FFDH_SIZE 1024
|
---|
84 |
|
---|
85 | #ifndef RSA_DEFAULT_PRIME_NUM
|
---|
86 | # define RSA_DEFAULT_PRIME_NUM 2
|
---|
87 | #endif
|
---|
88 |
|
---|
89 | typedef struct openssl_speed_sec_st {
|
---|
90 | int sym;
|
---|
91 | int rsa;
|
---|
92 | int dsa;
|
---|
93 | int ecdsa;
|
---|
94 | int ecdh;
|
---|
95 | int eddsa;
|
---|
96 | int sm2;
|
---|
97 | int ffdh;
|
---|
98 | } openssl_speed_sec_t;
|
---|
99 |
|
---|
100 | static volatile int run = 0;
|
---|
101 |
|
---|
102 | static int mr = 0; /* machine-readeable output format to merge fork results */
|
---|
103 | static int usertime = 1;
|
---|
104 |
|
---|
105 | static double Time_F(int s);
|
---|
106 | static void print_message(const char *s, long num, int length, int tm);
|
---|
107 | static void pkey_print_message(const char *str, const char *str2,
|
---|
108 | long num, unsigned int bits, int sec);
|
---|
109 | static void print_result(int alg, int run_no, int count, double time_used);
|
---|
110 | #ifndef NO_FORK
|
---|
111 | static int do_multi(int multi, int size_num);
|
---|
112 | #endif
|
---|
113 |
|
---|
114 | static const int lengths_list[] = {
|
---|
115 | 16, 64, 256, 1024, 8 * 1024, 16 * 1024
|
---|
116 | };
|
---|
117 | #define SIZE_NUM OSSL_NELEM(lengths_list)
|
---|
118 | static const int *lengths = lengths_list;
|
---|
119 |
|
---|
120 | static const int aead_lengths_list[] = {
|
---|
121 | 2, 31, 136, 1024, 8 * 1024, 16 * 1024
|
---|
122 | };
|
---|
123 |
|
---|
124 | #define START 0
|
---|
125 | #define STOP 1
|
---|
126 |
|
---|
127 | #ifdef SIGALRM
|
---|
128 |
|
---|
129 | static void alarmed(int sig)
|
---|
130 | {
|
---|
131 | signal(SIGALRM, alarmed);
|
---|
132 | run = 0;
|
---|
133 | }
|
---|
134 |
|
---|
135 | static double Time_F(int s)
|
---|
136 | {
|
---|
137 | double ret = app_tminterval(s, usertime);
|
---|
138 | if (s == STOP)
|
---|
139 | alarm(0);
|
---|
140 | return ret;
|
---|
141 | }
|
---|
142 |
|
---|
143 | #elif defined(_WIN32)
|
---|
144 |
|
---|
145 | # define SIGALRM -1
|
---|
146 |
|
---|
147 | static unsigned int lapse;
|
---|
148 | static volatile unsigned int schlock;
|
---|
149 | static void alarm_win32(unsigned int secs)
|
---|
150 | {
|
---|
151 | lapse = secs * 1000;
|
---|
152 | }
|
---|
153 |
|
---|
154 | # define alarm alarm_win32
|
---|
155 |
|
---|
156 | static DWORD WINAPI sleepy(VOID * arg)
|
---|
157 | {
|
---|
158 | schlock = 1;
|
---|
159 | Sleep(lapse);
|
---|
160 | run = 0;
|
---|
161 | return 0;
|
---|
162 | }
|
---|
163 |
|
---|
164 | static double Time_F(int s)
|
---|
165 | {
|
---|
166 | double ret;
|
---|
167 | static HANDLE thr;
|
---|
168 |
|
---|
169 | if (s == START) {
|
---|
170 | schlock = 0;
|
---|
171 | thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
|
---|
172 | if (thr == NULL) {
|
---|
173 | DWORD err = GetLastError();
|
---|
174 | BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
|
---|
175 | ExitProcess(err);
|
---|
176 | }
|
---|
177 | while (!schlock)
|
---|
178 | Sleep(0); /* scheduler spinlock */
|
---|
179 | ret = app_tminterval(s, usertime);
|
---|
180 | } else {
|
---|
181 | ret = app_tminterval(s, usertime);
|
---|
182 | if (run)
|
---|
183 | TerminateThread(thr, 0);
|
---|
184 | CloseHandle(thr);
|
---|
185 | }
|
---|
186 |
|
---|
187 | return ret;
|
---|
188 | }
|
---|
189 | #else
|
---|
190 | # error "SIGALRM not defined and the platform is not Windows"
|
---|
191 | #endif
|
---|
192 |
|
---|
193 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
|
---|
194 | const openssl_speed_sec_t *seconds);
|
---|
195 |
|
---|
196 | static int opt_found(const char *name, unsigned int *result,
|
---|
197 | const OPT_PAIR pairs[], unsigned int nbelem)
|
---|
198 | {
|
---|
199 | unsigned int idx;
|
---|
200 |
|
---|
201 | for (idx = 0; idx < nbelem; ++idx, pairs++)
|
---|
202 | if (strcmp(name, pairs->name) == 0) {
|
---|
203 | *result = pairs->retval;
|
---|
204 | return 1;
|
---|
205 | }
|
---|
206 | return 0;
|
---|
207 | }
|
---|
208 | #define opt_found(value, pairs, result)\
|
---|
209 | opt_found(value, result, pairs, OSSL_NELEM(pairs))
|
---|
210 |
|
---|
211 | typedef enum OPTION_choice {
|
---|
212 | OPT_COMMON,
|
---|
213 | OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
|
---|
214 | OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM,
|
---|
215 | OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC
|
---|
216 | } OPTION_CHOICE;
|
---|
217 |
|
---|
218 | const OPTIONS speed_options[] = {
|
---|
219 | {OPT_HELP_STR, 1, '-', "Usage: %s [options] [algorithm...]\n"},
|
---|
220 |
|
---|
221 | OPT_SECTION("General"),
|
---|
222 | {"help", OPT_HELP, '-', "Display this summary"},
|
---|
223 | {"mb", OPT_MB, '-',
|
---|
224 | "Enable (tls1>=1) multi-block mode on EVP-named cipher"},
|
---|
225 | {"mr", OPT_MR, '-', "Produce machine readable output"},
|
---|
226 | #ifndef NO_FORK
|
---|
227 | {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
|
---|
228 | #endif
|
---|
229 | #ifndef OPENSSL_NO_ASYNC
|
---|
230 | {"async_jobs", OPT_ASYNCJOBS, 'p',
|
---|
231 | "Enable async mode and start specified number of jobs"},
|
---|
232 | #endif
|
---|
233 | #ifndef OPENSSL_NO_ENGINE
|
---|
234 | {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
|
---|
235 | #endif
|
---|
236 | {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
|
---|
237 |
|
---|
238 | OPT_SECTION("Selection"),
|
---|
239 | {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
|
---|
240 | {"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"},
|
---|
241 | {"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"},
|
---|
242 | {"decrypt", OPT_DECRYPT, '-',
|
---|
243 | "Time decryption instead of encryption (only EVP)"},
|
---|
244 | {"aead", OPT_AEAD, '-',
|
---|
245 | "Benchmark EVP-named AEAD cipher in TLS-like sequence"},
|
---|
246 |
|
---|
247 | OPT_SECTION("Timing"),
|
---|
248 | {"elapsed", OPT_ELAPSED, '-',
|
---|
249 | "Use wall-clock time instead of CPU user time as divisor"},
|
---|
250 | {"seconds", OPT_SECONDS, 'p',
|
---|
251 | "Run benchmarks for specified amount of seconds"},
|
---|
252 | {"bytes", OPT_BYTES, 'p',
|
---|
253 | "Run [non-PKI] benchmarks on custom-sized buffer"},
|
---|
254 | {"misalign", OPT_MISALIGN, 'p',
|
---|
255 | "Use specified offset to mis-align buffers"},
|
---|
256 |
|
---|
257 | OPT_R_OPTIONS,
|
---|
258 | OPT_PROV_OPTIONS,
|
---|
259 |
|
---|
260 | OPT_PARAMETERS(),
|
---|
261 | {"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"},
|
---|
262 | {NULL}
|
---|
263 | };
|
---|
264 |
|
---|
265 | enum {
|
---|
266 | D_MD2, D_MDC2, D_MD4, D_MD5, D_SHA1, D_RMD160,
|
---|
267 | D_SHA256, D_SHA512, D_WHIRLPOOL, D_HMAC,
|
---|
268 | D_CBC_DES, D_EDE3_DES, D_RC4, D_CBC_IDEA, D_CBC_SEED,
|
---|
269 | D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST,
|
---|
270 | D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES,
|
---|
271 | D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML,
|
---|
272 | D_EVP, D_GHASH, D_RAND, D_EVP_CMAC, ALGOR_NUM
|
---|
273 | };
|
---|
274 | /* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */
|
---|
275 | static const char *names[ALGOR_NUM] = {
|
---|
276 | "md2", "mdc2", "md4", "md5", "sha1", "rmd160",
|
---|
277 | "sha256", "sha512", "whirlpool", "hmac(md5)",
|
---|
278 | "des-cbc", "des-ede3", "rc4", "idea-cbc", "seed-cbc",
|
---|
279 | "rc2-cbc", "rc5-cbc", "blowfish", "cast-cbc",
|
---|
280 | "aes-128-cbc", "aes-192-cbc", "aes-256-cbc",
|
---|
281 | "camellia-128-cbc", "camellia-192-cbc", "camellia-256-cbc",
|
---|
282 | "evp", "ghash", "rand", "cmac"
|
---|
283 | };
|
---|
284 |
|
---|
285 | /* list of configured algorithm (remaining), with some few alias */
|
---|
286 | static const OPT_PAIR doit_choices[] = {
|
---|
287 | {"md2", D_MD2},
|
---|
288 | {"mdc2", D_MDC2},
|
---|
289 | {"md4", D_MD4},
|
---|
290 | {"md5", D_MD5},
|
---|
291 | {"hmac", D_HMAC},
|
---|
292 | {"sha1", D_SHA1},
|
---|
293 | {"sha256", D_SHA256},
|
---|
294 | {"sha512", D_SHA512},
|
---|
295 | {"whirlpool", D_WHIRLPOOL},
|
---|
296 | {"ripemd", D_RMD160},
|
---|
297 | {"rmd160", D_RMD160},
|
---|
298 | {"ripemd160", D_RMD160},
|
---|
299 | {"rc4", D_RC4},
|
---|
300 | {"des-cbc", D_CBC_DES},
|
---|
301 | {"des-ede3", D_EDE3_DES},
|
---|
302 | {"aes-128-cbc", D_CBC_128_AES},
|
---|
303 | {"aes-192-cbc", D_CBC_192_AES},
|
---|
304 | {"aes-256-cbc", D_CBC_256_AES},
|
---|
305 | {"camellia-128-cbc", D_CBC_128_CML},
|
---|
306 | {"camellia-192-cbc", D_CBC_192_CML},
|
---|
307 | {"camellia-256-cbc", D_CBC_256_CML},
|
---|
308 | {"rc2-cbc", D_CBC_RC2},
|
---|
309 | {"rc2", D_CBC_RC2},
|
---|
310 | {"rc5-cbc", D_CBC_RC5},
|
---|
311 | {"rc5", D_CBC_RC5},
|
---|
312 | {"idea-cbc", D_CBC_IDEA},
|
---|
313 | {"idea", D_CBC_IDEA},
|
---|
314 | {"seed-cbc", D_CBC_SEED},
|
---|
315 | {"seed", D_CBC_SEED},
|
---|
316 | {"bf-cbc", D_CBC_BF},
|
---|
317 | {"blowfish", D_CBC_BF},
|
---|
318 | {"bf", D_CBC_BF},
|
---|
319 | {"cast-cbc", D_CBC_CAST},
|
---|
320 | {"cast", D_CBC_CAST},
|
---|
321 | {"cast5", D_CBC_CAST},
|
---|
322 | {"ghash", D_GHASH},
|
---|
323 | {"rand", D_RAND}
|
---|
324 | };
|
---|
325 |
|
---|
326 | static double results[ALGOR_NUM][SIZE_NUM];
|
---|
327 |
|
---|
328 | enum { R_DSA_512, R_DSA_1024, R_DSA_2048, DSA_NUM };
|
---|
329 | static const OPT_PAIR dsa_choices[DSA_NUM] = {
|
---|
330 | {"dsa512", R_DSA_512},
|
---|
331 | {"dsa1024", R_DSA_1024},
|
---|
332 | {"dsa2048", R_DSA_2048}
|
---|
333 | };
|
---|
334 | static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
|
---|
335 |
|
---|
336 | enum {
|
---|
337 | R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680,
|
---|
338 | R_RSA_15360, RSA_NUM
|
---|
339 | };
|
---|
340 | static const OPT_PAIR rsa_choices[RSA_NUM] = {
|
---|
341 | {"rsa512", R_RSA_512},
|
---|
342 | {"rsa1024", R_RSA_1024},
|
---|
343 | {"rsa2048", R_RSA_2048},
|
---|
344 | {"rsa3072", R_RSA_3072},
|
---|
345 | {"rsa4096", R_RSA_4096},
|
---|
346 | {"rsa7680", R_RSA_7680},
|
---|
347 | {"rsa15360", R_RSA_15360}
|
---|
348 | };
|
---|
349 |
|
---|
350 | static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */
|
---|
351 |
|
---|
352 | #ifndef OPENSSL_NO_DH
|
---|
353 | enum ff_params_t {
|
---|
354 | R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM
|
---|
355 | };
|
---|
356 |
|
---|
357 | static const OPT_PAIR ffdh_choices[FFDH_NUM] = {
|
---|
358 | {"ffdh2048", R_FFDH_2048},
|
---|
359 | {"ffdh3072", R_FFDH_3072},
|
---|
360 | {"ffdh4096", R_FFDH_4096},
|
---|
361 | {"ffdh6144", R_FFDH_6144},
|
---|
362 | {"ffdh8192", R_FFDH_8192},
|
---|
363 | };
|
---|
364 |
|
---|
365 | static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */
|
---|
366 | #endif /* OPENSSL_NO_DH */
|
---|
367 |
|
---|
368 | enum ec_curves_t {
|
---|
369 | R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521,
|
---|
370 | #ifndef OPENSSL_NO_EC2M
|
---|
371 | R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571,
|
---|
372 | R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571,
|
---|
373 | #endif
|
---|
374 | R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1,
|
---|
375 | R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM
|
---|
376 | };
|
---|
377 | /* list of ecdsa curves */
|
---|
378 | static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = {
|
---|
379 | {"ecdsap160", R_EC_P160},
|
---|
380 | {"ecdsap192", R_EC_P192},
|
---|
381 | {"ecdsap224", R_EC_P224},
|
---|
382 | {"ecdsap256", R_EC_P256},
|
---|
383 | {"ecdsap384", R_EC_P384},
|
---|
384 | {"ecdsap521", R_EC_P521},
|
---|
385 | #ifndef OPENSSL_NO_EC2M
|
---|
386 | {"ecdsak163", R_EC_K163},
|
---|
387 | {"ecdsak233", R_EC_K233},
|
---|
388 | {"ecdsak283", R_EC_K283},
|
---|
389 | {"ecdsak409", R_EC_K409},
|
---|
390 | {"ecdsak571", R_EC_K571},
|
---|
391 | {"ecdsab163", R_EC_B163},
|
---|
392 | {"ecdsab233", R_EC_B233},
|
---|
393 | {"ecdsab283", R_EC_B283},
|
---|
394 | {"ecdsab409", R_EC_B409},
|
---|
395 | {"ecdsab571", R_EC_B571},
|
---|
396 | #endif
|
---|
397 | {"ecdsabrp256r1", R_EC_BRP256R1},
|
---|
398 | {"ecdsabrp256t1", R_EC_BRP256T1},
|
---|
399 | {"ecdsabrp384r1", R_EC_BRP384R1},
|
---|
400 | {"ecdsabrp384t1", R_EC_BRP384T1},
|
---|
401 | {"ecdsabrp512r1", R_EC_BRP512R1},
|
---|
402 | {"ecdsabrp512t1", R_EC_BRP512T1}
|
---|
403 | };
|
---|
404 | enum { R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM };
|
---|
405 | /* list of ecdh curves, extension of |ecdsa_choices| list above */
|
---|
406 | static const OPT_PAIR ecdh_choices[EC_NUM] = {
|
---|
407 | {"ecdhp160", R_EC_P160},
|
---|
408 | {"ecdhp192", R_EC_P192},
|
---|
409 | {"ecdhp224", R_EC_P224},
|
---|
410 | {"ecdhp256", R_EC_P256},
|
---|
411 | {"ecdhp384", R_EC_P384},
|
---|
412 | {"ecdhp521", R_EC_P521},
|
---|
413 | #ifndef OPENSSL_NO_EC2M
|
---|
414 | {"ecdhk163", R_EC_K163},
|
---|
415 | {"ecdhk233", R_EC_K233},
|
---|
416 | {"ecdhk283", R_EC_K283},
|
---|
417 | {"ecdhk409", R_EC_K409},
|
---|
418 | {"ecdhk571", R_EC_K571},
|
---|
419 | {"ecdhb163", R_EC_B163},
|
---|
420 | {"ecdhb233", R_EC_B233},
|
---|
421 | {"ecdhb283", R_EC_B283},
|
---|
422 | {"ecdhb409", R_EC_B409},
|
---|
423 | {"ecdhb571", R_EC_B571},
|
---|
424 | #endif
|
---|
425 | {"ecdhbrp256r1", R_EC_BRP256R1},
|
---|
426 | {"ecdhbrp256t1", R_EC_BRP256T1},
|
---|
427 | {"ecdhbrp384r1", R_EC_BRP384R1},
|
---|
428 | {"ecdhbrp384t1", R_EC_BRP384T1},
|
---|
429 | {"ecdhbrp512r1", R_EC_BRP512R1},
|
---|
430 | {"ecdhbrp512t1", R_EC_BRP512T1},
|
---|
431 | {"ecdhx25519", R_EC_X25519},
|
---|
432 | {"ecdhx448", R_EC_X448}
|
---|
433 | };
|
---|
434 |
|
---|
435 | static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
|
---|
436 | static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
|
---|
437 |
|
---|
438 | enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM };
|
---|
439 | static const OPT_PAIR eddsa_choices[EdDSA_NUM] = {
|
---|
440 | {"ed25519", R_EC_Ed25519},
|
---|
441 | {"ed448", R_EC_Ed448}
|
---|
442 |
|
---|
443 | };
|
---|
444 | static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */
|
---|
445 |
|
---|
446 | #ifndef OPENSSL_NO_SM2
|
---|
447 | enum { R_EC_CURVESM2, SM2_NUM };
|
---|
448 | static const OPT_PAIR sm2_choices[SM2_NUM] = {
|
---|
449 | {"curveSM2", R_EC_CURVESM2}
|
---|
450 | };
|
---|
451 | # define SM2_ID "TLSv1.3+GM+Cipher+Suite"
|
---|
452 | # define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1
|
---|
453 | static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */
|
---|
454 | #endif /* OPENSSL_NO_SM2 */
|
---|
455 |
|
---|
456 | #define COND(unused_cond) (run && count < INT_MAX)
|
---|
457 | #define COUNT(d) (count)
|
---|
458 |
|
---|
459 | typedef struct loopargs_st {
|
---|
460 | ASYNC_JOB *inprogress_job;
|
---|
461 | ASYNC_WAIT_CTX *wait_ctx;
|
---|
462 | unsigned char *buf;
|
---|
463 | unsigned char *buf2;
|
---|
464 | unsigned char *buf_malloc;
|
---|
465 | unsigned char *buf2_malloc;
|
---|
466 | unsigned char *key;
|
---|
467 | size_t buflen;
|
---|
468 | size_t sigsize;
|
---|
469 | EVP_PKEY_CTX *rsa_sign_ctx[RSA_NUM];
|
---|
470 | EVP_PKEY_CTX *rsa_verify_ctx[RSA_NUM];
|
---|
471 | EVP_PKEY_CTX *dsa_sign_ctx[DSA_NUM];
|
---|
472 | EVP_PKEY_CTX *dsa_verify_ctx[DSA_NUM];
|
---|
473 | EVP_PKEY_CTX *ecdsa_sign_ctx[ECDSA_NUM];
|
---|
474 | EVP_PKEY_CTX *ecdsa_verify_ctx[ECDSA_NUM];
|
---|
475 | EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
|
---|
476 | EVP_MD_CTX *eddsa_ctx[EdDSA_NUM];
|
---|
477 | EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM];
|
---|
478 | #ifndef OPENSSL_NO_SM2
|
---|
479 | EVP_MD_CTX *sm2_ctx[SM2_NUM];
|
---|
480 | EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM];
|
---|
481 | EVP_PKEY *sm2_pkey[SM2_NUM];
|
---|
482 | #endif
|
---|
483 | unsigned char *secret_a;
|
---|
484 | unsigned char *secret_b;
|
---|
485 | size_t outlen[EC_NUM];
|
---|
486 | #ifndef OPENSSL_NO_DH
|
---|
487 | EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM];
|
---|
488 | unsigned char *secret_ff_a;
|
---|
489 | unsigned char *secret_ff_b;
|
---|
490 | #endif
|
---|
491 | EVP_CIPHER_CTX *ctx;
|
---|
492 | EVP_MAC_CTX *mctx;
|
---|
493 | } loopargs_t;
|
---|
494 | static int run_benchmark(int async_jobs, int (*loop_function) (void *),
|
---|
495 | loopargs_t * loopargs);
|
---|
496 |
|
---|
497 | static unsigned int testnum;
|
---|
498 |
|
---|
499 | /* Nb of iterations to do per algorithm and key-size */
|
---|
500 | static long c[ALGOR_NUM][SIZE_NUM];
|
---|
501 |
|
---|
502 | static char *evp_mac_mdname = "md5";
|
---|
503 | static char *evp_hmac_name = NULL;
|
---|
504 | static const char *evp_md_name = NULL;
|
---|
505 | static char *evp_mac_ciphername = "aes-128-cbc";
|
---|
506 | static char *evp_cmac_name = NULL;
|
---|
507 |
|
---|
508 | static int have_md(const char *name)
|
---|
509 | {
|
---|
510 | int ret = 0;
|
---|
511 | EVP_MD *md = NULL;
|
---|
512 |
|
---|
513 | if (opt_md_silent(name, &md)) {
|
---|
514 | EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
---|
515 |
|
---|
516 | if (ctx != NULL && EVP_DigestInit(ctx, md) > 0)
|
---|
517 | ret = 1;
|
---|
518 | EVP_MD_CTX_free(ctx);
|
---|
519 | EVP_MD_free(md);
|
---|
520 | }
|
---|
521 | return ret;
|
---|
522 | }
|
---|
523 |
|
---|
524 | static int have_cipher(const char *name)
|
---|
525 | {
|
---|
526 | int ret = 0;
|
---|
527 | EVP_CIPHER *cipher = NULL;
|
---|
528 |
|
---|
529 | if (opt_cipher_silent(name, &cipher)) {
|
---|
530 | EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
|
---|
531 |
|
---|
532 | if (ctx != NULL
|
---|
533 | && EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1) > 0)
|
---|
534 | ret = 1;
|
---|
535 | EVP_CIPHER_CTX_free(ctx);
|
---|
536 | EVP_CIPHER_free(cipher);
|
---|
537 | }
|
---|
538 | return ret;
|
---|
539 | }
|
---|
540 |
|
---|
541 | static int EVP_Digest_loop(const char *mdname, int algindex, void *args)
|
---|
542 | {
|
---|
543 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
544 | unsigned char *buf = tempargs->buf;
|
---|
545 | unsigned char digest[EVP_MAX_MD_SIZE];
|
---|
546 | int count;
|
---|
547 | EVP_MD *md = NULL;
|
---|
548 |
|
---|
549 | if (!opt_md_silent(mdname, &md))
|
---|
550 | return -1;
|
---|
551 | for (count = 0; COND(c[algindex][testnum]); count++) {
|
---|
552 | if (!EVP_Digest(buf, (size_t)lengths[testnum], digest, NULL, md,
|
---|
553 | NULL)) {
|
---|
554 | count = -1;
|
---|
555 | break;
|
---|
556 | }
|
---|
557 | }
|
---|
558 | EVP_MD_free(md);
|
---|
559 | return count;
|
---|
560 | }
|
---|
561 |
|
---|
562 | static int EVP_Digest_md_loop(void *args)
|
---|
563 | {
|
---|
564 | return EVP_Digest_loop(evp_md_name, D_EVP, args);
|
---|
565 | }
|
---|
566 |
|
---|
567 | static int EVP_Digest_MD2_loop(void *args)
|
---|
568 | {
|
---|
569 | return EVP_Digest_loop("md2", D_MD2, args);
|
---|
570 | }
|
---|
571 |
|
---|
572 | static int EVP_Digest_MDC2_loop(void *args)
|
---|
573 | {
|
---|
574 | return EVP_Digest_loop("mdc2", D_MDC2, args);
|
---|
575 | }
|
---|
576 |
|
---|
577 | static int EVP_Digest_MD4_loop(void *args)
|
---|
578 | {
|
---|
579 | return EVP_Digest_loop("md4", D_MD4, args);
|
---|
580 | }
|
---|
581 |
|
---|
582 | static int MD5_loop(void *args)
|
---|
583 | {
|
---|
584 | return EVP_Digest_loop("md5", D_MD5, args);
|
---|
585 | }
|
---|
586 |
|
---|
587 | static int EVP_MAC_loop(int algindex, void *args)
|
---|
588 | {
|
---|
589 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
590 | unsigned char *buf = tempargs->buf;
|
---|
591 | EVP_MAC_CTX *mctx = tempargs->mctx;
|
---|
592 | unsigned char mac[EVP_MAX_MD_SIZE];
|
---|
593 | int count;
|
---|
594 |
|
---|
595 | for (count = 0; COND(c[algindex][testnum]); count++) {
|
---|
596 | size_t outl;
|
---|
597 |
|
---|
598 | if (!EVP_MAC_init(mctx, NULL, 0, NULL)
|
---|
599 | || !EVP_MAC_update(mctx, buf, lengths[testnum])
|
---|
600 | || !EVP_MAC_final(mctx, mac, &outl, sizeof(mac)))
|
---|
601 | return -1;
|
---|
602 | }
|
---|
603 | return count;
|
---|
604 | }
|
---|
605 |
|
---|
606 | static int HMAC_loop(void *args)
|
---|
607 | {
|
---|
608 | return EVP_MAC_loop(D_HMAC, args);
|
---|
609 | }
|
---|
610 |
|
---|
611 | static int CMAC_loop(void *args)
|
---|
612 | {
|
---|
613 | return EVP_MAC_loop(D_EVP_CMAC, args);
|
---|
614 | }
|
---|
615 |
|
---|
616 | static int SHA1_loop(void *args)
|
---|
617 | {
|
---|
618 | return EVP_Digest_loop("sha1", D_SHA1, args);
|
---|
619 | }
|
---|
620 |
|
---|
621 | static int SHA256_loop(void *args)
|
---|
622 | {
|
---|
623 | return EVP_Digest_loop("sha256", D_SHA256, args);
|
---|
624 | }
|
---|
625 |
|
---|
626 | static int SHA512_loop(void *args)
|
---|
627 | {
|
---|
628 | return EVP_Digest_loop("sha512", D_SHA512, args);
|
---|
629 | }
|
---|
630 |
|
---|
631 | static int WHIRLPOOL_loop(void *args)
|
---|
632 | {
|
---|
633 | return EVP_Digest_loop("whirlpool", D_WHIRLPOOL, args);
|
---|
634 | }
|
---|
635 |
|
---|
636 | static int EVP_Digest_RMD160_loop(void *args)
|
---|
637 | {
|
---|
638 | return EVP_Digest_loop("ripemd160", D_RMD160, args);
|
---|
639 | }
|
---|
640 |
|
---|
641 | static int algindex;
|
---|
642 |
|
---|
643 | static int EVP_Cipher_loop(void *args)
|
---|
644 | {
|
---|
645 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
646 | unsigned char *buf = tempargs->buf;
|
---|
647 | int count;
|
---|
648 |
|
---|
649 | if (tempargs->ctx == NULL)
|
---|
650 | return -1;
|
---|
651 | for (count = 0; COND(c[algindex][testnum]); count++)
|
---|
652 | if (EVP_Cipher(tempargs->ctx, buf, buf, (size_t)lengths[testnum]) <= 0)
|
---|
653 | return -1;
|
---|
654 | return count;
|
---|
655 | }
|
---|
656 |
|
---|
657 | static int GHASH_loop(void *args)
|
---|
658 | {
|
---|
659 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
660 | unsigned char *buf = tempargs->buf;
|
---|
661 | EVP_MAC_CTX *mctx = tempargs->mctx;
|
---|
662 | int count;
|
---|
663 |
|
---|
664 | /* just do the update in the loop to be comparable with 1.1.1 */
|
---|
665 | for (count = 0; COND(c[D_GHASH][testnum]); count++) {
|
---|
666 | if (!EVP_MAC_update(mctx, buf, lengths[testnum]))
|
---|
667 | return -1;
|
---|
668 | }
|
---|
669 | return count;
|
---|
670 | }
|
---|
671 |
|
---|
672 | #define MAX_BLOCK_SIZE 128
|
---|
673 |
|
---|
674 | static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
|
---|
675 |
|
---|
676 | static EVP_CIPHER_CTX *init_evp_cipher_ctx(const char *ciphername,
|
---|
677 | const unsigned char *key,
|
---|
678 | int keylen)
|
---|
679 | {
|
---|
680 | EVP_CIPHER_CTX *ctx = NULL;
|
---|
681 | EVP_CIPHER *cipher = NULL;
|
---|
682 |
|
---|
683 | if (!opt_cipher_silent(ciphername, &cipher))
|
---|
684 | return NULL;
|
---|
685 |
|
---|
686 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
|
---|
687 | goto end;
|
---|
688 |
|
---|
689 | if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1)) {
|
---|
690 | EVP_CIPHER_CTX_free(ctx);
|
---|
691 | ctx = NULL;
|
---|
692 | goto end;
|
---|
693 | }
|
---|
694 |
|
---|
695 | if (EVP_CIPHER_CTX_set_key_length(ctx, keylen) <= 0) {
|
---|
696 | EVP_CIPHER_CTX_free(ctx);
|
---|
697 | ctx = NULL;
|
---|
698 | goto end;
|
---|
699 | }
|
---|
700 |
|
---|
701 | if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1)) {
|
---|
702 | EVP_CIPHER_CTX_free(ctx);
|
---|
703 | ctx = NULL;
|
---|
704 | goto end;
|
---|
705 | }
|
---|
706 |
|
---|
707 | end:
|
---|
708 | EVP_CIPHER_free(cipher);
|
---|
709 | return ctx;
|
---|
710 | }
|
---|
711 |
|
---|
712 | static int RAND_bytes_loop(void *args)
|
---|
713 | {
|
---|
714 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
715 | unsigned char *buf = tempargs->buf;
|
---|
716 | int count;
|
---|
717 |
|
---|
718 | for (count = 0; COND(c[D_RAND][testnum]); count++)
|
---|
719 | RAND_bytes(buf, lengths[testnum]);
|
---|
720 | return count;
|
---|
721 | }
|
---|
722 |
|
---|
723 | static int decrypt = 0;
|
---|
724 | static int EVP_Update_loop(void *args)
|
---|
725 | {
|
---|
726 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
727 | unsigned char *buf = tempargs->buf;
|
---|
728 | EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
---|
729 | int outl, count, rc;
|
---|
730 |
|
---|
731 | if (decrypt) {
|
---|
732 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
733 | rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
734 | if (rc != 1) {
|
---|
735 | /* reset iv in case of counter overflow */
|
---|
736 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
---|
737 | }
|
---|
738 | }
|
---|
739 | } else {
|
---|
740 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
741 | rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
742 | if (rc != 1) {
|
---|
743 | /* reset iv in case of counter overflow */
|
---|
744 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
|
---|
745 | }
|
---|
746 | }
|
---|
747 | }
|
---|
748 | if (decrypt)
|
---|
749 | EVP_DecryptFinal_ex(ctx, buf, &outl);
|
---|
750 | else
|
---|
751 | EVP_EncryptFinal_ex(ctx, buf, &outl);
|
---|
752 | return count;
|
---|
753 | }
|
---|
754 |
|
---|
755 | /*
|
---|
756 | * CCM does not support streaming. For the purpose of performance measurement,
|
---|
757 | * each message is encrypted using the same (key,iv)-pair. Do not use this
|
---|
758 | * code in your application.
|
---|
759 | */
|
---|
760 | static int EVP_Update_loop_ccm(void *args)
|
---|
761 | {
|
---|
762 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
763 | unsigned char *buf = tempargs->buf;
|
---|
764 | EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
---|
765 | int outl, count;
|
---|
766 | unsigned char tag[12];
|
---|
767 |
|
---|
768 | if (decrypt) {
|
---|
769 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
770 | (void)EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag),
|
---|
771 | tag);
|
---|
772 | /* reset iv */
|
---|
773 | (void)EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
|
---|
774 | /* counter is reset on every update */
|
---|
775 | (void)EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
776 | }
|
---|
777 | } else {
|
---|
778 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
779 | /* restore iv length field */
|
---|
780 | (void)EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
|
---|
781 | /* counter is reset on every update */
|
---|
782 | (void)EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
783 | }
|
---|
784 | }
|
---|
785 | if (decrypt)
|
---|
786 | (void)EVP_DecryptFinal_ex(ctx, buf, &outl);
|
---|
787 | else
|
---|
788 | (void)EVP_EncryptFinal_ex(ctx, buf, &outl);
|
---|
789 | return count;
|
---|
790 | }
|
---|
791 |
|
---|
792 | /*
|
---|
793 | * To make AEAD benchmarking more relevant perform TLS-like operations,
|
---|
794 | * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
|
---|
795 | * payload length is not actually limited by 16KB...
|
---|
796 | */
|
---|
797 | static int EVP_Update_loop_aead(void *args)
|
---|
798 | {
|
---|
799 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
800 | unsigned char *buf = tempargs->buf;
|
---|
801 | EVP_CIPHER_CTX *ctx = tempargs->ctx;
|
---|
802 | int outl, count;
|
---|
803 | unsigned char aad[13] = { 0xcc };
|
---|
804 | unsigned char faketag[16] = { 0xcc };
|
---|
805 |
|
---|
806 | if (decrypt) {
|
---|
807 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
808 | (void)EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
|
---|
809 | (void)EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
---|
810 | sizeof(faketag), faketag);
|
---|
811 | (void)EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
|
---|
812 | (void)EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
813 | (void)EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
|
---|
814 | }
|
---|
815 | } else {
|
---|
816 | for (count = 0; COND(c[D_EVP][testnum]); count++) {
|
---|
817 | (void)EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
|
---|
818 | (void)EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
|
---|
819 | (void)EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
|
---|
820 | (void)EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
|
---|
821 | }
|
---|
822 | }
|
---|
823 | return count;
|
---|
824 | }
|
---|
825 |
|
---|
826 | static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
|
---|
827 |
|
---|
828 | static int RSA_sign_loop(void *args)
|
---|
829 | {
|
---|
830 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
831 | unsigned char *buf = tempargs->buf;
|
---|
832 | unsigned char *buf2 = tempargs->buf2;
|
---|
833 | size_t *rsa_num = &tempargs->sigsize;
|
---|
834 | EVP_PKEY_CTX **rsa_sign_ctx = tempargs->rsa_sign_ctx;
|
---|
835 | int ret, count;
|
---|
836 |
|
---|
837 | for (count = 0; COND(rsa_c[testnum][0]); count++) {
|
---|
838 | *rsa_num = tempargs->buflen;
|
---|
839 | ret = EVP_PKEY_sign(rsa_sign_ctx[testnum], buf2, rsa_num, buf, 36);
|
---|
840 | if (ret <= 0) {
|
---|
841 | BIO_printf(bio_err, "RSA sign failure\n");
|
---|
842 | ERR_print_errors(bio_err);
|
---|
843 | count = -1;
|
---|
844 | break;
|
---|
845 | }
|
---|
846 | }
|
---|
847 | return count;
|
---|
848 | }
|
---|
849 |
|
---|
850 | static int RSA_verify_loop(void *args)
|
---|
851 | {
|
---|
852 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
853 | unsigned char *buf = tempargs->buf;
|
---|
854 | unsigned char *buf2 = tempargs->buf2;
|
---|
855 | size_t rsa_num = tempargs->sigsize;
|
---|
856 | EVP_PKEY_CTX **rsa_verify_ctx = tempargs->rsa_verify_ctx;
|
---|
857 | int ret, count;
|
---|
858 |
|
---|
859 | for (count = 0; COND(rsa_c[testnum][1]); count++) {
|
---|
860 | ret = EVP_PKEY_verify(rsa_verify_ctx[testnum], buf2, rsa_num, buf, 36);
|
---|
861 | if (ret <= 0) {
|
---|
862 | BIO_printf(bio_err, "RSA verify failure\n");
|
---|
863 | ERR_print_errors(bio_err);
|
---|
864 | count = -1;
|
---|
865 | break;
|
---|
866 | }
|
---|
867 | }
|
---|
868 | return count;
|
---|
869 | }
|
---|
870 |
|
---|
871 | #ifndef OPENSSL_NO_DH
|
---|
872 | static long ffdh_c[FFDH_NUM][1];
|
---|
873 |
|
---|
874 | static int FFDH_derive_key_loop(void *args)
|
---|
875 | {
|
---|
876 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
877 | EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum];
|
---|
878 | unsigned char *derived_secret = tempargs->secret_ff_a;
|
---|
879 | int count;
|
---|
880 |
|
---|
881 | for (count = 0; COND(ffdh_c[testnum][0]); count++) {
|
---|
882 | /* outlen can be overwritten with a too small value (no padding used) */
|
---|
883 | size_t outlen = MAX_FFDH_SIZE;
|
---|
884 |
|
---|
885 | EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen);
|
---|
886 | }
|
---|
887 | return count;
|
---|
888 | }
|
---|
889 | #endif /* OPENSSL_NO_DH */
|
---|
890 |
|
---|
891 | static long dsa_c[DSA_NUM][2];
|
---|
892 | static int DSA_sign_loop(void *args)
|
---|
893 | {
|
---|
894 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
895 | unsigned char *buf = tempargs->buf;
|
---|
896 | unsigned char *buf2 = tempargs->buf2;
|
---|
897 | size_t *dsa_num = &tempargs->sigsize;
|
---|
898 | EVP_PKEY_CTX **dsa_sign_ctx = tempargs->dsa_sign_ctx;
|
---|
899 | int ret, count;
|
---|
900 |
|
---|
901 | for (count = 0; COND(dsa_c[testnum][0]); count++) {
|
---|
902 | *dsa_num = tempargs->buflen;
|
---|
903 | ret = EVP_PKEY_sign(dsa_sign_ctx[testnum], buf2, dsa_num, buf, 20);
|
---|
904 | if (ret <= 0) {
|
---|
905 | BIO_printf(bio_err, "DSA sign failure\n");
|
---|
906 | ERR_print_errors(bio_err);
|
---|
907 | count = -1;
|
---|
908 | break;
|
---|
909 | }
|
---|
910 | }
|
---|
911 | return count;
|
---|
912 | }
|
---|
913 |
|
---|
914 | static int DSA_verify_loop(void *args)
|
---|
915 | {
|
---|
916 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
917 | unsigned char *buf = tempargs->buf;
|
---|
918 | unsigned char *buf2 = tempargs->buf2;
|
---|
919 | size_t dsa_num = tempargs->sigsize;
|
---|
920 | EVP_PKEY_CTX **dsa_verify_ctx = tempargs->dsa_verify_ctx;
|
---|
921 | int ret, count;
|
---|
922 |
|
---|
923 | for (count = 0; COND(dsa_c[testnum][1]); count++) {
|
---|
924 | ret = EVP_PKEY_verify(dsa_verify_ctx[testnum], buf2, dsa_num, buf, 20);
|
---|
925 | if (ret <= 0) {
|
---|
926 | BIO_printf(bio_err, "DSA verify failure\n");
|
---|
927 | ERR_print_errors(bio_err);
|
---|
928 | count = -1;
|
---|
929 | break;
|
---|
930 | }
|
---|
931 | }
|
---|
932 | return count;
|
---|
933 | }
|
---|
934 |
|
---|
935 | static long ecdsa_c[ECDSA_NUM][2];
|
---|
936 | static int ECDSA_sign_loop(void *args)
|
---|
937 | {
|
---|
938 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
939 | unsigned char *buf = tempargs->buf;
|
---|
940 | unsigned char *buf2 = tempargs->buf2;
|
---|
941 | size_t *ecdsa_num = &tempargs->sigsize;
|
---|
942 | EVP_PKEY_CTX **ecdsa_sign_ctx = tempargs->ecdsa_sign_ctx;
|
---|
943 | int ret, count;
|
---|
944 |
|
---|
945 | for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
|
---|
946 | *ecdsa_num = tempargs->buflen;
|
---|
947 | ret = EVP_PKEY_sign(ecdsa_sign_ctx[testnum], buf2, ecdsa_num, buf, 20);
|
---|
948 | if (ret <= 0) {
|
---|
949 | BIO_printf(bio_err, "ECDSA sign failure\n");
|
---|
950 | ERR_print_errors(bio_err);
|
---|
951 | count = -1;
|
---|
952 | break;
|
---|
953 | }
|
---|
954 | }
|
---|
955 | return count;
|
---|
956 | }
|
---|
957 |
|
---|
958 | static int ECDSA_verify_loop(void *args)
|
---|
959 | {
|
---|
960 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
961 | unsigned char *buf = tempargs->buf;
|
---|
962 | unsigned char *buf2 = tempargs->buf2;
|
---|
963 | size_t ecdsa_num = tempargs->sigsize;
|
---|
964 | EVP_PKEY_CTX **ecdsa_verify_ctx = tempargs->ecdsa_verify_ctx;
|
---|
965 | int ret, count;
|
---|
966 |
|
---|
967 | for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
|
---|
968 | ret = EVP_PKEY_verify(ecdsa_verify_ctx[testnum], buf2, ecdsa_num,
|
---|
969 | buf, 20);
|
---|
970 | if (ret <= 0) {
|
---|
971 | BIO_printf(bio_err, "ECDSA verify failure\n");
|
---|
972 | ERR_print_errors(bio_err);
|
---|
973 | count = -1;
|
---|
974 | break;
|
---|
975 | }
|
---|
976 | }
|
---|
977 | return count;
|
---|
978 | }
|
---|
979 |
|
---|
980 | /* ******************************************************************** */
|
---|
981 | static long ecdh_c[EC_NUM][1];
|
---|
982 |
|
---|
983 | static int ECDH_EVP_derive_key_loop(void *args)
|
---|
984 | {
|
---|
985 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
986 | EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
|
---|
987 | unsigned char *derived_secret = tempargs->secret_a;
|
---|
988 | int count;
|
---|
989 | size_t *outlen = &(tempargs->outlen[testnum]);
|
---|
990 |
|
---|
991 | for (count = 0; COND(ecdh_c[testnum][0]); count++)
|
---|
992 | EVP_PKEY_derive(ctx, derived_secret, outlen);
|
---|
993 |
|
---|
994 | return count;
|
---|
995 | }
|
---|
996 |
|
---|
997 | static long eddsa_c[EdDSA_NUM][2];
|
---|
998 | static int EdDSA_sign_loop(void *args)
|
---|
999 | {
|
---|
1000 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
1001 | unsigned char *buf = tempargs->buf;
|
---|
1002 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx;
|
---|
1003 | unsigned char *eddsasig = tempargs->buf2;
|
---|
1004 | size_t *eddsasigsize = &tempargs->sigsize;
|
---|
1005 | int ret, count;
|
---|
1006 |
|
---|
1007 | for (count = 0; COND(eddsa_c[testnum][0]); count++) {
|
---|
1008 | ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
|
---|
1009 | if (ret == 0) {
|
---|
1010 | BIO_printf(bio_err, "EdDSA sign failure\n");
|
---|
1011 | ERR_print_errors(bio_err);
|
---|
1012 | count = -1;
|
---|
1013 | break;
|
---|
1014 | }
|
---|
1015 | }
|
---|
1016 | return count;
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | static int EdDSA_verify_loop(void *args)
|
---|
1020 | {
|
---|
1021 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
1022 | unsigned char *buf = tempargs->buf;
|
---|
1023 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx2;
|
---|
1024 | unsigned char *eddsasig = tempargs->buf2;
|
---|
1025 | size_t eddsasigsize = tempargs->sigsize;
|
---|
1026 | int ret, count;
|
---|
1027 |
|
---|
1028 | for (count = 0; COND(eddsa_c[testnum][1]); count++) {
|
---|
1029 | ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20);
|
---|
1030 | if (ret != 1) {
|
---|
1031 | BIO_printf(bio_err, "EdDSA verify failure\n");
|
---|
1032 | ERR_print_errors(bio_err);
|
---|
1033 | count = -1;
|
---|
1034 | break;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 | return count;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 | #ifndef OPENSSL_NO_SM2
|
---|
1041 | static long sm2_c[SM2_NUM][2];
|
---|
1042 | static int SM2_sign_loop(void *args)
|
---|
1043 | {
|
---|
1044 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
1045 | unsigned char *buf = tempargs->buf;
|
---|
1046 | EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx;
|
---|
1047 | unsigned char *sm2sig = tempargs->buf2;
|
---|
1048 | size_t sm2sigsize;
|
---|
1049 | int ret, count;
|
---|
1050 | EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
|
---|
1051 | const size_t max_size = EVP_PKEY_get_size(sm2_pkey[testnum]);
|
---|
1052 |
|
---|
1053 | for (count = 0; COND(sm2_c[testnum][0]); count++) {
|
---|
1054 | sm2sigsize = max_size;
|
---|
1055 |
|
---|
1056 | if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(),
|
---|
1057 | NULL, sm2_pkey[testnum])) {
|
---|
1058 | BIO_printf(bio_err, "SM2 init sign failure\n");
|
---|
1059 | ERR_print_errors(bio_err);
|
---|
1060 | count = -1;
|
---|
1061 | break;
|
---|
1062 | }
|
---|
1063 | ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize,
|
---|
1064 | buf, 20);
|
---|
1065 | if (ret == 0) {
|
---|
1066 | BIO_printf(bio_err, "SM2 sign failure\n");
|
---|
1067 | ERR_print_errors(bio_err);
|
---|
1068 | count = -1;
|
---|
1069 | break;
|
---|
1070 | }
|
---|
1071 | /* update the latest returned size and always use the fixed buffer size */
|
---|
1072 | tempargs->sigsize = sm2sigsize;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | return count;
|
---|
1076 | }
|
---|
1077 |
|
---|
1078 | static int SM2_verify_loop(void *args)
|
---|
1079 | {
|
---|
1080 | loopargs_t *tempargs = *(loopargs_t **) args;
|
---|
1081 | unsigned char *buf = tempargs->buf;
|
---|
1082 | EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx;
|
---|
1083 | unsigned char *sm2sig = tempargs->buf2;
|
---|
1084 | size_t sm2sigsize = tempargs->sigsize;
|
---|
1085 | int ret, count;
|
---|
1086 | EVP_PKEY **sm2_pkey = tempargs->sm2_pkey;
|
---|
1087 |
|
---|
1088 | for (count = 0; COND(sm2_c[testnum][1]); count++) {
|
---|
1089 | if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(),
|
---|
1090 | NULL, sm2_pkey[testnum])) {
|
---|
1091 | BIO_printf(bio_err, "SM2 verify init failure\n");
|
---|
1092 | ERR_print_errors(bio_err);
|
---|
1093 | count = -1;
|
---|
1094 | break;
|
---|
1095 | }
|
---|
1096 | ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize,
|
---|
1097 | buf, 20);
|
---|
1098 | if (ret != 1) {
|
---|
1099 | BIO_printf(bio_err, "SM2 verify failure\n");
|
---|
1100 | ERR_print_errors(bio_err);
|
---|
1101 | count = -1;
|
---|
1102 | break;
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 | return count;
|
---|
1106 | }
|
---|
1107 | #endif /* OPENSSL_NO_SM2 */
|
---|
1108 |
|
---|
1109 | static int run_benchmark(int async_jobs,
|
---|
1110 | int (*loop_function) (void *), loopargs_t * loopargs)
|
---|
1111 | {
|
---|
1112 | int job_op_count = 0;
|
---|
1113 | int total_op_count = 0;
|
---|
1114 | int num_inprogress = 0;
|
---|
1115 | int error = 0, i = 0, ret = 0;
|
---|
1116 | OSSL_ASYNC_FD job_fd = 0;
|
---|
1117 | size_t num_job_fds = 0;
|
---|
1118 |
|
---|
1119 | if (async_jobs == 0) {
|
---|
1120 | return loop_function((void *)&loopargs);
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 | for (i = 0; i < async_jobs && !error; i++) {
|
---|
1124 | loopargs_t *looparg_item = loopargs + i;
|
---|
1125 |
|
---|
1126 | /* Copy pointer content (looparg_t item address) into async context */
|
---|
1127 | ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
|
---|
1128 | &job_op_count, loop_function,
|
---|
1129 | (void *)&looparg_item, sizeof(looparg_item));
|
---|
1130 | switch (ret) {
|
---|
1131 | case ASYNC_PAUSE:
|
---|
1132 | ++num_inprogress;
|
---|
1133 | break;
|
---|
1134 | case ASYNC_FINISH:
|
---|
1135 | if (job_op_count == -1) {
|
---|
1136 | error = 1;
|
---|
1137 | } else {
|
---|
1138 | total_op_count += job_op_count;
|
---|
1139 | }
|
---|
1140 | break;
|
---|
1141 | case ASYNC_NO_JOBS:
|
---|
1142 | case ASYNC_ERR:
|
---|
1143 | BIO_printf(bio_err, "Failure in the job\n");
|
---|
1144 | ERR_print_errors(bio_err);
|
---|
1145 | error = 1;
|
---|
1146 | break;
|
---|
1147 | }
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | while (num_inprogress > 0) {
|
---|
1151 | #if defined(OPENSSL_SYS_WINDOWS)
|
---|
1152 | DWORD avail = 0;
|
---|
1153 | #elif defined(OPENSSL_SYS_UNIX)
|
---|
1154 | int select_result = 0;
|
---|
1155 | OSSL_ASYNC_FD max_fd = 0;
|
---|
1156 | fd_set waitfdset;
|
---|
1157 |
|
---|
1158 | FD_ZERO(&waitfdset);
|
---|
1159 |
|
---|
1160 | for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
|
---|
1161 | if (loopargs[i].inprogress_job == NULL)
|
---|
1162 | continue;
|
---|
1163 |
|
---|
1164 | if (!ASYNC_WAIT_CTX_get_all_fds
|
---|
1165 | (loopargs[i].wait_ctx, NULL, &num_job_fds)
|
---|
1166 | || num_job_fds > 1) {
|
---|
1167 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
---|
1168 | ERR_print_errors(bio_err);
|
---|
1169 | error = 1;
|
---|
1170 | break;
|
---|
1171 | }
|
---|
1172 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
---|
1173 | &num_job_fds);
|
---|
1174 | FD_SET(job_fd, &waitfdset);
|
---|
1175 | if (job_fd > max_fd)
|
---|
1176 | max_fd = job_fd;
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
|
---|
1180 | BIO_printf(bio_err,
|
---|
1181 | "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
|
---|
1182 | "Decrease the value of async_jobs\n",
|
---|
1183 | max_fd, FD_SETSIZE);
|
---|
1184 | ERR_print_errors(bio_err);
|
---|
1185 | error = 1;
|
---|
1186 | break;
|
---|
1187 | }
|
---|
1188 |
|
---|
1189 | select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
|
---|
1190 | if (select_result == -1 && errno == EINTR)
|
---|
1191 | continue;
|
---|
1192 |
|
---|
1193 | if (select_result == -1) {
|
---|
1194 | BIO_printf(bio_err, "Failure in the select\n");
|
---|
1195 | ERR_print_errors(bio_err);
|
---|
1196 | error = 1;
|
---|
1197 | break;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | if (select_result == 0)
|
---|
1201 | continue;
|
---|
1202 | #endif
|
---|
1203 |
|
---|
1204 | for (i = 0; i < async_jobs; i++) {
|
---|
1205 | if (loopargs[i].inprogress_job == NULL)
|
---|
1206 | continue;
|
---|
1207 |
|
---|
1208 | if (!ASYNC_WAIT_CTX_get_all_fds
|
---|
1209 | (loopargs[i].wait_ctx, NULL, &num_job_fds)
|
---|
1210 | || num_job_fds > 1) {
|
---|
1211 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
|
---|
1212 | ERR_print_errors(bio_err);
|
---|
1213 | error = 1;
|
---|
1214 | break;
|
---|
1215 | }
|
---|
1216 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
|
---|
1217 | &num_job_fds);
|
---|
1218 |
|
---|
1219 | #if defined(OPENSSL_SYS_UNIX)
|
---|
1220 | if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
|
---|
1221 | continue;
|
---|
1222 | #elif defined(OPENSSL_SYS_WINDOWS)
|
---|
1223 | if (num_job_fds == 1
|
---|
1224 | && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
|
---|
1225 | && avail > 0)
|
---|
1226 | continue;
|
---|
1227 | #endif
|
---|
1228 |
|
---|
1229 | ret = ASYNC_start_job(&loopargs[i].inprogress_job,
|
---|
1230 | loopargs[i].wait_ctx, &job_op_count,
|
---|
1231 | loop_function, (void *)(loopargs + i),
|
---|
1232 | sizeof(loopargs_t));
|
---|
1233 | switch (ret) {
|
---|
1234 | case ASYNC_PAUSE:
|
---|
1235 | break;
|
---|
1236 | case ASYNC_FINISH:
|
---|
1237 | if (job_op_count == -1) {
|
---|
1238 | error = 1;
|
---|
1239 | } else {
|
---|
1240 | total_op_count += job_op_count;
|
---|
1241 | }
|
---|
1242 | --num_inprogress;
|
---|
1243 | loopargs[i].inprogress_job = NULL;
|
---|
1244 | break;
|
---|
1245 | case ASYNC_NO_JOBS:
|
---|
1246 | case ASYNC_ERR:
|
---|
1247 | --num_inprogress;
|
---|
1248 | loopargs[i].inprogress_job = NULL;
|
---|
1249 | BIO_printf(bio_err, "Failure in the job\n");
|
---|
1250 | ERR_print_errors(bio_err);
|
---|
1251 | error = 1;
|
---|
1252 | break;
|
---|
1253 | }
|
---|
1254 | }
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | return error ? -1 : total_op_count;
|
---|
1258 | }
|
---|
1259 |
|
---|
1260 | typedef struct ec_curve_st {
|
---|
1261 | const char *name;
|
---|
1262 | unsigned int nid;
|
---|
1263 | unsigned int bits;
|
---|
1264 | size_t sigsize; /* only used for EdDSA curves */
|
---|
1265 | } EC_CURVE;
|
---|
1266 |
|
---|
1267 | static EVP_PKEY *get_ecdsa(const EC_CURVE *curve)
|
---|
1268 | {
|
---|
1269 | EVP_PKEY_CTX *kctx = NULL;
|
---|
1270 | EVP_PKEY *key = NULL;
|
---|
1271 |
|
---|
1272 | /* Ensure that the error queue is empty */
|
---|
1273 | if (ERR_peek_error()) {
|
---|
1274 | BIO_printf(bio_err,
|
---|
1275 | "WARNING: the error queue contains previous unhandled errors.\n");
|
---|
1276 | ERR_print_errors(bio_err);
|
---|
1277 | }
|
---|
1278 |
|
---|
1279 | /*
|
---|
1280 | * Let's try to create a ctx directly from the NID: this works for
|
---|
1281 | * curves like Curve25519 that are not implemented through the low
|
---|
1282 | * level EC interface.
|
---|
1283 | * If this fails we try creating a EVP_PKEY_EC generic param ctx,
|
---|
1284 | * then we set the curve by NID before deriving the actual keygen
|
---|
1285 | * ctx for that specific curve.
|
---|
1286 | */
|
---|
1287 | kctx = EVP_PKEY_CTX_new_id(curve->nid, NULL);
|
---|
1288 | if (kctx == NULL) {
|
---|
1289 | EVP_PKEY_CTX *pctx = NULL;
|
---|
1290 | EVP_PKEY *params = NULL;
|
---|
1291 | /*
|
---|
1292 | * If we reach this code EVP_PKEY_CTX_new_id() failed and a
|
---|
1293 | * "int_ctx_new:unsupported algorithm" error was added to the
|
---|
1294 | * error queue.
|
---|
1295 | * We remove it from the error queue as we are handling it.
|
---|
1296 | */
|
---|
1297 | unsigned long error = ERR_peek_error();
|
---|
1298 |
|
---|
1299 | if (error == ERR_peek_last_error() /* oldest and latest errors match */
|
---|
1300 | /* check that the error origin matches */
|
---|
1301 | && ERR_GET_LIB(error) == ERR_LIB_EVP
|
---|
1302 | && (ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM
|
---|
1303 | || ERR_GET_REASON(error) == ERR_R_UNSUPPORTED))
|
---|
1304 | ERR_get_error(); /* pop error from queue */
|
---|
1305 | if (ERR_peek_error()) {
|
---|
1306 | BIO_printf(bio_err,
|
---|
1307 | "Unhandled error in the error queue during EC key setup.\n");
|
---|
1308 | ERR_print_errors(bio_err);
|
---|
1309 | return NULL;
|
---|
1310 | }
|
---|
1311 |
|
---|
1312 | /* Create the context for parameter generation */
|
---|
1313 | if ((pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL)) == NULL
|
---|
1314 | || EVP_PKEY_paramgen_init(pctx) <= 0
|
---|
1315 | || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
---|
1316 | curve->nid) <= 0
|
---|
1317 | || EVP_PKEY_paramgen(pctx, ¶ms) <= 0) {
|
---|
1318 | BIO_printf(bio_err, "EC params init failure.\n");
|
---|
1319 | ERR_print_errors(bio_err);
|
---|
1320 | EVP_PKEY_CTX_free(pctx);
|
---|
1321 | return NULL;
|
---|
1322 | }
|
---|
1323 | EVP_PKEY_CTX_free(pctx);
|
---|
1324 |
|
---|
1325 | /* Create the context for the key generation */
|
---|
1326 | kctx = EVP_PKEY_CTX_new(params, NULL);
|
---|
1327 | EVP_PKEY_free(params);
|
---|
1328 | }
|
---|
1329 | if (kctx == NULL
|
---|
1330 | || EVP_PKEY_keygen_init(kctx) <= 0
|
---|
1331 | || EVP_PKEY_keygen(kctx, &key) <= 0) {
|
---|
1332 | BIO_printf(bio_err, "EC key generation failure.\n");
|
---|
1333 | ERR_print_errors(bio_err);
|
---|
1334 | key = NULL;
|
---|
1335 | }
|
---|
1336 | EVP_PKEY_CTX_free(kctx);
|
---|
1337 | return key;
|
---|
1338 | }
|
---|
1339 |
|
---|
1340 | #define stop_it(do_it, test_num)\
|
---|
1341 | memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num);
|
---|
1342 |
|
---|
1343 | int speed_main(int argc, char **argv)
|
---|
1344 | {
|
---|
1345 | ENGINE *e = NULL;
|
---|
1346 | loopargs_t *loopargs = NULL;
|
---|
1347 | const char *prog;
|
---|
1348 | const char *engine_id = NULL;
|
---|
1349 | EVP_CIPHER *evp_cipher = NULL;
|
---|
1350 | EVP_MAC *mac = NULL;
|
---|
1351 | double d = 0.0;
|
---|
1352 | OPTION_CHOICE o;
|
---|
1353 | int async_init = 0, multiblock = 0, pr_header = 0;
|
---|
1354 | uint8_t doit[ALGOR_NUM] = { 0 };
|
---|
1355 | int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
|
---|
1356 | long count = 0;
|
---|
1357 | unsigned int size_num = SIZE_NUM;
|
---|
1358 | unsigned int i, k, loopargs_len = 0, async_jobs = 0;
|
---|
1359 | int keylen;
|
---|
1360 | int buflen;
|
---|
1361 | BIGNUM *bn = NULL;
|
---|
1362 | EVP_PKEY_CTX *genctx = NULL;
|
---|
1363 | #ifndef NO_FORK
|
---|
1364 | int multi = 0;
|
---|
1365 | #endif
|
---|
1366 | long op_count = 1;
|
---|
1367 | openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
|
---|
1368 | ECDSA_SECONDS, ECDH_SECONDS,
|
---|
1369 | EdDSA_SECONDS, SM2_SECONDS,
|
---|
1370 | FFDH_SECONDS };
|
---|
1371 |
|
---|
1372 | static const unsigned char key32[32] = {
|
---|
1373 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
|
---|
1374 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
|
---|
1375 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
|
---|
1376 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
|
---|
1377 | };
|
---|
1378 | static const unsigned char deskey[] = {
|
---|
1379 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, /* key1 */
|
---|
1380 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, /* key2 */
|
---|
1381 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 /* key3 */
|
---|
1382 | };
|
---|
1383 | static const struct {
|
---|
1384 | const unsigned char *data;
|
---|
1385 | unsigned int length;
|
---|
1386 | unsigned int bits;
|
---|
1387 | } rsa_keys[] = {
|
---|
1388 | { test512, sizeof(test512), 512 },
|
---|
1389 | { test1024, sizeof(test1024), 1024 },
|
---|
1390 | { test2048, sizeof(test2048), 2048 },
|
---|
1391 | { test3072, sizeof(test3072), 3072 },
|
---|
1392 | { test4096, sizeof(test4096), 4096 },
|
---|
1393 | { test7680, sizeof(test7680), 7680 },
|
---|
1394 | { test15360, sizeof(test15360), 15360 }
|
---|
1395 | };
|
---|
1396 | uint8_t rsa_doit[RSA_NUM] = { 0 };
|
---|
1397 | int primes = RSA_DEFAULT_PRIME_NUM;
|
---|
1398 | #ifndef OPENSSL_NO_DH
|
---|
1399 | typedef struct ffdh_params_st {
|
---|
1400 | const char *name;
|
---|
1401 | unsigned int nid;
|
---|
1402 | unsigned int bits;
|
---|
1403 | } FFDH_PARAMS;
|
---|
1404 |
|
---|
1405 | static const FFDH_PARAMS ffdh_params[FFDH_NUM] = {
|
---|
1406 | {"ffdh2048", NID_ffdhe2048, 2048},
|
---|
1407 | {"ffdh3072", NID_ffdhe3072, 3072},
|
---|
1408 | {"ffdh4096", NID_ffdhe4096, 4096},
|
---|
1409 | {"ffdh6144", NID_ffdhe6144, 6144},
|
---|
1410 | {"ffdh8192", NID_ffdhe8192, 8192}
|
---|
1411 | };
|
---|
1412 | uint8_t ffdh_doit[FFDH_NUM] = { 0 };
|
---|
1413 |
|
---|
1414 | #endif /* OPENSSL_NO_DH */
|
---|
1415 | static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
|
---|
1416 | uint8_t dsa_doit[DSA_NUM] = { 0 };
|
---|
1417 | /*
|
---|
1418 | * We only test over the following curves as they are representative, To
|
---|
1419 | * add tests over more curves, simply add the curve NID and curve name to
|
---|
1420 | * the following arrays and increase the |ecdh_choices| and |ecdsa_choices|
|
---|
1421 | * lists accordingly.
|
---|
1422 | */
|
---|
1423 | static const EC_CURVE ec_curves[EC_NUM] = {
|
---|
1424 | /* Prime Curves */
|
---|
1425 | {"secp160r1", NID_secp160r1, 160},
|
---|
1426 | {"nistp192", NID_X9_62_prime192v1, 192},
|
---|
1427 | {"nistp224", NID_secp224r1, 224},
|
---|
1428 | {"nistp256", NID_X9_62_prime256v1, 256},
|
---|
1429 | {"nistp384", NID_secp384r1, 384},
|
---|
1430 | {"nistp521", NID_secp521r1, 521},
|
---|
1431 | #ifndef OPENSSL_NO_EC2M
|
---|
1432 | /* Binary Curves */
|
---|
1433 | {"nistk163", NID_sect163k1, 163},
|
---|
1434 | {"nistk233", NID_sect233k1, 233},
|
---|
1435 | {"nistk283", NID_sect283k1, 283},
|
---|
1436 | {"nistk409", NID_sect409k1, 409},
|
---|
1437 | {"nistk571", NID_sect571k1, 571},
|
---|
1438 | {"nistb163", NID_sect163r2, 163},
|
---|
1439 | {"nistb233", NID_sect233r1, 233},
|
---|
1440 | {"nistb283", NID_sect283r1, 283},
|
---|
1441 | {"nistb409", NID_sect409r1, 409},
|
---|
1442 | {"nistb571", NID_sect571r1, 571},
|
---|
1443 | #endif
|
---|
1444 | {"brainpoolP256r1", NID_brainpoolP256r1, 256},
|
---|
1445 | {"brainpoolP256t1", NID_brainpoolP256t1, 256},
|
---|
1446 | {"brainpoolP384r1", NID_brainpoolP384r1, 384},
|
---|
1447 | {"brainpoolP384t1", NID_brainpoolP384t1, 384},
|
---|
1448 | {"brainpoolP512r1", NID_brainpoolP512r1, 512},
|
---|
1449 | {"brainpoolP512t1", NID_brainpoolP512t1, 512},
|
---|
1450 | /* Other and ECDH only ones */
|
---|
1451 | {"X25519", NID_X25519, 253},
|
---|
1452 | {"X448", NID_X448, 448}
|
---|
1453 | };
|
---|
1454 | static const EC_CURVE ed_curves[EdDSA_NUM] = {
|
---|
1455 | /* EdDSA */
|
---|
1456 | {"Ed25519", NID_ED25519, 253, 64},
|
---|
1457 | {"Ed448", NID_ED448, 456, 114}
|
---|
1458 | };
|
---|
1459 | #ifndef OPENSSL_NO_SM2
|
---|
1460 | static const EC_CURVE sm2_curves[SM2_NUM] = {
|
---|
1461 | /* SM2 */
|
---|
1462 | {"CurveSM2", NID_sm2, 256}
|
---|
1463 | };
|
---|
1464 | uint8_t sm2_doit[SM2_NUM] = { 0 };
|
---|
1465 | #endif
|
---|
1466 | uint8_t ecdsa_doit[ECDSA_NUM] = { 0 };
|
---|
1467 | uint8_t ecdh_doit[EC_NUM] = { 0 };
|
---|
1468 | uint8_t eddsa_doit[EdDSA_NUM] = { 0 };
|
---|
1469 |
|
---|
1470 | /* checks declarated curves against choices list. */
|
---|
1471 | OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448);
|
---|
1472 | OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0);
|
---|
1473 |
|
---|
1474 | OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448);
|
---|
1475 | OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0);
|
---|
1476 |
|
---|
1477 | OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1);
|
---|
1478 | OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0);
|
---|
1479 |
|
---|
1480 | #ifndef OPENSSL_NO_SM2
|
---|
1481 | OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2);
|
---|
1482 | OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0);
|
---|
1483 | #endif
|
---|
1484 |
|
---|
1485 | prog = opt_init(argc, argv, speed_options);
|
---|
1486 | while ((o = opt_next()) != OPT_EOF) {
|
---|
1487 | switch (o) {
|
---|
1488 | case OPT_EOF:
|
---|
1489 | case OPT_ERR:
|
---|
1490 | opterr:
|
---|
1491 | BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
|
---|
1492 | goto end;
|
---|
1493 | case OPT_HELP:
|
---|
1494 | opt_help(speed_options);
|
---|
1495 | ret = 0;
|
---|
1496 | goto end;
|
---|
1497 | case OPT_ELAPSED:
|
---|
1498 | usertime = 0;
|
---|
1499 | break;
|
---|
1500 | case OPT_EVP:
|
---|
1501 | if (doit[D_EVP]) {
|
---|
1502 | BIO_printf(bio_err, "%s: -evp option cannot be used more than once\n", prog);
|
---|
1503 | goto opterr;
|
---|
1504 | }
|
---|
1505 | ERR_set_mark();
|
---|
1506 | if (!opt_cipher_silent(opt_arg(), &evp_cipher)) {
|
---|
1507 | if (have_md(opt_arg()))
|
---|
1508 | evp_md_name = opt_arg();
|
---|
1509 | }
|
---|
1510 | if (evp_cipher == NULL && evp_md_name == NULL) {
|
---|
1511 | ERR_clear_last_mark();
|
---|
1512 | BIO_printf(bio_err,
|
---|
1513 | "%s: %s is an unknown cipher or digest\n",
|
---|
1514 | prog, opt_arg());
|
---|
1515 | goto end;
|
---|
1516 | }
|
---|
1517 | ERR_pop_to_mark();
|
---|
1518 | doit[D_EVP] = 1;
|
---|
1519 | break;
|
---|
1520 | case OPT_HMAC:
|
---|
1521 | if (!have_md(opt_arg())) {
|
---|
1522 | BIO_printf(bio_err, "%s: %s is an unknown digest\n",
|
---|
1523 | prog, opt_arg());
|
---|
1524 | goto end;
|
---|
1525 | }
|
---|
1526 | evp_mac_mdname = opt_arg();
|
---|
1527 | doit[D_HMAC] = 1;
|
---|
1528 | break;
|
---|
1529 | case OPT_CMAC:
|
---|
1530 | if (!have_cipher(opt_arg())) {
|
---|
1531 | BIO_printf(bio_err, "%s: %s is an unknown cipher\n",
|
---|
1532 | prog, opt_arg());
|
---|
1533 | goto end;
|
---|
1534 | }
|
---|
1535 | evp_mac_ciphername = opt_arg();
|
---|
1536 | doit[D_EVP_CMAC] = 1;
|
---|
1537 | break;
|
---|
1538 | case OPT_DECRYPT:
|
---|
1539 | decrypt = 1;
|
---|
1540 | break;
|
---|
1541 | case OPT_ENGINE:
|
---|
1542 | /*
|
---|
1543 | * In a forked execution, an engine might need to be
|
---|
1544 | * initialised by each child process, not by the parent.
|
---|
1545 | * So store the name here and run setup_engine() later on.
|
---|
1546 | */
|
---|
1547 | engine_id = opt_arg();
|
---|
1548 | break;
|
---|
1549 | case OPT_MULTI:
|
---|
1550 | #ifndef NO_FORK
|
---|
1551 | multi = atoi(opt_arg());
|
---|
1552 | if ((size_t)multi >= SIZE_MAX / sizeof(int)) {
|
---|
1553 | BIO_printf(bio_err, "%s: multi argument too large\n", prog);
|
---|
1554 | return 0;
|
---|
1555 | }
|
---|
1556 | #endif
|
---|
1557 | break;
|
---|
1558 | case OPT_ASYNCJOBS:
|
---|
1559 | #ifndef OPENSSL_NO_ASYNC
|
---|
1560 | async_jobs = atoi(opt_arg());
|
---|
1561 | if (!ASYNC_is_capable()) {
|
---|
1562 | BIO_printf(bio_err,
|
---|
1563 | "%s: async_jobs specified but async not supported\n",
|
---|
1564 | prog);
|
---|
1565 | goto opterr;
|
---|
1566 | }
|
---|
1567 | if (async_jobs > 99999) {
|
---|
1568 | BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
|
---|
1569 | goto opterr;
|
---|
1570 | }
|
---|
1571 | #endif
|
---|
1572 | break;
|
---|
1573 | case OPT_MISALIGN:
|
---|
1574 | misalign = opt_int_arg();
|
---|
1575 | if (misalign > MISALIGN) {
|
---|
1576 | BIO_printf(bio_err,
|
---|
1577 | "%s: Maximum offset is %d\n", prog, MISALIGN);
|
---|
1578 | goto opterr;
|
---|
1579 | }
|
---|
1580 | break;
|
---|
1581 | case OPT_MR:
|
---|
1582 | mr = 1;
|
---|
1583 | break;
|
---|
1584 | case OPT_MB:
|
---|
1585 | multiblock = 1;
|
---|
1586 | #ifdef OPENSSL_NO_MULTIBLOCK
|
---|
1587 | BIO_printf(bio_err,
|
---|
1588 | "%s: -mb specified but multi-block support is disabled\n",
|
---|
1589 | prog);
|
---|
1590 | goto end;
|
---|
1591 | #endif
|
---|
1592 | break;
|
---|
1593 | case OPT_R_CASES:
|
---|
1594 | if (!opt_rand(o))
|
---|
1595 | goto end;
|
---|
1596 | break;
|
---|
1597 | case OPT_PROV_CASES:
|
---|
1598 | if (!opt_provider(o))
|
---|
1599 | goto end;
|
---|
1600 | break;
|
---|
1601 | case OPT_PRIMES:
|
---|
1602 | primes = opt_int_arg();
|
---|
1603 | break;
|
---|
1604 | case OPT_SECONDS:
|
---|
1605 | seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
|
---|
1606 | = seconds.ecdh = seconds.eddsa
|
---|
1607 | = seconds.sm2 = seconds.ffdh = atoi(opt_arg());
|
---|
1608 | break;
|
---|
1609 | case OPT_BYTES:
|
---|
1610 | lengths_single = atoi(opt_arg());
|
---|
1611 | lengths = &lengths_single;
|
---|
1612 | size_num = 1;
|
---|
1613 | break;
|
---|
1614 | case OPT_AEAD:
|
---|
1615 | aead = 1;
|
---|
1616 | break;
|
---|
1617 | }
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | /* Remaining arguments are algorithms. */
|
---|
1621 | argc = opt_num_rest();
|
---|
1622 | argv = opt_rest();
|
---|
1623 |
|
---|
1624 | if (!app_RAND_load())
|
---|
1625 | goto end;
|
---|
1626 |
|
---|
1627 | for (; *argv; argv++) {
|
---|
1628 | const char *algo = *argv;
|
---|
1629 |
|
---|
1630 | if (opt_found(algo, doit_choices, &i)) {
|
---|
1631 | doit[i] = 1;
|
---|
1632 | continue;
|
---|
1633 | }
|
---|
1634 | if (strcmp(algo, "des") == 0) {
|
---|
1635 | doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
|
---|
1636 | continue;
|
---|
1637 | }
|
---|
1638 | if (strcmp(algo, "sha") == 0) {
|
---|
1639 | doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
|
---|
1640 | continue;
|
---|
1641 | }
|
---|
1642 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
1643 | if (strcmp(algo, "openssl") == 0) /* just for compatibility */
|
---|
1644 | continue;
|
---|
1645 | #endif
|
---|
1646 | if (strncmp(algo, "rsa", 3) == 0) {
|
---|
1647 | if (algo[3] == '\0') {
|
---|
1648 | memset(rsa_doit, 1, sizeof(rsa_doit));
|
---|
1649 | continue;
|
---|
1650 | }
|
---|
1651 | if (opt_found(algo, rsa_choices, &i)) {
|
---|
1652 | rsa_doit[i] = 1;
|
---|
1653 | continue;
|
---|
1654 | }
|
---|
1655 | }
|
---|
1656 | #ifndef OPENSSL_NO_DH
|
---|
1657 | if (strncmp(algo, "ffdh", 4) == 0) {
|
---|
1658 | if (algo[4] == '\0') {
|
---|
1659 | memset(ffdh_doit, 1, sizeof(ffdh_doit));
|
---|
1660 | continue;
|
---|
1661 | }
|
---|
1662 | if (opt_found(algo, ffdh_choices, &i)) {
|
---|
1663 | ffdh_doit[i] = 2;
|
---|
1664 | continue;
|
---|
1665 | }
|
---|
1666 | }
|
---|
1667 | #endif
|
---|
1668 | if (strncmp(algo, "dsa", 3) == 0) {
|
---|
1669 | if (algo[3] == '\0') {
|
---|
1670 | memset(dsa_doit, 1, sizeof(dsa_doit));
|
---|
1671 | continue;
|
---|
1672 | }
|
---|
1673 | if (opt_found(algo, dsa_choices, &i)) {
|
---|
1674 | dsa_doit[i] = 2;
|
---|
1675 | continue;
|
---|
1676 | }
|
---|
1677 | }
|
---|
1678 | if (strcmp(algo, "aes") == 0) {
|
---|
1679 | doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
|
---|
1680 | continue;
|
---|
1681 | }
|
---|
1682 | if (strcmp(algo, "camellia") == 0) {
|
---|
1683 | doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
|
---|
1684 | continue;
|
---|
1685 | }
|
---|
1686 | if (strncmp(algo, "ecdsa", 5) == 0) {
|
---|
1687 | if (algo[5] == '\0') {
|
---|
1688 | memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
|
---|
1689 | continue;
|
---|
1690 | }
|
---|
1691 | if (opt_found(algo, ecdsa_choices, &i)) {
|
---|
1692 | ecdsa_doit[i] = 2;
|
---|
1693 | continue;
|
---|
1694 | }
|
---|
1695 | }
|
---|
1696 | if (strncmp(algo, "ecdh", 4) == 0) {
|
---|
1697 | if (algo[4] == '\0') {
|
---|
1698 | memset(ecdh_doit, 1, sizeof(ecdh_doit));
|
---|
1699 | continue;
|
---|
1700 | }
|
---|
1701 | if (opt_found(algo, ecdh_choices, &i)) {
|
---|
1702 | ecdh_doit[i] = 2;
|
---|
1703 | continue;
|
---|
1704 | }
|
---|
1705 | }
|
---|
1706 | if (strcmp(algo, "eddsa") == 0) {
|
---|
1707 | memset(eddsa_doit, 1, sizeof(eddsa_doit));
|
---|
1708 | continue;
|
---|
1709 | }
|
---|
1710 | if (opt_found(algo, eddsa_choices, &i)) {
|
---|
1711 | eddsa_doit[i] = 2;
|
---|
1712 | continue;
|
---|
1713 | }
|
---|
1714 | #ifndef OPENSSL_NO_SM2
|
---|
1715 | if (strcmp(algo, "sm2") == 0) {
|
---|
1716 | memset(sm2_doit, 1, sizeof(sm2_doit));
|
---|
1717 | continue;
|
---|
1718 | }
|
---|
1719 | if (opt_found(algo, sm2_choices, &i)) {
|
---|
1720 | sm2_doit[i] = 2;
|
---|
1721 | continue;
|
---|
1722 | }
|
---|
1723 | #endif
|
---|
1724 | BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo);
|
---|
1725 | goto end;
|
---|
1726 | }
|
---|
1727 |
|
---|
1728 | /* Sanity checks */
|
---|
1729 | if (aead) {
|
---|
1730 | if (evp_cipher == NULL) {
|
---|
1731 | BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
|
---|
1732 | goto end;
|
---|
1733 | } else if (!(EVP_CIPHER_get_flags(evp_cipher) &
|
---|
1734 | EVP_CIPH_FLAG_AEAD_CIPHER)) {
|
---|
1735 | BIO_printf(bio_err, "%s is not an AEAD cipher\n",
|
---|
1736 | EVP_CIPHER_get0_name(evp_cipher));
|
---|
1737 | goto end;
|
---|
1738 | }
|
---|
1739 | }
|
---|
1740 | if (multiblock) {
|
---|
1741 | if (evp_cipher == NULL) {
|
---|
1742 | BIO_printf(bio_err, "-mb can be used only with a multi-block"
|
---|
1743 | " capable cipher\n");
|
---|
1744 | goto end;
|
---|
1745 | } else if (!(EVP_CIPHER_get_flags(evp_cipher) &
|
---|
1746 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
---|
1747 | BIO_printf(bio_err, "%s is not a multi-block capable\n",
|
---|
1748 | EVP_CIPHER_get0_name(evp_cipher));
|
---|
1749 | goto end;
|
---|
1750 | } else if (async_jobs > 0) {
|
---|
1751 | BIO_printf(bio_err, "Async mode is not supported with -mb");
|
---|
1752 | goto end;
|
---|
1753 | }
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | /* Initialize the job pool if async mode is enabled */
|
---|
1757 | if (async_jobs > 0) {
|
---|
1758 | async_init = ASYNC_init_thread(async_jobs, async_jobs);
|
---|
1759 | if (!async_init) {
|
---|
1760 | BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
|
---|
1761 | goto end;
|
---|
1762 | }
|
---|
1763 | }
|
---|
1764 |
|
---|
1765 | loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
|
---|
1766 | loopargs =
|
---|
1767 | app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
|
---|
1768 | memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
|
---|
1769 |
|
---|
1770 | for (i = 0; i < loopargs_len; i++) {
|
---|
1771 | if (async_jobs > 0) {
|
---|
1772 | loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
|
---|
1773 | if (loopargs[i].wait_ctx == NULL) {
|
---|
1774 | BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
|
---|
1775 | goto end;
|
---|
1776 | }
|
---|
1777 | }
|
---|
1778 |
|
---|
1779 | buflen = lengths[size_num - 1];
|
---|
1780 | if (buflen < 36) /* size of random vector in RSA benchmark */
|
---|
1781 | buflen = 36;
|
---|
1782 | if (INT_MAX - (MAX_MISALIGNMENT + 1) < buflen) {
|
---|
1783 | BIO_printf(bio_err, "Error: buffer size too large\n");
|
---|
1784 | goto end;
|
---|
1785 | }
|
---|
1786 | buflen += MAX_MISALIGNMENT + 1;
|
---|
1787 | loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
|
---|
1788 | loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
|
---|
1789 | memset(loopargs[i].buf_malloc, 0, buflen);
|
---|
1790 | memset(loopargs[i].buf2_malloc, 0, buflen);
|
---|
1791 |
|
---|
1792 | /* Align the start of buffers on a 64 byte boundary */
|
---|
1793 | loopargs[i].buf = loopargs[i].buf_malloc + misalign;
|
---|
1794 | loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
|
---|
1795 | loopargs[i].buflen = buflen - misalign;
|
---|
1796 | loopargs[i].sigsize = buflen - misalign;
|
---|
1797 | loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
|
---|
1798 | loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
|
---|
1799 | #ifndef OPENSSL_NO_DH
|
---|
1800 | loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a");
|
---|
1801 | loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b");
|
---|
1802 | #endif
|
---|
1803 | }
|
---|
1804 |
|
---|
1805 | #ifndef NO_FORK
|
---|
1806 | if (multi && do_multi(multi, size_num))
|
---|
1807 | goto show_res;
|
---|
1808 | #endif
|
---|
1809 |
|
---|
1810 | /* Initialize the engine after the fork */
|
---|
1811 | e = setup_engine(engine_id, 0);
|
---|
1812 |
|
---|
1813 | /* No parameters; turn on everything. */
|
---|
1814 | if (argc == 0 && !doit[D_EVP] && !doit[D_HMAC] && !doit[D_EVP_CMAC]) {
|
---|
1815 | memset(doit, 1, sizeof(doit));
|
---|
1816 | doit[D_EVP] = doit[D_EVP_CMAC] = 0;
|
---|
1817 | ERR_set_mark();
|
---|
1818 | for (i = D_MD2; i <= D_WHIRLPOOL; i++) {
|
---|
1819 | if (!have_md(names[i]))
|
---|
1820 | doit[i] = 0;
|
---|
1821 | }
|
---|
1822 | for (i = D_CBC_DES; i <= D_CBC_256_CML; i++) {
|
---|
1823 | if (!have_cipher(names[i]))
|
---|
1824 | doit[i] = 0;
|
---|
1825 | }
|
---|
1826 | if ((mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC",
|
---|
1827 | app_get0_propq())) != NULL) {
|
---|
1828 | EVP_MAC_free(mac);
|
---|
1829 | mac = NULL;
|
---|
1830 | } else {
|
---|
1831 | doit[D_GHASH] = 0;
|
---|
1832 | }
|
---|
1833 | if ((mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC",
|
---|
1834 | app_get0_propq())) != NULL) {
|
---|
1835 | EVP_MAC_free(mac);
|
---|
1836 | mac = NULL;
|
---|
1837 | } else {
|
---|
1838 | doit[D_HMAC] = 0;
|
---|
1839 | }
|
---|
1840 | ERR_pop_to_mark();
|
---|
1841 | memset(rsa_doit, 1, sizeof(rsa_doit));
|
---|
1842 | #ifndef OPENSSL_NO_DH
|
---|
1843 | memset(ffdh_doit, 1, sizeof(ffdh_doit));
|
---|
1844 | #endif
|
---|
1845 | memset(dsa_doit, 1, sizeof(dsa_doit));
|
---|
1846 | memset(ecdsa_doit, 1, sizeof(ecdsa_doit));
|
---|
1847 | memset(ecdh_doit, 1, sizeof(ecdh_doit));
|
---|
1848 | memset(eddsa_doit, 1, sizeof(eddsa_doit));
|
---|
1849 | #ifndef OPENSSL_NO_SM2
|
---|
1850 | memset(sm2_doit, 1, sizeof(sm2_doit));
|
---|
1851 | #endif
|
---|
1852 | }
|
---|
1853 | for (i = 0; i < ALGOR_NUM; i++)
|
---|
1854 | if (doit[i])
|
---|
1855 | pr_header++;
|
---|
1856 |
|
---|
1857 | if (usertime == 0 && !mr)
|
---|
1858 | BIO_printf(bio_err,
|
---|
1859 | "You have chosen to measure elapsed time "
|
---|
1860 | "instead of user CPU time.\n");
|
---|
1861 |
|
---|
1862 | #if SIGALRM > 0
|
---|
1863 | signal(SIGALRM, alarmed);
|
---|
1864 | #endif
|
---|
1865 |
|
---|
1866 | if (doit[D_MD2]) {
|
---|
1867 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1868 | print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
|
---|
1869 | seconds.sym);
|
---|
1870 | Time_F(START);
|
---|
1871 | count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
|
---|
1872 | d = Time_F(STOP);
|
---|
1873 | print_result(D_MD2, testnum, count, d);
|
---|
1874 | if (count < 0)
|
---|
1875 | break;
|
---|
1876 | }
|
---|
1877 | }
|
---|
1878 |
|
---|
1879 | if (doit[D_MDC2]) {
|
---|
1880 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1881 | print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
|
---|
1882 | seconds.sym);
|
---|
1883 | Time_F(START);
|
---|
1884 | count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
|
---|
1885 | d = Time_F(STOP);
|
---|
1886 | print_result(D_MDC2, testnum, count, d);
|
---|
1887 | if (count < 0)
|
---|
1888 | break;
|
---|
1889 | }
|
---|
1890 | }
|
---|
1891 |
|
---|
1892 | if (doit[D_MD4]) {
|
---|
1893 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1894 | print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
|
---|
1895 | seconds.sym);
|
---|
1896 | Time_F(START);
|
---|
1897 | count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
|
---|
1898 | d = Time_F(STOP);
|
---|
1899 | print_result(D_MD4, testnum, count, d);
|
---|
1900 | if (count < 0)
|
---|
1901 | break;
|
---|
1902 | }
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | if (doit[D_MD5]) {
|
---|
1906 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1907 | print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
|
---|
1908 | seconds.sym);
|
---|
1909 | Time_F(START);
|
---|
1910 | count = run_benchmark(async_jobs, MD5_loop, loopargs);
|
---|
1911 | d = Time_F(STOP);
|
---|
1912 | print_result(D_MD5, testnum, count, d);
|
---|
1913 | if (count < 0)
|
---|
1914 | break;
|
---|
1915 | }
|
---|
1916 | }
|
---|
1917 |
|
---|
1918 | if (doit[D_SHA1]) {
|
---|
1919 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1920 | print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
|
---|
1921 | seconds.sym);
|
---|
1922 | Time_F(START);
|
---|
1923 | count = run_benchmark(async_jobs, SHA1_loop, loopargs);
|
---|
1924 | d = Time_F(STOP);
|
---|
1925 | print_result(D_SHA1, testnum, count, d);
|
---|
1926 | if (count < 0)
|
---|
1927 | break;
|
---|
1928 | }
|
---|
1929 | }
|
---|
1930 |
|
---|
1931 | if (doit[D_SHA256]) {
|
---|
1932 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1933 | print_message(names[D_SHA256], c[D_SHA256][testnum],
|
---|
1934 | lengths[testnum], seconds.sym);
|
---|
1935 | Time_F(START);
|
---|
1936 | count = run_benchmark(async_jobs, SHA256_loop, loopargs);
|
---|
1937 | d = Time_F(STOP);
|
---|
1938 | print_result(D_SHA256, testnum, count, d);
|
---|
1939 | if (count < 0)
|
---|
1940 | break;
|
---|
1941 | }
|
---|
1942 | }
|
---|
1943 |
|
---|
1944 | if (doit[D_SHA512]) {
|
---|
1945 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1946 | print_message(names[D_SHA512], c[D_SHA512][testnum],
|
---|
1947 | lengths[testnum], seconds.sym);
|
---|
1948 | Time_F(START);
|
---|
1949 | count = run_benchmark(async_jobs, SHA512_loop, loopargs);
|
---|
1950 | d = Time_F(STOP);
|
---|
1951 | print_result(D_SHA512, testnum, count, d);
|
---|
1952 | if (count < 0)
|
---|
1953 | break;
|
---|
1954 | }
|
---|
1955 | }
|
---|
1956 |
|
---|
1957 | if (doit[D_WHIRLPOOL]) {
|
---|
1958 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1959 | print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
|
---|
1960 | lengths[testnum], seconds.sym);
|
---|
1961 | Time_F(START);
|
---|
1962 | count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
|
---|
1963 | d = Time_F(STOP);
|
---|
1964 | print_result(D_WHIRLPOOL, testnum, count, d);
|
---|
1965 | if (count < 0)
|
---|
1966 | break;
|
---|
1967 | }
|
---|
1968 | }
|
---|
1969 |
|
---|
1970 | if (doit[D_RMD160]) {
|
---|
1971 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
1972 | print_message(names[D_RMD160], c[D_RMD160][testnum],
|
---|
1973 | lengths[testnum], seconds.sym);
|
---|
1974 | Time_F(START);
|
---|
1975 | count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
|
---|
1976 | d = Time_F(STOP);
|
---|
1977 | print_result(D_RMD160, testnum, count, d);
|
---|
1978 | if (count < 0)
|
---|
1979 | break;
|
---|
1980 | }
|
---|
1981 | }
|
---|
1982 |
|
---|
1983 | if (doit[D_HMAC]) {
|
---|
1984 | static const char hmac_key[] = "This is a key...";
|
---|
1985 | int len = strlen(hmac_key);
|
---|
1986 | OSSL_PARAM params[3];
|
---|
1987 |
|
---|
1988 | mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC", app_get0_propq());
|
---|
1989 | if (mac == NULL || evp_mac_mdname == NULL)
|
---|
1990 | goto end;
|
---|
1991 |
|
---|
1992 | evp_hmac_name = app_malloc(sizeof("hmac()") + strlen(evp_mac_mdname),
|
---|
1993 | "HMAC name");
|
---|
1994 | sprintf(evp_hmac_name, "hmac(%s)", evp_mac_mdname);
|
---|
1995 | names[D_HMAC] = evp_hmac_name;
|
---|
1996 |
|
---|
1997 | params[0] =
|
---|
1998 | OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST,
|
---|
1999 | evp_mac_mdname, 0);
|
---|
2000 | params[1] =
|
---|
2001 | OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
---|
2002 | (char *)hmac_key, len);
|
---|
2003 | params[2] = OSSL_PARAM_construct_end();
|
---|
2004 |
|
---|
2005 | for (i = 0; i < loopargs_len; i++) {
|
---|
2006 | loopargs[i].mctx = EVP_MAC_CTX_new(mac);
|
---|
2007 | if (loopargs[i].mctx == NULL)
|
---|
2008 | goto end;
|
---|
2009 |
|
---|
2010 | if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
|
---|
2011 | goto skip_hmac; /* Digest not found */
|
---|
2012 | }
|
---|
2013 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2014 | print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
|
---|
2015 | seconds.sym);
|
---|
2016 | Time_F(START);
|
---|
2017 | count = run_benchmark(async_jobs, HMAC_loop, loopargs);
|
---|
2018 | d = Time_F(STOP);
|
---|
2019 | print_result(D_HMAC, testnum, count, d);
|
---|
2020 | if (count < 0)
|
---|
2021 | break;
|
---|
2022 | }
|
---|
2023 | for (i = 0; i < loopargs_len; i++)
|
---|
2024 | EVP_MAC_CTX_free(loopargs[i].mctx);
|
---|
2025 | EVP_MAC_free(mac);
|
---|
2026 | mac = NULL;
|
---|
2027 | }
|
---|
2028 | skip_hmac:
|
---|
2029 | if (doit[D_CBC_DES]) {
|
---|
2030 | int st = 1;
|
---|
2031 |
|
---|
2032 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2033 | loopargs[i].ctx = init_evp_cipher_ctx("des-cbc", deskey,
|
---|
2034 | sizeof(deskey) / 3);
|
---|
2035 | st = loopargs[i].ctx != NULL;
|
---|
2036 | }
|
---|
2037 | algindex = D_CBC_DES;
|
---|
2038 | for (testnum = 0; st && testnum < size_num; testnum++) {
|
---|
2039 | print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
|
---|
2040 | lengths[testnum], seconds.sym);
|
---|
2041 | Time_F(START);
|
---|
2042 | count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
---|
2043 | d = Time_F(STOP);
|
---|
2044 | print_result(D_CBC_DES, testnum, count, d);
|
---|
2045 | }
|
---|
2046 | for (i = 0; i < loopargs_len; i++)
|
---|
2047 | EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
---|
2048 | }
|
---|
2049 |
|
---|
2050 | if (doit[D_EDE3_DES]) {
|
---|
2051 | int st = 1;
|
---|
2052 |
|
---|
2053 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2054 | loopargs[i].ctx = init_evp_cipher_ctx("des-ede3-cbc", deskey,
|
---|
2055 | sizeof(deskey));
|
---|
2056 | st = loopargs[i].ctx != NULL;
|
---|
2057 | }
|
---|
2058 | algindex = D_EDE3_DES;
|
---|
2059 | for (testnum = 0; st && testnum < size_num; testnum++) {
|
---|
2060 | print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
|
---|
2061 | lengths[testnum], seconds.sym);
|
---|
2062 | Time_F(START);
|
---|
2063 | count =
|
---|
2064 | run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
---|
2065 | d = Time_F(STOP);
|
---|
2066 | print_result(D_EDE3_DES, testnum, count, d);
|
---|
2067 | }
|
---|
2068 | for (i = 0; i < loopargs_len; i++)
|
---|
2069 | EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
---|
2070 | }
|
---|
2071 |
|
---|
2072 | for (k = 0; k < 3; k++) {
|
---|
2073 | algindex = D_CBC_128_AES + k;
|
---|
2074 | if (doit[algindex]) {
|
---|
2075 | int st = 1;
|
---|
2076 |
|
---|
2077 | keylen = 16 + k * 8;
|
---|
2078 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2079 | loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
---|
2080 | key32, keylen);
|
---|
2081 | st = loopargs[i].ctx != NULL;
|
---|
2082 | }
|
---|
2083 |
|
---|
2084 | for (testnum = 0; st && testnum < size_num; testnum++) {
|
---|
2085 | print_message(names[algindex], c[algindex][testnum],
|
---|
2086 | lengths[testnum], seconds.sym);
|
---|
2087 | Time_F(START);
|
---|
2088 | count =
|
---|
2089 | run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
---|
2090 | d = Time_F(STOP);
|
---|
2091 | print_result(algindex, testnum, count, d);
|
---|
2092 | }
|
---|
2093 | for (i = 0; i < loopargs_len; i++)
|
---|
2094 | EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
---|
2095 | }
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | for (k = 0; k < 3; k++) {
|
---|
2099 | algindex = D_CBC_128_CML + k;
|
---|
2100 | if (doit[algindex]) {
|
---|
2101 | int st = 1;
|
---|
2102 |
|
---|
2103 | keylen = 16 + k * 8;
|
---|
2104 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2105 | loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
---|
2106 | key32, keylen);
|
---|
2107 | st = loopargs[i].ctx != NULL;
|
---|
2108 | }
|
---|
2109 |
|
---|
2110 | for (testnum = 0; st && testnum < size_num; testnum++) {
|
---|
2111 | print_message(names[algindex], c[algindex][testnum],
|
---|
2112 | lengths[testnum], seconds.sym);
|
---|
2113 | Time_F(START);
|
---|
2114 | count =
|
---|
2115 | run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
---|
2116 | d = Time_F(STOP);
|
---|
2117 | print_result(algindex, testnum, count, d);
|
---|
2118 | }
|
---|
2119 | for (i = 0; i < loopargs_len; i++)
|
---|
2120 | EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
---|
2121 | }
|
---|
2122 | }
|
---|
2123 |
|
---|
2124 | for (algindex = D_RC4; algindex <= D_CBC_CAST; algindex++) {
|
---|
2125 | if (doit[algindex]) {
|
---|
2126 | int st = 1;
|
---|
2127 |
|
---|
2128 | keylen = 16;
|
---|
2129 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2130 | loopargs[i].ctx = init_evp_cipher_ctx(names[algindex],
|
---|
2131 | key32, keylen);
|
---|
2132 | st = loopargs[i].ctx != NULL;
|
---|
2133 | }
|
---|
2134 |
|
---|
2135 | for (testnum = 0; st && testnum < size_num; testnum++) {
|
---|
2136 | print_message(names[algindex], c[algindex][testnum],
|
---|
2137 | lengths[testnum], seconds.sym);
|
---|
2138 | Time_F(START);
|
---|
2139 | count =
|
---|
2140 | run_benchmark(async_jobs, EVP_Cipher_loop, loopargs);
|
---|
2141 | d = Time_F(STOP);
|
---|
2142 | print_result(algindex, testnum, count, d);
|
---|
2143 | }
|
---|
2144 | for (i = 0; i < loopargs_len; i++)
|
---|
2145 | EVP_CIPHER_CTX_free(loopargs[i].ctx);
|
---|
2146 | }
|
---|
2147 | }
|
---|
2148 | if (doit[D_GHASH]) {
|
---|
2149 | static const char gmac_iv[] = "0123456789ab";
|
---|
2150 | OSSL_PARAM params[3];
|
---|
2151 |
|
---|
2152 | mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC", app_get0_propq());
|
---|
2153 | if (mac == NULL)
|
---|
2154 | goto end;
|
---|
2155 |
|
---|
2156 | params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
|
---|
2157 | "aes-128-gcm", 0);
|
---|
2158 | params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV,
|
---|
2159 | (char *)gmac_iv,
|
---|
2160 | sizeof(gmac_iv) - 1);
|
---|
2161 | params[2] = OSSL_PARAM_construct_end();
|
---|
2162 |
|
---|
2163 | for (i = 0; i < loopargs_len; i++) {
|
---|
2164 | loopargs[i].mctx = EVP_MAC_CTX_new(mac);
|
---|
2165 | if (loopargs[i].mctx == NULL)
|
---|
2166 | goto end;
|
---|
2167 |
|
---|
2168 | if (!EVP_MAC_init(loopargs[i].mctx, key32, 16, params))
|
---|
2169 | goto end;
|
---|
2170 | }
|
---|
2171 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2172 | print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum],
|
---|
2173 | seconds.sym);
|
---|
2174 | Time_F(START);
|
---|
2175 | count = run_benchmark(async_jobs, GHASH_loop, loopargs);
|
---|
2176 | d = Time_F(STOP);
|
---|
2177 | print_result(D_GHASH, testnum, count, d);
|
---|
2178 | if (count < 0)
|
---|
2179 | break;
|
---|
2180 | }
|
---|
2181 | for (i = 0; i < loopargs_len; i++)
|
---|
2182 | EVP_MAC_CTX_free(loopargs[i].mctx);
|
---|
2183 | EVP_MAC_free(mac);
|
---|
2184 | mac = NULL;
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | if (doit[D_RAND]) {
|
---|
2188 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2189 | print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
|
---|
2190 | seconds.sym);
|
---|
2191 | Time_F(START);
|
---|
2192 | count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
|
---|
2193 | d = Time_F(STOP);
|
---|
2194 | print_result(D_RAND, testnum, count, d);
|
---|
2195 | }
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 | if (doit[D_EVP]) {
|
---|
2199 | if (evp_cipher != NULL) {
|
---|
2200 | int (*loopfunc) (void *) = EVP_Update_loop;
|
---|
2201 |
|
---|
2202 | if (multiblock && (EVP_CIPHER_get_flags(evp_cipher) &
|
---|
2203 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
|
---|
2204 | multiblock_speed(evp_cipher, lengths_single, &seconds);
|
---|
2205 | ret = 0;
|
---|
2206 | goto end;
|
---|
2207 | }
|
---|
2208 |
|
---|
2209 | names[D_EVP] = EVP_CIPHER_get0_name(evp_cipher);
|
---|
2210 |
|
---|
2211 | if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
|
---|
2212 | loopfunc = EVP_Update_loop_ccm;
|
---|
2213 | } else if (aead && (EVP_CIPHER_get_flags(evp_cipher) &
|
---|
2214 | EVP_CIPH_FLAG_AEAD_CIPHER)) {
|
---|
2215 | loopfunc = EVP_Update_loop_aead;
|
---|
2216 | if (lengths == lengths_list) {
|
---|
2217 | lengths = aead_lengths_list;
|
---|
2218 | size_num = OSSL_NELEM(aead_lengths_list);
|
---|
2219 | }
|
---|
2220 | }
|
---|
2221 |
|
---|
2222 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2223 | print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
|
---|
2224 | seconds.sym);
|
---|
2225 |
|
---|
2226 | for (k = 0; k < loopargs_len; k++) {
|
---|
2227 | loopargs[k].ctx = EVP_CIPHER_CTX_new();
|
---|
2228 | if (loopargs[k].ctx == NULL) {
|
---|
2229 | BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n");
|
---|
2230 | exit(1);
|
---|
2231 | }
|
---|
2232 | if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL,
|
---|
2233 | NULL, iv, decrypt ? 0 : 1)) {
|
---|
2234 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
|
---|
2235 | ERR_print_errors(bio_err);
|
---|
2236 | exit(1);
|
---|
2237 | }
|
---|
2238 |
|
---|
2239 | EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
|
---|
2240 |
|
---|
2241 | keylen = EVP_CIPHER_CTX_get_key_length(loopargs[k].ctx);
|
---|
2242 | loopargs[k].key = app_malloc(keylen, "evp_cipher key");
|
---|
2243 | EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
|
---|
2244 | if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
|
---|
2245 | loopargs[k].key, NULL, -1)) {
|
---|
2246 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n");
|
---|
2247 | ERR_print_errors(bio_err);
|
---|
2248 | exit(1);
|
---|
2249 | }
|
---|
2250 | OPENSSL_clear_free(loopargs[k].key, keylen);
|
---|
2251 |
|
---|
2252 | /* SIV mode only allows for a single Update operation */
|
---|
2253 | if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_SIV_MODE)
|
---|
2254 | (void)EVP_CIPHER_CTX_ctrl(loopargs[k].ctx,
|
---|
2255 | EVP_CTRL_SET_SPEED, 1, NULL);
|
---|
2256 | }
|
---|
2257 |
|
---|
2258 | Time_F(START);
|
---|
2259 | count = run_benchmark(async_jobs, loopfunc, loopargs);
|
---|
2260 | d = Time_F(STOP);
|
---|
2261 | for (k = 0; k < loopargs_len; k++)
|
---|
2262 | EVP_CIPHER_CTX_free(loopargs[k].ctx);
|
---|
2263 | print_result(D_EVP, testnum, count, d);
|
---|
2264 | }
|
---|
2265 | } else if (evp_md_name != NULL) {
|
---|
2266 | names[D_EVP] = evp_md_name;
|
---|
2267 |
|
---|
2268 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2269 | print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum],
|
---|
2270 | seconds.sym);
|
---|
2271 | Time_F(START);
|
---|
2272 | count = run_benchmark(async_jobs, EVP_Digest_md_loop, loopargs);
|
---|
2273 | d = Time_F(STOP);
|
---|
2274 | print_result(D_EVP, testnum, count, d);
|
---|
2275 | if (count < 0)
|
---|
2276 | break;
|
---|
2277 | }
|
---|
2278 | }
|
---|
2279 | }
|
---|
2280 |
|
---|
2281 | if (doit[D_EVP_CMAC]) {
|
---|
2282 | OSSL_PARAM params[3];
|
---|
2283 | EVP_CIPHER *cipher = NULL;
|
---|
2284 |
|
---|
2285 | mac = EVP_MAC_fetch(app_get0_libctx(), "CMAC", app_get0_propq());
|
---|
2286 | if (mac == NULL || evp_mac_ciphername == NULL)
|
---|
2287 | goto end;
|
---|
2288 | if (!opt_cipher(evp_mac_ciphername, &cipher))
|
---|
2289 | goto end;
|
---|
2290 |
|
---|
2291 | keylen = EVP_CIPHER_get_key_length(cipher);
|
---|
2292 | EVP_CIPHER_free(cipher);
|
---|
2293 | if (keylen <= 0 || keylen > (int)sizeof(key32)) {
|
---|
2294 | BIO_printf(bio_err, "\nRequested CMAC cipher with unsupported key length.\n");
|
---|
2295 | goto end;
|
---|
2296 | }
|
---|
2297 | evp_cmac_name = app_malloc(sizeof("cmac()")
|
---|
2298 | + strlen(evp_mac_ciphername), "CMAC name");
|
---|
2299 | sprintf(evp_cmac_name, "cmac(%s)", evp_mac_ciphername);
|
---|
2300 | names[D_EVP_CMAC] = evp_cmac_name;
|
---|
2301 |
|
---|
2302 | params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER,
|
---|
2303 | evp_mac_ciphername, 0);
|
---|
2304 | params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
|
---|
2305 | (char *)key32, keylen);
|
---|
2306 | params[2] = OSSL_PARAM_construct_end();
|
---|
2307 |
|
---|
2308 | for (i = 0; i < loopargs_len; i++) {
|
---|
2309 | loopargs[i].mctx = EVP_MAC_CTX_new(mac);
|
---|
2310 | if (loopargs[i].mctx == NULL)
|
---|
2311 | goto end;
|
---|
2312 |
|
---|
2313 | if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params))
|
---|
2314 | goto end;
|
---|
2315 | }
|
---|
2316 |
|
---|
2317 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
2318 | print_message(names[D_EVP_CMAC], c[D_EVP_CMAC][testnum],
|
---|
2319 | lengths[testnum], seconds.sym);
|
---|
2320 | Time_F(START);
|
---|
2321 | count = run_benchmark(async_jobs, CMAC_loop, loopargs);
|
---|
2322 | d = Time_F(STOP);
|
---|
2323 | print_result(D_EVP_CMAC, testnum, count, d);
|
---|
2324 | if (count < 0)
|
---|
2325 | break;
|
---|
2326 | }
|
---|
2327 | for (i = 0; i < loopargs_len; i++)
|
---|
2328 | EVP_MAC_CTX_free(loopargs[i].mctx);
|
---|
2329 | EVP_MAC_free(mac);
|
---|
2330 | mac = NULL;
|
---|
2331 | }
|
---|
2332 |
|
---|
2333 | for (i = 0; i < loopargs_len; i++)
|
---|
2334 | if (RAND_bytes(loopargs[i].buf, 36) <= 0)
|
---|
2335 | goto end;
|
---|
2336 |
|
---|
2337 | for (testnum = 0; testnum < RSA_NUM; testnum++) {
|
---|
2338 | EVP_PKEY *rsa_key = NULL;
|
---|
2339 | int st = 0;
|
---|
2340 |
|
---|
2341 | if (!rsa_doit[testnum])
|
---|
2342 | continue;
|
---|
2343 |
|
---|
2344 | if (primes > RSA_DEFAULT_PRIME_NUM) {
|
---|
2345 | /* we haven't set keys yet, generate multi-prime RSA keys */
|
---|
2346 | bn = BN_new();
|
---|
2347 | st = bn != NULL
|
---|
2348 | && BN_set_word(bn, RSA_F4)
|
---|
2349 | && init_gen_str(&genctx, "RSA", NULL, 0, NULL, NULL)
|
---|
2350 | && EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, rsa_keys[testnum].bits) > 0
|
---|
2351 | && EVP_PKEY_CTX_set1_rsa_keygen_pubexp(genctx, bn) > 0
|
---|
2352 | && EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) > 0
|
---|
2353 | && EVP_PKEY_keygen(genctx, &rsa_key);
|
---|
2354 | BN_free(bn);
|
---|
2355 | bn = NULL;
|
---|
2356 | EVP_PKEY_CTX_free(genctx);
|
---|
2357 | genctx = NULL;
|
---|
2358 | } else {
|
---|
2359 | const unsigned char *p = rsa_keys[testnum].data;
|
---|
2360 |
|
---|
2361 | st = (rsa_key = d2i_PrivateKey(EVP_PKEY_RSA, NULL, &p,
|
---|
2362 | rsa_keys[testnum].length)) != NULL;
|
---|
2363 | }
|
---|
2364 |
|
---|
2365 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2366 | loopargs[i].rsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL);
|
---|
2367 | loopargs[i].sigsize = loopargs[i].buflen;
|
---|
2368 | if (loopargs[i].rsa_sign_ctx[testnum] == NULL
|
---|
2369 | || EVP_PKEY_sign_init(loopargs[i].rsa_sign_ctx[testnum]) <= 0
|
---|
2370 | || EVP_PKEY_sign(loopargs[i].rsa_sign_ctx[testnum],
|
---|
2371 | loopargs[i].buf2,
|
---|
2372 | &loopargs[i].sigsize,
|
---|
2373 | loopargs[i].buf, 36) <= 0)
|
---|
2374 | st = 0;
|
---|
2375 | }
|
---|
2376 | if (!st) {
|
---|
2377 | BIO_printf(bio_err,
|
---|
2378 | "RSA sign setup failure. No RSA sign will be done.\n");
|
---|
2379 | ERR_print_errors(bio_err);
|
---|
2380 | op_count = 1;
|
---|
2381 | } else {
|
---|
2382 | pkey_print_message("private", "rsa",
|
---|
2383 | rsa_c[testnum][0], rsa_keys[testnum].bits,
|
---|
2384 | seconds.rsa);
|
---|
2385 | /* RSA_blinding_on(rsa_key[testnum],NULL); */
|
---|
2386 | Time_F(START);
|
---|
2387 | count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
|
---|
2388 | d = Time_F(STOP);
|
---|
2389 | BIO_printf(bio_err,
|
---|
2390 | mr ? "+R1:%ld:%d:%.2f\n"
|
---|
2391 | : "%ld %u bits private RSA's in %.2fs\n",
|
---|
2392 | count, rsa_keys[testnum].bits, d);
|
---|
2393 | rsa_results[testnum][0] = (double)count / d;
|
---|
2394 | op_count = count;
|
---|
2395 | }
|
---|
2396 |
|
---|
2397 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2398 | loopargs[i].rsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key,
|
---|
2399 | NULL);
|
---|
2400 | if (loopargs[i].rsa_verify_ctx[testnum] == NULL
|
---|
2401 | || EVP_PKEY_verify_init(loopargs[i].rsa_verify_ctx[testnum]) <= 0
|
---|
2402 | || EVP_PKEY_verify(loopargs[i].rsa_verify_ctx[testnum],
|
---|
2403 | loopargs[i].buf2,
|
---|
2404 | loopargs[i].sigsize,
|
---|
2405 | loopargs[i].buf, 36) <= 0)
|
---|
2406 | st = 0;
|
---|
2407 | }
|
---|
2408 | if (!st) {
|
---|
2409 | BIO_printf(bio_err,
|
---|
2410 | "RSA verify setup failure. No RSA verify will be done.\n");
|
---|
2411 | ERR_print_errors(bio_err);
|
---|
2412 | rsa_doit[testnum] = 0;
|
---|
2413 | } else {
|
---|
2414 | pkey_print_message("public", "rsa",
|
---|
2415 | rsa_c[testnum][1], rsa_keys[testnum].bits,
|
---|
2416 | seconds.rsa);
|
---|
2417 | Time_F(START);
|
---|
2418 | count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
|
---|
2419 | d = Time_F(STOP);
|
---|
2420 | BIO_printf(bio_err,
|
---|
2421 | mr ? "+R2:%ld:%d:%.2f\n"
|
---|
2422 | : "%ld %u bits public RSA's in %.2fs\n",
|
---|
2423 | count, rsa_keys[testnum].bits, d);
|
---|
2424 | rsa_results[testnum][1] = (double)count / d;
|
---|
2425 | }
|
---|
2426 |
|
---|
2427 | if (op_count <= 1) {
|
---|
2428 | /* if longer than 10s, don't do any more */
|
---|
2429 | stop_it(rsa_doit, testnum);
|
---|
2430 | }
|
---|
2431 | EVP_PKEY_free(rsa_key);
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 | for (testnum = 0; testnum < DSA_NUM; testnum++) {
|
---|
2435 | EVP_PKEY *dsa_key = NULL;
|
---|
2436 | int st;
|
---|
2437 |
|
---|
2438 | if (!dsa_doit[testnum])
|
---|
2439 | continue;
|
---|
2440 |
|
---|
2441 | st = (dsa_key = get_dsa(dsa_bits[testnum])) != NULL;
|
---|
2442 |
|
---|
2443 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2444 | loopargs[i].dsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
|
---|
2445 | NULL);
|
---|
2446 | loopargs[i].sigsize = loopargs[i].buflen;
|
---|
2447 | if (loopargs[i].dsa_sign_ctx[testnum] == NULL
|
---|
2448 | || EVP_PKEY_sign_init(loopargs[i].dsa_sign_ctx[testnum]) <= 0
|
---|
2449 |
|
---|
2450 | || EVP_PKEY_sign(loopargs[i].dsa_sign_ctx[testnum],
|
---|
2451 | loopargs[i].buf2,
|
---|
2452 | &loopargs[i].sigsize,
|
---|
2453 | loopargs[i].buf, 20) <= 0)
|
---|
2454 | st = 0;
|
---|
2455 | }
|
---|
2456 | if (!st) {
|
---|
2457 | BIO_printf(bio_err,
|
---|
2458 | "DSA sign setup failure. No DSA sign will be done.\n");
|
---|
2459 | ERR_print_errors(bio_err);
|
---|
2460 | op_count = 1;
|
---|
2461 | } else {
|
---|
2462 | pkey_print_message("sign", "dsa",
|
---|
2463 | dsa_c[testnum][0], dsa_bits[testnum],
|
---|
2464 | seconds.dsa);
|
---|
2465 | Time_F(START);
|
---|
2466 | count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
|
---|
2467 | d = Time_F(STOP);
|
---|
2468 | BIO_printf(bio_err,
|
---|
2469 | mr ? "+R3:%ld:%u:%.2f\n"
|
---|
2470 | : "%ld %u bits DSA signs in %.2fs\n",
|
---|
2471 | count, dsa_bits[testnum], d);
|
---|
2472 | dsa_results[testnum][0] = (double)count / d;
|
---|
2473 | op_count = count;
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2477 | loopargs[i].dsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key,
|
---|
2478 | NULL);
|
---|
2479 | if (loopargs[i].dsa_verify_ctx[testnum] == NULL
|
---|
2480 | || EVP_PKEY_verify_init(loopargs[i].dsa_verify_ctx[testnum]) <= 0
|
---|
2481 | || EVP_PKEY_verify(loopargs[i].dsa_verify_ctx[testnum],
|
---|
2482 | loopargs[i].buf2,
|
---|
2483 | loopargs[i].sigsize,
|
---|
2484 | loopargs[i].buf, 36) <= 0)
|
---|
2485 | st = 0;
|
---|
2486 | }
|
---|
2487 | if (!st) {
|
---|
2488 | BIO_printf(bio_err,
|
---|
2489 | "DSA verify setup failure. No DSA verify will be done.\n");
|
---|
2490 | ERR_print_errors(bio_err);
|
---|
2491 | dsa_doit[testnum] = 0;
|
---|
2492 | } else {
|
---|
2493 | pkey_print_message("verify", "dsa",
|
---|
2494 | dsa_c[testnum][1], dsa_bits[testnum],
|
---|
2495 | seconds.dsa);
|
---|
2496 | Time_F(START);
|
---|
2497 | count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
|
---|
2498 | d = Time_F(STOP);
|
---|
2499 | BIO_printf(bio_err,
|
---|
2500 | mr ? "+R4:%ld:%u:%.2f\n"
|
---|
2501 | : "%ld %u bits DSA verify in %.2fs\n",
|
---|
2502 | count, dsa_bits[testnum], d);
|
---|
2503 | dsa_results[testnum][1] = (double)count / d;
|
---|
2504 | }
|
---|
2505 |
|
---|
2506 | if (op_count <= 1) {
|
---|
2507 | /* if longer than 10s, don't do any more */
|
---|
2508 | stop_it(dsa_doit, testnum);
|
---|
2509 | }
|
---|
2510 | EVP_PKEY_free(dsa_key);
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
|
---|
2514 | EVP_PKEY *ecdsa_key = NULL;
|
---|
2515 | int st;
|
---|
2516 |
|
---|
2517 | if (!ecdsa_doit[testnum])
|
---|
2518 | continue;
|
---|
2519 |
|
---|
2520 | st = (ecdsa_key = get_ecdsa(&ec_curves[testnum])) != NULL;
|
---|
2521 |
|
---|
2522 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2523 | loopargs[i].ecdsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
|
---|
2524 | NULL);
|
---|
2525 | loopargs[i].sigsize = loopargs[i].buflen;
|
---|
2526 | if (loopargs[i].ecdsa_sign_ctx[testnum] == NULL
|
---|
2527 | || EVP_PKEY_sign_init(loopargs[i].ecdsa_sign_ctx[testnum]) <= 0
|
---|
2528 |
|
---|
2529 | || EVP_PKEY_sign(loopargs[i].ecdsa_sign_ctx[testnum],
|
---|
2530 | loopargs[i].buf2,
|
---|
2531 | &loopargs[i].sigsize,
|
---|
2532 | loopargs[i].buf, 20) <= 0)
|
---|
2533 | st = 0;
|
---|
2534 | }
|
---|
2535 | if (!st) {
|
---|
2536 | BIO_printf(bio_err,
|
---|
2537 | "ECDSA sign setup failure. No ECDSA sign will be done.\n");
|
---|
2538 | ERR_print_errors(bio_err);
|
---|
2539 | op_count = 1;
|
---|
2540 | } else {
|
---|
2541 | pkey_print_message("sign", "ecdsa",
|
---|
2542 | ecdsa_c[testnum][0], ec_curves[testnum].bits,
|
---|
2543 | seconds.ecdsa);
|
---|
2544 | Time_F(START);
|
---|
2545 | count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
|
---|
2546 | d = Time_F(STOP);
|
---|
2547 | BIO_printf(bio_err,
|
---|
2548 | mr ? "+R5:%ld:%u:%.2f\n"
|
---|
2549 | : "%ld %u bits ECDSA signs in %.2fs\n",
|
---|
2550 | count, ec_curves[testnum].bits, d);
|
---|
2551 | ecdsa_results[testnum][0] = (double)count / d;
|
---|
2552 | op_count = count;
|
---|
2553 | }
|
---|
2554 |
|
---|
2555 | for (i = 0; st && i < loopargs_len; i++) {
|
---|
2556 | loopargs[i].ecdsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key,
|
---|
2557 | NULL);
|
---|
2558 | if (loopargs[i].ecdsa_verify_ctx[testnum] == NULL
|
---|
2559 | || EVP_PKEY_verify_init(loopargs[i].ecdsa_verify_ctx[testnum]) <= 0
|
---|
2560 | || EVP_PKEY_verify(loopargs[i].ecdsa_verify_ctx[testnum],
|
---|
2561 | loopargs[i].buf2,
|
---|
2562 | loopargs[i].sigsize,
|
---|
2563 | loopargs[i].buf, 20) <= 0)
|
---|
2564 | st = 0;
|
---|
2565 | }
|
---|
2566 | if (!st) {
|
---|
2567 | BIO_printf(bio_err,
|
---|
2568 | "ECDSA verify setup failure. No ECDSA verify will be done.\n");
|
---|
2569 | ERR_print_errors(bio_err);
|
---|
2570 | ecdsa_doit[testnum] = 0;
|
---|
2571 | } else {
|
---|
2572 | pkey_print_message("verify", "ecdsa",
|
---|
2573 | ecdsa_c[testnum][1], ec_curves[testnum].bits,
|
---|
2574 | seconds.ecdsa);
|
---|
2575 | Time_F(START);
|
---|
2576 | count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
|
---|
2577 | d = Time_F(STOP);
|
---|
2578 | BIO_printf(bio_err,
|
---|
2579 | mr ? "+R6:%ld:%u:%.2f\n"
|
---|
2580 | : "%ld %u bits ECDSA verify in %.2fs\n",
|
---|
2581 | count, ec_curves[testnum].bits, d);
|
---|
2582 | ecdsa_results[testnum][1] = (double)count / d;
|
---|
2583 | }
|
---|
2584 |
|
---|
2585 | if (op_count <= 1) {
|
---|
2586 | /* if longer than 10s, don't do any more */
|
---|
2587 | stop_it(ecdsa_doit, testnum);
|
---|
2588 | }
|
---|
2589 | }
|
---|
2590 |
|
---|
2591 | for (testnum = 0; testnum < EC_NUM; testnum++) {
|
---|
2592 | int ecdh_checks = 1;
|
---|
2593 |
|
---|
2594 | if (!ecdh_doit[testnum])
|
---|
2595 | continue;
|
---|
2596 |
|
---|
2597 | for (i = 0; i < loopargs_len; i++) {
|
---|
2598 | EVP_PKEY_CTX *test_ctx = NULL;
|
---|
2599 | EVP_PKEY_CTX *ctx = NULL;
|
---|
2600 | EVP_PKEY *key_A = NULL;
|
---|
2601 | EVP_PKEY *key_B = NULL;
|
---|
2602 | size_t outlen;
|
---|
2603 | size_t test_outlen;
|
---|
2604 |
|
---|
2605 | if ((key_A = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key A */
|
---|
2606 | || (key_B = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key B */
|
---|
2607 | || (ctx = EVP_PKEY_CTX_new(key_A, NULL)) == NULL /* derivation ctx from skeyA */
|
---|
2608 | || EVP_PKEY_derive_init(ctx) <= 0 /* init derivation ctx */
|
---|
2609 | || EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 /* set peer pubkey in ctx */
|
---|
2610 | || EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 /* determine max length */
|
---|
2611 | || outlen == 0 /* ensure outlen is a valid size */
|
---|
2612 | || outlen > MAX_ECDH_SIZE /* avoid buffer overflow */) {
|
---|
2613 | ecdh_checks = 0;
|
---|
2614 | BIO_printf(bio_err, "ECDH key generation failure.\n");
|
---|
2615 | ERR_print_errors(bio_err);
|
---|
2616 | op_count = 1;
|
---|
2617 | break;
|
---|
2618 | }
|
---|
2619 |
|
---|
2620 | /*
|
---|
2621 | * Here we perform a test run, comparing the output of a*B and b*A;
|
---|
2622 | * we try this here and assume that further EVP_PKEY_derive calls
|
---|
2623 | * never fail, so we can skip checks in the actually benchmarked
|
---|
2624 | * code, for maximum performance.
|
---|
2625 | */
|
---|
2626 | if ((test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) == NULL /* test ctx from skeyB */
|
---|
2627 | || !EVP_PKEY_derive_init(test_ctx) /* init derivation test_ctx */
|
---|
2628 | || !EVP_PKEY_derive_set_peer(test_ctx, key_A) /* set peer pubkey in test_ctx */
|
---|
2629 | || !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) /* determine max length */
|
---|
2630 | || !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) /* compute a*B */
|
---|
2631 | || !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) /* compute b*A */
|
---|
2632 | || test_outlen != outlen /* compare output length */) {
|
---|
2633 | ecdh_checks = 0;
|
---|
2634 | BIO_printf(bio_err, "ECDH computation failure.\n");
|
---|
2635 | ERR_print_errors(bio_err);
|
---|
2636 | op_count = 1;
|
---|
2637 | break;
|
---|
2638 | }
|
---|
2639 |
|
---|
2640 | /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
|
---|
2641 | if (CRYPTO_memcmp(loopargs[i].secret_a,
|
---|
2642 | loopargs[i].secret_b, outlen)) {
|
---|
2643 | ecdh_checks = 0;
|
---|
2644 | BIO_printf(bio_err, "ECDH computations don't match.\n");
|
---|
2645 | ERR_print_errors(bio_err);
|
---|
2646 | op_count = 1;
|
---|
2647 | break;
|
---|
2648 | }
|
---|
2649 |
|
---|
2650 | loopargs[i].ecdh_ctx[testnum] = ctx;
|
---|
2651 | loopargs[i].outlen[testnum] = outlen;
|
---|
2652 |
|
---|
2653 | EVP_PKEY_free(key_A);
|
---|
2654 | EVP_PKEY_free(key_B);
|
---|
2655 | EVP_PKEY_CTX_free(test_ctx);
|
---|
2656 | test_ctx = NULL;
|
---|
2657 | }
|
---|
2658 | if (ecdh_checks != 0) {
|
---|
2659 | pkey_print_message("", "ecdh",
|
---|
2660 | ecdh_c[testnum][0],
|
---|
2661 | ec_curves[testnum].bits, seconds.ecdh);
|
---|
2662 | Time_F(START);
|
---|
2663 | count =
|
---|
2664 | run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
|
---|
2665 | d = Time_F(STOP);
|
---|
2666 | BIO_printf(bio_err,
|
---|
2667 | mr ? "+R7:%ld:%d:%.2f\n" :
|
---|
2668 | "%ld %u-bits ECDH ops in %.2fs\n", count,
|
---|
2669 | ec_curves[testnum].bits, d);
|
---|
2670 | ecdh_results[testnum][0] = (double)count / d;
|
---|
2671 | op_count = count;
|
---|
2672 | }
|
---|
2673 |
|
---|
2674 | if (op_count <= 1) {
|
---|
2675 | /* if longer than 10s, don't do any more */
|
---|
2676 | stop_it(ecdh_doit, testnum);
|
---|
2677 | }
|
---|
2678 | }
|
---|
2679 |
|
---|
2680 | for (testnum = 0; testnum < EdDSA_NUM; testnum++) {
|
---|
2681 | int st = 1;
|
---|
2682 | EVP_PKEY *ed_pkey = NULL;
|
---|
2683 | EVP_PKEY_CTX *ed_pctx = NULL;
|
---|
2684 |
|
---|
2685 | if (!eddsa_doit[testnum])
|
---|
2686 | continue; /* Ignore Curve */
|
---|
2687 | for (i = 0; i < loopargs_len; i++) {
|
---|
2688 | loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new();
|
---|
2689 | if (loopargs[i].eddsa_ctx[testnum] == NULL) {
|
---|
2690 | st = 0;
|
---|
2691 | break;
|
---|
2692 | }
|
---|
2693 | loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new();
|
---|
2694 | if (loopargs[i].eddsa_ctx2[testnum] == NULL) {
|
---|
2695 | st = 0;
|
---|
2696 | break;
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 | if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid,
|
---|
2700 | NULL)) == NULL
|
---|
2701 | || EVP_PKEY_keygen_init(ed_pctx) <= 0
|
---|
2702 | || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) {
|
---|
2703 | st = 0;
|
---|
2704 | EVP_PKEY_CTX_free(ed_pctx);
|
---|
2705 | break;
|
---|
2706 | }
|
---|
2707 | EVP_PKEY_CTX_free(ed_pctx);
|
---|
2708 |
|
---|
2709 | if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL,
|
---|
2710 | NULL, ed_pkey)) {
|
---|
2711 | st = 0;
|
---|
2712 | EVP_PKEY_free(ed_pkey);
|
---|
2713 | break;
|
---|
2714 | }
|
---|
2715 | if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL,
|
---|
2716 | NULL, NULL, ed_pkey)) {
|
---|
2717 | st = 0;
|
---|
2718 | EVP_PKEY_free(ed_pkey);
|
---|
2719 | break;
|
---|
2720 | }
|
---|
2721 |
|
---|
2722 | EVP_PKEY_free(ed_pkey);
|
---|
2723 | ed_pkey = NULL;
|
---|
2724 | }
|
---|
2725 | if (st == 0) {
|
---|
2726 | BIO_printf(bio_err, "EdDSA failure.\n");
|
---|
2727 | ERR_print_errors(bio_err);
|
---|
2728 | op_count = 1;
|
---|
2729 | } else {
|
---|
2730 | for (i = 0; i < loopargs_len; i++) {
|
---|
2731 | /* Perform EdDSA signature test */
|
---|
2732 | loopargs[i].sigsize = ed_curves[testnum].sigsize;
|
---|
2733 | st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum],
|
---|
2734 | loopargs[i].buf2, &loopargs[i].sigsize,
|
---|
2735 | loopargs[i].buf, 20);
|
---|
2736 | if (st == 0)
|
---|
2737 | break;
|
---|
2738 | }
|
---|
2739 | if (st == 0) {
|
---|
2740 | BIO_printf(bio_err,
|
---|
2741 | "EdDSA sign failure. No EdDSA sign will be done.\n");
|
---|
2742 | ERR_print_errors(bio_err);
|
---|
2743 | op_count = 1;
|
---|
2744 | } else {
|
---|
2745 | pkey_print_message("sign", ed_curves[testnum].name,
|
---|
2746 | eddsa_c[testnum][0],
|
---|
2747 | ed_curves[testnum].bits, seconds.eddsa);
|
---|
2748 | Time_F(START);
|
---|
2749 | count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs);
|
---|
2750 | d = Time_F(STOP);
|
---|
2751 |
|
---|
2752 | BIO_printf(bio_err,
|
---|
2753 | mr ? "+R8:%ld:%u:%s:%.2f\n" :
|
---|
2754 | "%ld %u bits %s signs in %.2fs \n",
|
---|
2755 | count, ed_curves[testnum].bits,
|
---|
2756 | ed_curves[testnum].name, d);
|
---|
2757 | eddsa_results[testnum][0] = (double)count / d;
|
---|
2758 | op_count = count;
|
---|
2759 | }
|
---|
2760 | /* Perform EdDSA verification test */
|
---|
2761 | for (i = 0; i < loopargs_len; i++) {
|
---|
2762 | st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum],
|
---|
2763 | loopargs[i].buf2, loopargs[i].sigsize,
|
---|
2764 | loopargs[i].buf, 20);
|
---|
2765 | if (st != 1)
|
---|
2766 | break;
|
---|
2767 | }
|
---|
2768 | if (st != 1) {
|
---|
2769 | BIO_printf(bio_err,
|
---|
2770 | "EdDSA verify failure. No EdDSA verify will be done.\n");
|
---|
2771 | ERR_print_errors(bio_err);
|
---|
2772 | eddsa_doit[testnum] = 0;
|
---|
2773 | } else {
|
---|
2774 | pkey_print_message("verify", ed_curves[testnum].name,
|
---|
2775 | eddsa_c[testnum][1],
|
---|
2776 | ed_curves[testnum].bits, seconds.eddsa);
|
---|
2777 | Time_F(START);
|
---|
2778 | count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs);
|
---|
2779 | d = Time_F(STOP);
|
---|
2780 | BIO_printf(bio_err,
|
---|
2781 | mr ? "+R9:%ld:%u:%s:%.2f\n"
|
---|
2782 | : "%ld %u bits %s verify in %.2fs\n",
|
---|
2783 | count, ed_curves[testnum].bits,
|
---|
2784 | ed_curves[testnum].name, d);
|
---|
2785 | eddsa_results[testnum][1] = (double)count / d;
|
---|
2786 | }
|
---|
2787 |
|
---|
2788 | if (op_count <= 1) {
|
---|
2789 | /* if longer than 10s, don't do any more */
|
---|
2790 | stop_it(eddsa_doit, testnum);
|
---|
2791 | }
|
---|
2792 | }
|
---|
2793 | }
|
---|
2794 |
|
---|
2795 | #ifndef OPENSSL_NO_SM2
|
---|
2796 | for (testnum = 0; testnum < SM2_NUM; testnum++) {
|
---|
2797 | int st = 1;
|
---|
2798 | EVP_PKEY *sm2_pkey = NULL;
|
---|
2799 |
|
---|
2800 | if (!sm2_doit[testnum])
|
---|
2801 | continue; /* Ignore Curve */
|
---|
2802 | /* Init signing and verification */
|
---|
2803 | for (i = 0; i < loopargs_len; i++) {
|
---|
2804 | EVP_PKEY_CTX *sm2_pctx = NULL;
|
---|
2805 | EVP_PKEY_CTX *sm2_vfy_pctx = NULL;
|
---|
2806 | EVP_PKEY_CTX *pctx = NULL;
|
---|
2807 | st = 0;
|
---|
2808 |
|
---|
2809 | loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new();
|
---|
2810 | loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new();
|
---|
2811 | if (loopargs[i].sm2_ctx[testnum] == NULL
|
---|
2812 | || loopargs[i].sm2_vfy_ctx[testnum] == NULL)
|
---|
2813 | break;
|
---|
2814 |
|
---|
2815 | sm2_pkey = NULL;
|
---|
2816 |
|
---|
2817 | st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SM2, NULL)) == NULL
|
---|
2818 | || EVP_PKEY_keygen_init(pctx) <= 0
|
---|
2819 | || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
|
---|
2820 | sm2_curves[testnum].nid) <= 0
|
---|
2821 | || EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0);
|
---|
2822 | EVP_PKEY_CTX_free(pctx);
|
---|
2823 | if (st == 0)
|
---|
2824 | break;
|
---|
2825 |
|
---|
2826 | st = 0; /* set back to zero */
|
---|
2827 | /* attach it sooner to rely on main final cleanup */
|
---|
2828 | loopargs[i].sm2_pkey[testnum] = sm2_pkey;
|
---|
2829 | loopargs[i].sigsize = EVP_PKEY_get_size(sm2_pkey);
|
---|
2830 |
|
---|
2831 | sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
|
---|
2832 | sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL);
|
---|
2833 | if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) {
|
---|
2834 | EVP_PKEY_CTX_free(sm2_vfy_pctx);
|
---|
2835 | break;
|
---|
2836 | }
|
---|
2837 |
|
---|
2838 | /* attach them directly to respective ctx */
|
---|
2839 | EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx);
|
---|
2840 | EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx);
|
---|
2841 |
|
---|
2842 | /*
|
---|
2843 | * No need to allow user to set an explicit ID here, just use
|
---|
2844 | * the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D.
|
---|
2845 | */
|
---|
2846 | if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1
|
---|
2847 | || EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1)
|
---|
2848 | break;
|
---|
2849 |
|
---|
2850 | if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL,
|
---|
2851 | EVP_sm3(), NULL, sm2_pkey))
|
---|
2852 | break;
|
---|
2853 | if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL,
|
---|
2854 | EVP_sm3(), NULL, sm2_pkey))
|
---|
2855 | break;
|
---|
2856 | st = 1; /* mark loop as succeeded */
|
---|
2857 | }
|
---|
2858 | if (st == 0) {
|
---|
2859 | BIO_printf(bio_err, "SM2 init failure.\n");
|
---|
2860 | ERR_print_errors(bio_err);
|
---|
2861 | op_count = 1;
|
---|
2862 | } else {
|
---|
2863 | for (i = 0; i < loopargs_len; i++) {
|
---|
2864 | /* Perform SM2 signature test */
|
---|
2865 | st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum],
|
---|
2866 | loopargs[i].buf2, &loopargs[i].sigsize,
|
---|
2867 | loopargs[i].buf, 20);
|
---|
2868 | if (st == 0)
|
---|
2869 | break;
|
---|
2870 | }
|
---|
2871 | if (st == 0) {
|
---|
2872 | BIO_printf(bio_err,
|
---|
2873 | "SM2 sign failure. No SM2 sign will be done.\n");
|
---|
2874 | ERR_print_errors(bio_err);
|
---|
2875 | op_count = 1;
|
---|
2876 | } else {
|
---|
2877 | pkey_print_message("sign", sm2_curves[testnum].name,
|
---|
2878 | sm2_c[testnum][0],
|
---|
2879 | sm2_curves[testnum].bits, seconds.sm2);
|
---|
2880 | Time_F(START);
|
---|
2881 | count = run_benchmark(async_jobs, SM2_sign_loop, loopargs);
|
---|
2882 | d = Time_F(STOP);
|
---|
2883 |
|
---|
2884 | BIO_printf(bio_err,
|
---|
2885 | mr ? "+R10:%ld:%u:%s:%.2f\n" :
|
---|
2886 | "%ld %u bits %s signs in %.2fs \n",
|
---|
2887 | count, sm2_curves[testnum].bits,
|
---|
2888 | sm2_curves[testnum].name, d);
|
---|
2889 | sm2_results[testnum][0] = (double)count / d;
|
---|
2890 | op_count = count;
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | /* Perform SM2 verification test */
|
---|
2894 | for (i = 0; i < loopargs_len; i++) {
|
---|
2895 | st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum],
|
---|
2896 | loopargs[i].buf2, loopargs[i].sigsize,
|
---|
2897 | loopargs[i].buf, 20);
|
---|
2898 | if (st != 1)
|
---|
2899 | break;
|
---|
2900 | }
|
---|
2901 | if (st != 1) {
|
---|
2902 | BIO_printf(bio_err,
|
---|
2903 | "SM2 verify failure. No SM2 verify will be done.\n");
|
---|
2904 | ERR_print_errors(bio_err);
|
---|
2905 | sm2_doit[testnum] = 0;
|
---|
2906 | } else {
|
---|
2907 | pkey_print_message("verify", sm2_curves[testnum].name,
|
---|
2908 | sm2_c[testnum][1],
|
---|
2909 | sm2_curves[testnum].bits, seconds.sm2);
|
---|
2910 | Time_F(START);
|
---|
2911 | count = run_benchmark(async_jobs, SM2_verify_loop, loopargs);
|
---|
2912 | d = Time_F(STOP);
|
---|
2913 | BIO_printf(bio_err,
|
---|
2914 | mr ? "+R11:%ld:%u:%s:%.2f\n"
|
---|
2915 | : "%ld %u bits %s verify in %.2fs\n",
|
---|
2916 | count, sm2_curves[testnum].bits,
|
---|
2917 | sm2_curves[testnum].name, d);
|
---|
2918 | sm2_results[testnum][1] = (double)count / d;
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 | if (op_count <= 1) {
|
---|
2922 | /* if longer than 10s, don't do any more */
|
---|
2923 | for (testnum++; testnum < SM2_NUM; testnum++)
|
---|
2924 | sm2_doit[testnum] = 0;
|
---|
2925 | }
|
---|
2926 | }
|
---|
2927 | }
|
---|
2928 | #endif /* OPENSSL_NO_SM2 */
|
---|
2929 |
|
---|
2930 | #ifndef OPENSSL_NO_DH
|
---|
2931 | for (testnum = 0; testnum < FFDH_NUM; testnum++) {
|
---|
2932 | int ffdh_checks = 1;
|
---|
2933 |
|
---|
2934 | if (!ffdh_doit[testnum])
|
---|
2935 | continue;
|
---|
2936 |
|
---|
2937 | for (i = 0; i < loopargs_len; i++) {
|
---|
2938 | EVP_PKEY *pkey_A = NULL;
|
---|
2939 | EVP_PKEY *pkey_B = NULL;
|
---|
2940 | EVP_PKEY_CTX *ffdh_ctx = NULL;
|
---|
2941 | EVP_PKEY_CTX *test_ctx = NULL;
|
---|
2942 | size_t secret_size;
|
---|
2943 | size_t test_out;
|
---|
2944 |
|
---|
2945 | /* Ensure that the error queue is empty */
|
---|
2946 | if (ERR_peek_error()) {
|
---|
2947 | BIO_printf(bio_err,
|
---|
2948 | "WARNING: the error queue contains previous unhandled errors.\n");
|
---|
2949 | ERR_print_errors(bio_err);
|
---|
2950 | }
|
---|
2951 |
|
---|
2952 | pkey_A = EVP_PKEY_new();
|
---|
2953 | if (!pkey_A) {
|
---|
2954 | BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
|
---|
2955 | ERR_print_errors(bio_err);
|
---|
2956 | op_count = 1;
|
---|
2957 | ffdh_checks = 0;
|
---|
2958 | break;
|
---|
2959 | }
|
---|
2960 | pkey_B = EVP_PKEY_new();
|
---|
2961 | if (!pkey_B) {
|
---|
2962 | BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n");
|
---|
2963 | ERR_print_errors(bio_err);
|
---|
2964 | op_count = 1;
|
---|
2965 | ffdh_checks = 0;
|
---|
2966 | break;
|
---|
2967 | }
|
---|
2968 |
|
---|
2969 | ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL);
|
---|
2970 | if (!ffdh_ctx) {
|
---|
2971 | BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
---|
2972 | ERR_print_errors(bio_err);
|
---|
2973 | op_count = 1;
|
---|
2974 | ffdh_checks = 0;
|
---|
2975 | break;
|
---|
2976 | }
|
---|
2977 |
|
---|
2978 | if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) {
|
---|
2979 | BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n");
|
---|
2980 | ERR_print_errors(bio_err);
|
---|
2981 | op_count = 1;
|
---|
2982 | ffdh_checks = 0;
|
---|
2983 | break;
|
---|
2984 | }
|
---|
2985 | if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) {
|
---|
2986 | BIO_printf(bio_err, "Error setting DH key size for keygen.\n");
|
---|
2987 | ERR_print_errors(bio_err);
|
---|
2988 | op_count = 1;
|
---|
2989 | ffdh_checks = 0;
|
---|
2990 | break;
|
---|
2991 | }
|
---|
2992 |
|
---|
2993 | if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 ||
|
---|
2994 | EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) {
|
---|
2995 | BIO_printf(bio_err, "FFDH key generation failure.\n");
|
---|
2996 | ERR_print_errors(bio_err);
|
---|
2997 | op_count = 1;
|
---|
2998 | ffdh_checks = 0;
|
---|
2999 | break;
|
---|
3000 | }
|
---|
3001 |
|
---|
3002 | EVP_PKEY_CTX_free(ffdh_ctx);
|
---|
3003 |
|
---|
3004 | /*
|
---|
3005 | * check if the derivation works correctly both ways so that
|
---|
3006 | * we know if future derive calls will fail, and we can skip
|
---|
3007 | * error checking in benchmarked code
|
---|
3008 | */
|
---|
3009 | ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL);
|
---|
3010 | if (ffdh_ctx == NULL) {
|
---|
3011 | BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
---|
3012 | ERR_print_errors(bio_err);
|
---|
3013 | op_count = 1;
|
---|
3014 | ffdh_checks = 0;
|
---|
3015 | break;
|
---|
3016 | }
|
---|
3017 | if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) {
|
---|
3018 | BIO_printf(bio_err, "FFDH derivation context init failure.\n");
|
---|
3019 | ERR_print_errors(bio_err);
|
---|
3020 | op_count = 1;
|
---|
3021 | ffdh_checks = 0;
|
---|
3022 | break;
|
---|
3023 | }
|
---|
3024 | if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) {
|
---|
3025 | BIO_printf(bio_err, "Assigning peer key for derivation failed.\n");
|
---|
3026 | ERR_print_errors(bio_err);
|
---|
3027 | op_count = 1;
|
---|
3028 | ffdh_checks = 0;
|
---|
3029 | break;
|
---|
3030 | }
|
---|
3031 | if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) {
|
---|
3032 | BIO_printf(bio_err, "Checking size of shared secret failed.\n");
|
---|
3033 | ERR_print_errors(bio_err);
|
---|
3034 | op_count = 1;
|
---|
3035 | ffdh_checks = 0;
|
---|
3036 | break;
|
---|
3037 | }
|
---|
3038 | if (secret_size > MAX_FFDH_SIZE) {
|
---|
3039 | BIO_printf(bio_err, "Assertion failure: shared secret too large.\n");
|
---|
3040 | op_count = 1;
|
---|
3041 | ffdh_checks = 0;
|
---|
3042 | break;
|
---|
3043 | }
|
---|
3044 | if (EVP_PKEY_derive(ffdh_ctx,
|
---|
3045 | loopargs[i].secret_ff_a,
|
---|
3046 | &secret_size) <= 0) {
|
---|
3047 | BIO_printf(bio_err, "Shared secret derive failure.\n");
|
---|
3048 | ERR_print_errors(bio_err);
|
---|
3049 | op_count = 1;
|
---|
3050 | ffdh_checks = 0;
|
---|
3051 | break;
|
---|
3052 | }
|
---|
3053 | /* Now check from side B */
|
---|
3054 | test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL);
|
---|
3055 | if (!test_ctx) {
|
---|
3056 | BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n");
|
---|
3057 | ERR_print_errors(bio_err);
|
---|
3058 | op_count = 1;
|
---|
3059 | ffdh_checks = 0;
|
---|
3060 | break;
|
---|
3061 | }
|
---|
3062 | if (!EVP_PKEY_derive_init(test_ctx) ||
|
---|
3063 | !EVP_PKEY_derive_set_peer(test_ctx, pkey_A) ||
|
---|
3064 | !EVP_PKEY_derive(test_ctx, NULL, &test_out) ||
|
---|
3065 | !EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) ||
|
---|
3066 | test_out != secret_size) {
|
---|
3067 | BIO_printf(bio_err, "FFDH computation failure.\n");
|
---|
3068 | op_count = 1;
|
---|
3069 | ffdh_checks = 0;
|
---|
3070 | break;
|
---|
3071 | }
|
---|
3072 |
|
---|
3073 | /* compare the computed secrets */
|
---|
3074 | if (CRYPTO_memcmp(loopargs[i].secret_ff_a,
|
---|
3075 | loopargs[i].secret_ff_b, secret_size)) {
|
---|
3076 | BIO_printf(bio_err, "FFDH computations don't match.\n");
|
---|
3077 | ERR_print_errors(bio_err);
|
---|
3078 | op_count = 1;
|
---|
3079 | ffdh_checks = 0;
|
---|
3080 | break;
|
---|
3081 | }
|
---|
3082 |
|
---|
3083 | loopargs[i].ffdh_ctx[testnum] = ffdh_ctx;
|
---|
3084 |
|
---|
3085 | EVP_PKEY_free(pkey_A);
|
---|
3086 | pkey_A = NULL;
|
---|
3087 | EVP_PKEY_free(pkey_B);
|
---|
3088 | pkey_B = NULL;
|
---|
3089 | EVP_PKEY_CTX_free(test_ctx);
|
---|
3090 | test_ctx = NULL;
|
---|
3091 | }
|
---|
3092 | if (ffdh_checks != 0) {
|
---|
3093 | pkey_print_message("", "ffdh", ffdh_c[testnum][0],
|
---|
3094 | ffdh_params[testnum].bits, seconds.ffdh);
|
---|
3095 | Time_F(START);
|
---|
3096 | count =
|
---|
3097 | run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs);
|
---|
3098 | d = Time_F(STOP);
|
---|
3099 | BIO_printf(bio_err,
|
---|
3100 | mr ? "+R12:%ld:%d:%.2f\n" :
|
---|
3101 | "%ld %u-bits FFDH ops in %.2fs\n", count,
|
---|
3102 | ffdh_params[testnum].bits, d);
|
---|
3103 | ffdh_results[testnum][0] = (double)count / d;
|
---|
3104 | op_count = count;
|
---|
3105 | }
|
---|
3106 | if (op_count <= 1) {
|
---|
3107 | /* if longer than 10s, don't do any more */
|
---|
3108 | stop_it(ffdh_doit, testnum);
|
---|
3109 | }
|
---|
3110 | }
|
---|
3111 | #endif /* OPENSSL_NO_DH */
|
---|
3112 | #ifndef NO_FORK
|
---|
3113 | show_res:
|
---|
3114 | #endif
|
---|
3115 | if (!mr) {
|
---|
3116 | printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING));
|
---|
3117 | printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
|
---|
3118 | printf("options: %s\n", BN_options());
|
---|
3119 | printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS));
|
---|
3120 | printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO));
|
---|
3121 | }
|
---|
3122 |
|
---|
3123 | if (pr_header) {
|
---|
3124 | if (mr) {
|
---|
3125 | printf("+H");
|
---|
3126 | } else {
|
---|
3127 | printf("The 'numbers' are in 1000s of bytes per second processed.\n");
|
---|
3128 | printf("type ");
|
---|
3129 | }
|
---|
3130 | for (testnum = 0; testnum < size_num; testnum++)
|
---|
3131 | printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
|
---|
3132 | printf("\n");
|
---|
3133 | }
|
---|
3134 |
|
---|
3135 | for (k = 0; k < ALGOR_NUM; k++) {
|
---|
3136 | if (!doit[k])
|
---|
3137 | continue;
|
---|
3138 | if (mr)
|
---|
3139 | printf("+F:%u:%s", k, names[k]);
|
---|
3140 | else
|
---|
3141 | printf("%-13s", names[k]);
|
---|
3142 | for (testnum = 0; testnum < size_num; testnum++) {
|
---|
3143 | if (results[k][testnum] > 10000 && !mr)
|
---|
3144 | printf(" %11.2fk", results[k][testnum] / 1e3);
|
---|
3145 | else
|
---|
3146 | printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
|
---|
3147 | }
|
---|
3148 | printf("\n");
|
---|
3149 | }
|
---|
3150 | testnum = 1;
|
---|
3151 | for (k = 0; k < RSA_NUM; k++) {
|
---|
3152 | if (!rsa_doit[k])
|
---|
3153 | continue;
|
---|
3154 | if (testnum && !mr) {
|
---|
3155 | printf("%18ssign verify sign/s verify/s\n", " ");
|
---|
3156 | testnum = 0;
|
---|
3157 | }
|
---|
3158 | if (mr)
|
---|
3159 | printf("+F2:%u:%u:%f:%f\n",
|
---|
3160 | k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1]);
|
---|
3161 | else
|
---|
3162 | printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
---|
3163 | rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
|
---|
3164 | rsa_results[k][0], rsa_results[k][1]);
|
---|
3165 | }
|
---|
3166 | testnum = 1;
|
---|
3167 | for (k = 0; k < DSA_NUM; k++) {
|
---|
3168 | if (!dsa_doit[k])
|
---|
3169 | continue;
|
---|
3170 | if (testnum && !mr) {
|
---|
3171 | printf("%18ssign verify sign/s verify/s\n", " ");
|
---|
3172 | testnum = 0;
|
---|
3173 | }
|
---|
3174 | if (mr)
|
---|
3175 | printf("+F3:%u:%u:%f:%f\n",
|
---|
3176 | k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
|
---|
3177 | else
|
---|
3178 | printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
|
---|
3179 | dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
|
---|
3180 | dsa_results[k][0], dsa_results[k][1]);
|
---|
3181 | }
|
---|
3182 | testnum = 1;
|
---|
3183 | for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
|
---|
3184 | if (!ecdsa_doit[k])
|
---|
3185 | continue;
|
---|
3186 | if (testnum && !mr) {
|
---|
3187 | printf("%30ssign verify sign/s verify/s\n", " ");
|
---|
3188 | testnum = 0;
|
---|
3189 | }
|
---|
3190 |
|
---|
3191 | if (mr)
|
---|
3192 | printf("+F4:%u:%u:%f:%f\n",
|
---|
3193 | k, ec_curves[k].bits,
|
---|
3194 | ecdsa_results[k][0], ecdsa_results[k][1]);
|
---|
3195 | else
|
---|
3196 | printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
---|
3197 | ec_curves[k].bits, ec_curves[k].name,
|
---|
3198 | 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
|
---|
3199 | ecdsa_results[k][0], ecdsa_results[k][1]);
|
---|
3200 | }
|
---|
3201 |
|
---|
3202 | testnum = 1;
|
---|
3203 | for (k = 0; k < EC_NUM; k++) {
|
---|
3204 | if (!ecdh_doit[k])
|
---|
3205 | continue;
|
---|
3206 | if (testnum && !mr) {
|
---|
3207 | printf("%30sop op/s\n", " ");
|
---|
3208 | testnum = 0;
|
---|
3209 | }
|
---|
3210 | if (mr)
|
---|
3211 | printf("+F5:%u:%u:%f:%f\n",
|
---|
3212 | k, ec_curves[k].bits,
|
---|
3213 | ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
|
---|
3214 |
|
---|
3215 | else
|
---|
3216 | printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
|
---|
3217 | ec_curves[k].bits, ec_curves[k].name,
|
---|
3218 | 1.0 / ecdh_results[k][0], ecdh_results[k][0]);
|
---|
3219 | }
|
---|
3220 |
|
---|
3221 | testnum = 1;
|
---|
3222 | for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) {
|
---|
3223 | if (!eddsa_doit[k])
|
---|
3224 | continue;
|
---|
3225 | if (testnum && !mr) {
|
---|
3226 | printf("%30ssign verify sign/s verify/s\n", " ");
|
---|
3227 | testnum = 0;
|
---|
3228 | }
|
---|
3229 |
|
---|
3230 | if (mr)
|
---|
3231 | printf("+F6:%u:%u:%s:%f:%f\n",
|
---|
3232 | k, ed_curves[k].bits, ed_curves[k].name,
|
---|
3233 | eddsa_results[k][0], eddsa_results[k][1]);
|
---|
3234 | else
|
---|
3235 | printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
---|
3236 | ed_curves[k].bits, ed_curves[k].name,
|
---|
3237 | 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1],
|
---|
3238 | eddsa_results[k][0], eddsa_results[k][1]);
|
---|
3239 | }
|
---|
3240 |
|
---|
3241 | #ifndef OPENSSL_NO_SM2
|
---|
3242 | testnum = 1;
|
---|
3243 | for (k = 0; k < OSSL_NELEM(sm2_doit); k++) {
|
---|
3244 | if (!sm2_doit[k])
|
---|
3245 | continue;
|
---|
3246 | if (testnum && !mr) {
|
---|
3247 | printf("%30ssign verify sign/s verify/s\n", " ");
|
---|
3248 | testnum = 0;
|
---|
3249 | }
|
---|
3250 |
|
---|
3251 | if (mr)
|
---|
3252 | printf("+F7:%u:%u:%s:%f:%f\n",
|
---|
3253 | k, sm2_curves[k].bits, sm2_curves[k].name,
|
---|
3254 | sm2_results[k][0], sm2_results[k][1]);
|
---|
3255 | else
|
---|
3256 | printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
|
---|
3257 | sm2_curves[k].bits, sm2_curves[k].name,
|
---|
3258 | 1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1],
|
---|
3259 | sm2_results[k][0], sm2_results[k][1]);
|
---|
3260 | }
|
---|
3261 | #endif
|
---|
3262 | #ifndef OPENSSL_NO_DH
|
---|
3263 | testnum = 1;
|
---|
3264 | for (k = 0; k < FFDH_NUM; k++) {
|
---|
3265 | if (!ffdh_doit[k])
|
---|
3266 | continue;
|
---|
3267 | if (testnum && !mr) {
|
---|
3268 | printf("%23sop op/s\n", " ");
|
---|
3269 | testnum = 0;
|
---|
3270 | }
|
---|
3271 | if (mr)
|
---|
3272 | printf("+F8:%u:%u:%f:%f\n",
|
---|
3273 | k, ffdh_params[k].bits,
|
---|
3274 | ffdh_results[k][0], 1.0 / ffdh_results[k][0]);
|
---|
3275 |
|
---|
3276 | else
|
---|
3277 | printf("%4u bits ffdh %8.4fs %8.1f\n",
|
---|
3278 | ffdh_params[k].bits,
|
---|
3279 | 1.0 / ffdh_results[k][0], ffdh_results[k][0]);
|
---|
3280 | }
|
---|
3281 | #endif /* OPENSSL_NO_DH */
|
---|
3282 |
|
---|
3283 | ret = 0;
|
---|
3284 |
|
---|
3285 | end:
|
---|
3286 | ERR_print_errors(bio_err);
|
---|
3287 | for (i = 0; i < loopargs_len; i++) {
|
---|
3288 | OPENSSL_free(loopargs[i].buf_malloc);
|
---|
3289 | OPENSSL_free(loopargs[i].buf2_malloc);
|
---|
3290 |
|
---|
3291 | BN_free(bn);
|
---|
3292 | EVP_PKEY_CTX_free(genctx);
|
---|
3293 | for (k = 0; k < RSA_NUM; k++) {
|
---|
3294 | EVP_PKEY_CTX_free(loopargs[i].rsa_sign_ctx[k]);
|
---|
3295 | EVP_PKEY_CTX_free(loopargs[i].rsa_verify_ctx[k]);
|
---|
3296 | }
|
---|
3297 | #ifndef OPENSSL_NO_DH
|
---|
3298 | OPENSSL_free(loopargs[i].secret_ff_a);
|
---|
3299 | OPENSSL_free(loopargs[i].secret_ff_b);
|
---|
3300 | for (k = 0; k < FFDH_NUM; k++)
|
---|
3301 | EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]);
|
---|
3302 | #endif
|
---|
3303 | for (k = 0; k < DSA_NUM; k++) {
|
---|
3304 | EVP_PKEY_CTX_free(loopargs[i].dsa_sign_ctx[k]);
|
---|
3305 | EVP_PKEY_CTX_free(loopargs[i].dsa_verify_ctx[k]);
|
---|
3306 | }
|
---|
3307 | for (k = 0; k < ECDSA_NUM; k++) {
|
---|
3308 | EVP_PKEY_CTX_free(loopargs[i].ecdsa_sign_ctx[k]);
|
---|
3309 | EVP_PKEY_CTX_free(loopargs[i].ecdsa_verify_ctx[k]);
|
---|
3310 | }
|
---|
3311 | for (k = 0; k < EC_NUM; k++)
|
---|
3312 | EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
|
---|
3313 | for (k = 0; k < EdDSA_NUM; k++) {
|
---|
3314 | EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]);
|
---|
3315 | EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]);
|
---|
3316 | }
|
---|
3317 | #ifndef OPENSSL_NO_SM2
|
---|
3318 | for (k = 0; k < SM2_NUM; k++) {
|
---|
3319 | EVP_PKEY_CTX *pctx = NULL;
|
---|
3320 |
|
---|
3321 | /* free signing ctx */
|
---|
3322 | if (loopargs[i].sm2_ctx[k] != NULL
|
---|
3323 | && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL)
|
---|
3324 | EVP_PKEY_CTX_free(pctx);
|
---|
3325 | EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]);
|
---|
3326 | /* free verification ctx */
|
---|
3327 | if (loopargs[i].sm2_vfy_ctx[k] != NULL
|
---|
3328 | && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL)
|
---|
3329 | EVP_PKEY_CTX_free(pctx);
|
---|
3330 | EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]);
|
---|
3331 | /* free pkey */
|
---|
3332 | EVP_PKEY_free(loopargs[i].sm2_pkey[k]);
|
---|
3333 | }
|
---|
3334 | #endif
|
---|
3335 | OPENSSL_free(loopargs[i].secret_a);
|
---|
3336 | OPENSSL_free(loopargs[i].secret_b);
|
---|
3337 | }
|
---|
3338 | OPENSSL_free(evp_hmac_name);
|
---|
3339 | OPENSSL_free(evp_cmac_name);
|
---|
3340 |
|
---|
3341 | if (async_jobs > 0) {
|
---|
3342 | for (i = 0; i < loopargs_len; i++)
|
---|
3343 | ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
|
---|
3344 | }
|
---|
3345 |
|
---|
3346 | if (async_init) {
|
---|
3347 | ASYNC_cleanup_thread();
|
---|
3348 | }
|
---|
3349 | OPENSSL_free(loopargs);
|
---|
3350 | release_engine(e);
|
---|
3351 | EVP_CIPHER_free(evp_cipher);
|
---|
3352 | EVP_MAC_free(mac);
|
---|
3353 | return ret;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | static void print_message(const char *s, long num, int length, int tm)
|
---|
3357 | {
|
---|
3358 | BIO_printf(bio_err,
|
---|
3359 | mr ? "+DT:%s:%d:%d\n"
|
---|
3360 | : "Doing %s for %ds on %d size blocks: ", s, tm, length);
|
---|
3361 | (void)BIO_flush(bio_err);
|
---|
3362 | run = 1;
|
---|
3363 | alarm(tm);
|
---|
3364 | }
|
---|
3365 |
|
---|
3366 | static void pkey_print_message(const char *str, const char *str2, long num,
|
---|
3367 | unsigned int bits, int tm)
|
---|
3368 | {
|
---|
3369 | BIO_printf(bio_err,
|
---|
3370 | mr ? "+DTP:%d:%s:%s:%d\n"
|
---|
3371 | : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
|
---|
3372 | (void)BIO_flush(bio_err);
|
---|
3373 | run = 1;
|
---|
3374 | alarm(tm);
|
---|
3375 | }
|
---|
3376 |
|
---|
3377 | static void print_result(int alg, int run_no, int count, double time_used)
|
---|
3378 | {
|
---|
3379 | if (count == -1) {
|
---|
3380 | BIO_printf(bio_err, "%s error!\n", names[alg]);
|
---|
3381 | ERR_print_errors(bio_err);
|
---|
3382 | return;
|
---|
3383 | }
|
---|
3384 | BIO_printf(bio_err,
|
---|
3385 | mr ? "+R:%d:%s:%f\n"
|
---|
3386 | : "%d %s's in %.2fs\n", count, names[alg], time_used);
|
---|
3387 | results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | #ifndef NO_FORK
|
---|
3391 | static char *sstrsep(char **string, const char *delim)
|
---|
3392 | {
|
---|
3393 | char isdelim[256];
|
---|
3394 | char *token = *string;
|
---|
3395 |
|
---|
3396 | if (**string == 0)
|
---|
3397 | return NULL;
|
---|
3398 |
|
---|
3399 | memset(isdelim, 0, sizeof(isdelim));
|
---|
3400 | isdelim[0] = 1;
|
---|
3401 |
|
---|
3402 | while (*delim) {
|
---|
3403 | isdelim[(unsigned char)(*delim)] = 1;
|
---|
3404 | delim++;
|
---|
3405 | }
|
---|
3406 |
|
---|
3407 | while (!isdelim[(unsigned char)(**string)])
|
---|
3408 | (*string)++;
|
---|
3409 |
|
---|
3410 | if (**string) {
|
---|
3411 | **string = 0;
|
---|
3412 | (*string)++;
|
---|
3413 | }
|
---|
3414 |
|
---|
3415 | return token;
|
---|
3416 | }
|
---|
3417 |
|
---|
3418 | static int do_multi(int multi, int size_num)
|
---|
3419 | {
|
---|
3420 | int n;
|
---|
3421 | int fd[2];
|
---|
3422 | int *fds;
|
---|
3423 | int status;
|
---|
3424 | static char sep[] = ":";
|
---|
3425 |
|
---|
3426 | fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
|
---|
3427 | for (n = 0; n < multi; ++n) {
|
---|
3428 | if (pipe(fd) == -1) {
|
---|
3429 | BIO_printf(bio_err, "pipe failure\n");
|
---|
3430 | exit(1);
|
---|
3431 | }
|
---|
3432 | fflush(stdout);
|
---|
3433 | (void)BIO_flush(bio_err);
|
---|
3434 | if (fork()) {
|
---|
3435 | close(fd[1]);
|
---|
3436 | fds[n] = fd[0];
|
---|
3437 | } else {
|
---|
3438 | close(fd[0]);
|
---|
3439 | close(1);
|
---|
3440 | if (dup(fd[1]) == -1) {
|
---|
3441 | BIO_printf(bio_err, "dup failed\n");
|
---|
3442 | exit(1);
|
---|
3443 | }
|
---|
3444 | close(fd[1]);
|
---|
3445 | mr = 1;
|
---|
3446 | usertime = 0;
|
---|
3447 | OPENSSL_free(fds);
|
---|
3448 | return 0;
|
---|
3449 | }
|
---|
3450 | printf("Forked child %d\n", n);
|
---|
3451 | }
|
---|
3452 |
|
---|
3453 | /* for now, assume the pipe is long enough to take all the output */
|
---|
3454 | for (n = 0; n < multi; ++n) {
|
---|
3455 | FILE *f;
|
---|
3456 | char buf[1024];
|
---|
3457 | char *p;
|
---|
3458 |
|
---|
3459 | f = fdopen(fds[n], "r");
|
---|
3460 | while (fgets(buf, sizeof(buf), f)) {
|
---|
3461 | p = strchr(buf, '\n');
|
---|
3462 | if (p)
|
---|
3463 | *p = '\0';
|
---|
3464 | if (buf[0] != '+') {
|
---|
3465 | BIO_printf(bio_err,
|
---|
3466 | "Don't understand line '%s' from child %d\n", buf,
|
---|
3467 | n);
|
---|
3468 | continue;
|
---|
3469 | }
|
---|
3470 | printf("Got: %s from %d\n", buf, n);
|
---|
3471 | if (strncmp(buf, "+F:", 3) == 0) {
|
---|
3472 | int alg;
|
---|
3473 | int j;
|
---|
3474 |
|
---|
3475 | p = buf + 3;
|
---|
3476 | alg = atoi(sstrsep(&p, sep));
|
---|
3477 | sstrsep(&p, sep);
|
---|
3478 | for (j = 0; j < size_num; ++j)
|
---|
3479 | results[alg][j] += atof(sstrsep(&p, sep));
|
---|
3480 | } else if (strncmp(buf, "+F2:", 4) == 0) {
|
---|
3481 | int k;
|
---|
3482 | double d;
|
---|
3483 |
|
---|
3484 | p = buf + 4;
|
---|
3485 | k = atoi(sstrsep(&p, sep));
|
---|
3486 | sstrsep(&p, sep);
|
---|
3487 |
|
---|
3488 | d = atof(sstrsep(&p, sep));
|
---|
3489 | rsa_results[k][0] += d;
|
---|
3490 |
|
---|
3491 | d = atof(sstrsep(&p, sep));
|
---|
3492 | rsa_results[k][1] += d;
|
---|
3493 | } else if (strncmp(buf, "+F3:", 4) == 0) {
|
---|
3494 | int k;
|
---|
3495 | double d;
|
---|
3496 |
|
---|
3497 | p = buf + 4;
|
---|
3498 | k = atoi(sstrsep(&p, sep));
|
---|
3499 | sstrsep(&p, sep);
|
---|
3500 |
|
---|
3501 | d = atof(sstrsep(&p, sep));
|
---|
3502 | dsa_results[k][0] += d;
|
---|
3503 |
|
---|
3504 | d = atof(sstrsep(&p, sep));
|
---|
3505 | dsa_results[k][1] += d;
|
---|
3506 | } else if (strncmp(buf, "+F4:", 4) == 0) {
|
---|
3507 | int k;
|
---|
3508 | double d;
|
---|
3509 |
|
---|
3510 | p = buf + 4;
|
---|
3511 | k = atoi(sstrsep(&p, sep));
|
---|
3512 | sstrsep(&p, sep);
|
---|
3513 |
|
---|
3514 | d = atof(sstrsep(&p, sep));
|
---|
3515 | ecdsa_results[k][0] += d;
|
---|
3516 |
|
---|
3517 | d = atof(sstrsep(&p, sep));
|
---|
3518 | ecdsa_results[k][1] += d;
|
---|
3519 | } else if (strncmp(buf, "+F5:", 4) == 0) {
|
---|
3520 | int k;
|
---|
3521 | double d;
|
---|
3522 |
|
---|
3523 | p = buf + 4;
|
---|
3524 | k = atoi(sstrsep(&p, sep));
|
---|
3525 | sstrsep(&p, sep);
|
---|
3526 |
|
---|
3527 | d = atof(sstrsep(&p, sep));
|
---|
3528 | ecdh_results[k][0] += d;
|
---|
3529 | } else if (strncmp(buf, "+F6:", 4) == 0) {
|
---|
3530 | int k;
|
---|
3531 | double d;
|
---|
3532 |
|
---|
3533 | p = buf + 4;
|
---|
3534 | k = atoi(sstrsep(&p, sep));
|
---|
3535 | sstrsep(&p, sep);
|
---|
3536 | sstrsep(&p, sep);
|
---|
3537 |
|
---|
3538 | d = atof(sstrsep(&p, sep));
|
---|
3539 | eddsa_results[k][0] += d;
|
---|
3540 |
|
---|
3541 | d = atof(sstrsep(&p, sep));
|
---|
3542 | eddsa_results[k][1] += d;
|
---|
3543 | # ifndef OPENSSL_NO_SM2
|
---|
3544 | } else if (strncmp(buf, "+F7:", 4) == 0) {
|
---|
3545 | int k;
|
---|
3546 | double d;
|
---|
3547 |
|
---|
3548 | p = buf + 4;
|
---|
3549 | k = atoi(sstrsep(&p, sep));
|
---|
3550 | sstrsep(&p, sep);
|
---|
3551 | sstrsep(&p, sep);
|
---|
3552 |
|
---|
3553 | d = atof(sstrsep(&p, sep));
|
---|
3554 | sm2_results[k][0] += d;
|
---|
3555 |
|
---|
3556 | d = atof(sstrsep(&p, sep));
|
---|
3557 | sm2_results[k][1] += d;
|
---|
3558 | # endif /* OPENSSL_NO_SM2 */
|
---|
3559 | # ifndef OPENSSL_NO_DH
|
---|
3560 | } else if (strncmp(buf, "+F8:", 4) == 0) {
|
---|
3561 | int k;
|
---|
3562 | double d;
|
---|
3563 |
|
---|
3564 | p = buf + 4;
|
---|
3565 | k = atoi(sstrsep(&p, sep));
|
---|
3566 | sstrsep(&p, sep);
|
---|
3567 |
|
---|
3568 | d = atof(sstrsep(&p, sep));
|
---|
3569 | ffdh_results[k][0] += d;
|
---|
3570 | # endif /* OPENSSL_NO_DH */
|
---|
3571 | } else if (strncmp(buf, "+H:", 3) == 0) {
|
---|
3572 | ;
|
---|
3573 | } else {
|
---|
3574 | BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
|
---|
3575 | n);
|
---|
3576 | }
|
---|
3577 | }
|
---|
3578 |
|
---|
3579 | fclose(f);
|
---|
3580 | }
|
---|
3581 | OPENSSL_free(fds);
|
---|
3582 | for (n = 0; n < multi; ++n) {
|
---|
3583 | while (wait(&status) == -1)
|
---|
3584 | if (errno != EINTR) {
|
---|
3585 | BIO_printf(bio_err, "Waitng for child failed with 0x%x\n",
|
---|
3586 | errno);
|
---|
3587 | return 1;
|
---|
3588 | }
|
---|
3589 | if (WIFEXITED(status) && WEXITSTATUS(status)) {
|
---|
3590 | BIO_printf(bio_err, "Child exited with %d\n", WEXITSTATUS(status));
|
---|
3591 | } else if (WIFSIGNALED(status)) {
|
---|
3592 | BIO_printf(bio_err, "Child terminated by signal %d\n",
|
---|
3593 | WTERMSIG(status));
|
---|
3594 | }
|
---|
3595 | }
|
---|
3596 | return 1;
|
---|
3597 | }
|
---|
3598 | #endif
|
---|
3599 |
|
---|
3600 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
|
---|
3601 | const openssl_speed_sec_t *seconds)
|
---|
3602 | {
|
---|
3603 | static const int mblengths_list[] =
|
---|
3604 | { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
|
---|
3605 | const int *mblengths = mblengths_list;
|
---|
3606 | int j, count, keylen, num = OSSL_NELEM(mblengths_list);
|
---|
3607 | const char *alg_name;
|
---|
3608 | unsigned char *inp = NULL, *out = NULL, *key, no_key[32], no_iv[16];
|
---|
3609 | EVP_CIPHER_CTX *ctx = NULL;
|
---|
3610 | double d = 0.0;
|
---|
3611 |
|
---|
3612 | if (lengths_single) {
|
---|
3613 | mblengths = &lengths_single;
|
---|
3614 | num = 1;
|
---|
3615 | }
|
---|
3616 |
|
---|
3617 | inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
|
---|
3618 | out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
|
---|
3619 | if ((ctx = EVP_CIPHER_CTX_new()) == NULL)
|
---|
3620 | app_bail_out("failed to allocate cipher context\n");
|
---|
3621 | if (!EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv))
|
---|
3622 | app_bail_out("failed to initialise cipher context\n");
|
---|
3623 |
|
---|
3624 | if ((keylen = EVP_CIPHER_CTX_get_key_length(ctx)) < 0) {
|
---|
3625 | BIO_printf(bio_err, "Impossible negative key length: %d\n", keylen);
|
---|
3626 | goto err;
|
---|
3627 | }
|
---|
3628 | key = app_malloc(keylen, "evp_cipher key");
|
---|
3629 | if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0)
|
---|
3630 | app_bail_out("failed to generate random cipher key\n");
|
---|
3631 | if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
|
---|
3632 | app_bail_out("failed to set cipher key\n");
|
---|
3633 | OPENSSL_clear_free(key, keylen);
|
---|
3634 |
|
---|
3635 | if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
|
---|
3636 | sizeof(no_key), no_key) <= 0)
|
---|
3637 | app_bail_out("failed to set AEAD key\n");
|
---|
3638 | if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL)
|
---|
3639 | app_bail_out("failed to get cipher name\n");
|
---|
3640 |
|
---|
3641 | for (j = 0; j < num; j++) {
|
---|
3642 | print_message(alg_name, 0, mblengths[j], seconds->sym);
|
---|
3643 | Time_F(START);
|
---|
3644 | for (count = 0; run && count < INT_MAX; count++) {
|
---|
3645 | unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
|
---|
3646 | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
|
---|
3647 | size_t len = mblengths[j];
|
---|
3648 | int packlen;
|
---|
3649 |
|
---|
3650 | memset(aad, 0, 8); /* avoid uninitialized values */
|
---|
3651 | aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
|
---|
3652 | aad[9] = 3; /* version */
|
---|
3653 | aad[10] = 2;
|
---|
3654 | aad[11] = 0; /* length */
|
---|
3655 | aad[12] = 0;
|
---|
3656 | mb_param.out = NULL;
|
---|
3657 | mb_param.inp = aad;
|
---|
3658 | mb_param.len = len;
|
---|
3659 | mb_param.interleave = 8;
|
---|
3660 |
|
---|
3661 | packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
|
---|
3662 | sizeof(mb_param), &mb_param);
|
---|
3663 |
|
---|
3664 | if (packlen > 0) {
|
---|
3665 | mb_param.out = out;
|
---|
3666 | mb_param.inp = inp;
|
---|
3667 | mb_param.len = len;
|
---|
3668 | (void)EVP_CIPHER_CTX_ctrl(ctx,
|
---|
3669 | EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
|
---|
3670 | sizeof(mb_param), &mb_param);
|
---|
3671 | } else {
|
---|
3672 | int pad;
|
---|
3673 |
|
---|
3674 | RAND_bytes(out, 16);
|
---|
3675 | len += 16;
|
---|
3676 | aad[11] = (unsigned char)(len >> 8);
|
---|
3677 | aad[12] = (unsigned char)(len);
|
---|
3678 | pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
|
---|
3679 | EVP_AEAD_TLS1_AAD_LEN, aad);
|
---|
3680 | EVP_Cipher(ctx, out, inp, len + pad);
|
---|
3681 | }
|
---|
3682 | }
|
---|
3683 | d = Time_F(STOP);
|
---|
3684 | BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
|
---|
3685 | : "%d %s's in %.2fs\n", count, "evp", d);
|
---|
3686 | results[D_EVP][j] = ((double)count) / d * mblengths[j];
|
---|
3687 | }
|
---|
3688 |
|
---|
3689 | if (mr) {
|
---|
3690 | fprintf(stdout, "+H");
|
---|
3691 | for (j = 0; j < num; j++)
|
---|
3692 | fprintf(stdout, ":%d", mblengths[j]);
|
---|
3693 | fprintf(stdout, "\n");
|
---|
3694 | fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
|
---|
3695 | for (j = 0; j < num; j++)
|
---|
3696 | fprintf(stdout, ":%.2f", results[D_EVP][j]);
|
---|
3697 | fprintf(stdout, "\n");
|
---|
3698 | } else {
|
---|
3699 | fprintf(stdout,
|
---|
3700 | "The 'numbers' are in 1000s of bytes per second processed.\n");
|
---|
3701 | fprintf(stdout, "type ");
|
---|
3702 | for (j = 0; j < num; j++)
|
---|
3703 | fprintf(stdout, "%7d bytes", mblengths[j]);
|
---|
3704 | fprintf(stdout, "\n");
|
---|
3705 | fprintf(stdout, "%-24s", alg_name);
|
---|
3706 |
|
---|
3707 | for (j = 0; j < num; j++) {
|
---|
3708 | if (results[D_EVP][j] > 10000)
|
---|
3709 | fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
|
---|
3710 | else
|
---|
3711 | fprintf(stdout, " %11.2f ", results[D_EVP][j]);
|
---|
3712 | }
|
---|
3713 | fprintf(stdout, "\n");
|
---|
3714 | }
|
---|
3715 |
|
---|
3716 | err:
|
---|
3717 | OPENSSL_free(inp);
|
---|
3718 | OPENSSL_free(out);
|
---|
3719 | EVP_CIPHER_CTX_free(ctx);
|
---|
3720 | }
|
---|