VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.7/crypto/bn/rsaz_exp_x2.c@ 100947

Last change on this file since 100947 was 97372, checked in by vboxsync, 2 years ago

libs: Switch to openssl-3.0.7, bugref:10317

File size: 19.2 KB
Line 
1/*
2 * Copyright 2020-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2020, Intel Corporation. All Rights Reserved.
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 *
11 * Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov
12 * Intel Corporation
13 *
14 */
15
16#include <openssl/opensslconf.h>
17#include <openssl/crypto.h>
18#include "rsaz_exp.h"
19
20#ifndef RSAZ_ENABLED
21NON_EMPTY_TRANSLATION_UNIT
22#else
23# include <assert.h>
24# include <string.h>
25
26# if defined(__GNUC__)
27# define ALIGN64 __attribute__((aligned(64)))
28# elif defined(_MSC_VER)
29# define ALIGN64 __declspec(align(64))
30# else
31# define ALIGN64
32# endif
33
34# if defined(__GNUC__)
35# define ALIGN1 __attribute__((aligned(1)))
36# elif defined(_MSC_VER)
37# define ALIGN1 __declspec(align(1))
38# else
39# define ALIGN1
40# endif
41
42# define ALIGN_OF(ptr, boundary) \
43 ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
44
45/* Internal radix */
46# define DIGIT_SIZE (52)
47/* 52-bit mask */
48# define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
49
50# define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
51# define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
52
53typedef uint64_t ALIGN1 uint64_t_align1;
54
55static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len);
56static ossl_inline void put_digit52(uint8_t *out, int out_len, uint64_t digit);
57static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
58 int in_bitsize);
59static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
60static ossl_inline void set_bit(BN_ULONG *a, int idx);
61
62/* Number of |digit_size|-bit digits in |bitsize|-bit value */
63static ossl_inline int number_of_digits(int bitsize, int digit_size)
64{
65 return (bitsize + digit_size - 1) / digit_size;
66}
67
68typedef void (*AMM52)(BN_ULONG *res, const BN_ULONG *base,
69 const BN_ULONG *exp, const BN_ULONG *m, BN_ULONG k0);
70typedef void (*EXP52_x2)(BN_ULONG *res, const BN_ULONG *base,
71 const BN_ULONG *exp[2], const BN_ULONG *m,
72 const BN_ULONG *rr, const BN_ULONG k0[2]);
73
74/*
75 * For details of the methods declared below please refer to
76 * crypto/bn/asm/rsaz-avx512.pl
77 *
78 * Naming notes:
79 * amm = Almost Montgomery Multiplication
80 * ams = Almost Montgomery Squaring
81 * 52x20 - data represented as array of 20 digits in 52-bit radix
82 * _x1_/_x2_ - 1 or 2 independent inputs/outputs
83 * _256 suffix - uses 256-bit (AVX512VL) registers
84 */
85
86/*AMM = Almost Montgomery Multiplication. */
87void ossl_rsaz_amm52x20_x1_256(BN_ULONG *res, const BN_ULONG *base,
88 const BN_ULONG *exp, const BN_ULONG *m,
89 BN_ULONG k0);
90static void RSAZ_exp52x20_x2_256(BN_ULONG *res, const BN_ULONG *base,
91 const BN_ULONG *exp[2], const BN_ULONG *m,
92 const BN_ULONG *rr, const BN_ULONG k0[2]);
93void ossl_rsaz_amm52x20_x2_256(BN_ULONG *out, const BN_ULONG *a,
94 const BN_ULONG *b, const BN_ULONG *m,
95 const BN_ULONG k0[2]);
96void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
97 const BN_ULONG *red_table,
98 int red_table_idx, int tbl_idx);
99
100/*
101 * Dual Montgomery modular exponentiation using prime moduli of the
102 * same bit size, optimized with AVX512 ISA.
103 *
104 * Input and output parameters for each exponentiation are independent and
105 * denoted here by index |i|, i = 1..2.
106 *
107 * Input and output are all in regular 2^64 radix.
108 *
109 * Each moduli shall be |factor_size| bit size.
110 *
111 * NOTE: currently only 2x1024 case is supported.
112 *
113 * [out] res|i| - result of modular exponentiation: array of qword values
114 * in regular (2^64) radix. Size of array shall be enough
115 * to hold |factor_size| bits.
116 * [in] base|i| - base
117 * [in] exp|i| - exponent
118 * [in] m|i| - moduli
119 * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
120 * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
121 * [in] factor_size - moduli bit size
122 *
123 * \return 0 in case of failure,
124 * 1 in case of success.
125 */
126int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
127 const BN_ULONG *base1,
128 const BN_ULONG *exp1,
129 const BN_ULONG *m1,
130 const BN_ULONG *rr1,
131 BN_ULONG k0_1,
132 BN_ULONG *res2,
133 const BN_ULONG *base2,
134 const BN_ULONG *exp2,
135 const BN_ULONG *m2,
136 const BN_ULONG *rr2,
137 BN_ULONG k0_2,
138 int factor_size)
139{
140 int ret = 0;
141
142 /*
143 * Number of word-size (BN_ULONG) digits to store exponent in redundant
144 * representation.
145 */
146 int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
147 int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
148 BN_ULONG *base1_red, *m1_red, *rr1_red;
149 BN_ULONG *base2_red, *m2_red, *rr2_red;
150 BN_ULONG *coeff_red;
151 BN_ULONG *storage = NULL;
152 BN_ULONG *storage_aligned = NULL;
153 BN_ULONG storage_len_bytes = 7 * exp_digits * sizeof(BN_ULONG);
154
155 /* AMM = Almost Montgomery Multiplication */
156 AMM52 amm = NULL;
157 /* Dual (2-exps in parallel) exponentiation */
158 EXP52_x2 exp_x2 = NULL;
159
160 const BN_ULONG *exp[2] = {0};
161 BN_ULONG k0[2] = {0};
162
163 /* Only 1024-bit factor size is supported now */
164 switch (factor_size) {
165 case 1024:
166 amm = ossl_rsaz_amm52x20_x1_256;
167 exp_x2 = RSAZ_exp52x20_x2_256;
168 break;
169 default:
170 goto err;
171 }
172
173 storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes + 64);
174 if (storage == NULL)
175 goto err;
176 storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
177
178 /* Memory layout for red(undant) representations */
179 base1_red = storage_aligned;
180 base2_red = storage_aligned + 1 * exp_digits;
181 m1_red = storage_aligned + 2 * exp_digits;
182 m2_red = storage_aligned + 3 * exp_digits;
183 rr1_red = storage_aligned + 4 * exp_digits;
184 rr2_red = storage_aligned + 5 * exp_digits;
185 coeff_red = storage_aligned + 6 * exp_digits;
186
187 /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
188 to_words52(base1_red, exp_digits, base1, factor_size);
189 to_words52(base2_red, exp_digits, base2, factor_size);
190 to_words52(m1_red, exp_digits, m1, factor_size);
191 to_words52(m2_red, exp_digits, m2, factor_size);
192 to_words52(rr1_red, exp_digits, rr1, factor_size);
193 to_words52(rr2_red, exp_digits, rr2, factor_size);
194
195 /*
196 * Compute target domain Montgomery converters RR' for each modulus
197 * based on precomputed original domain's RR.
198 *
199 * RR -> RR' transformation steps:
200 * (1) coeff = 2^k
201 * (2) t = AMM(RR,RR) = RR^2 / R' mod m
202 * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
203 * where
204 * k = 4 * (52 * digits52 - modlen)
205 * R = 2^(64 * ceil(modlen/64)) mod m
206 * RR = R^2 mod M
207 * R' = 2^(52 * ceil(modlen/52)) mod m
208 *
209 * modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
210 */
211 memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
212 /* (1) in reduced domain representation */
213 set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
214
215 amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
216 amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
217
218 amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
219 amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
220
221 exp[0] = exp1;
222 exp[1] = exp2;
223
224 k0[0] = k0_1;
225 k0[1] = k0_2;
226
227 exp_x2(rr1_red, base1_red, exp, m1_red, rr1_red, k0);
228
229 /* Convert rr_i back to regular radix */
230 from_words52(res1, factor_size, rr1_red);
231 from_words52(res2, factor_size, rr2_red);
232
233 /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
234 factor_size /= sizeof(BN_ULONG) * 8;
235
236 bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
237 bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
238
239 ret = 1;
240err:
241 if (storage != NULL) {
242 OPENSSL_cleanse(storage, storage_len_bytes);
243 OPENSSL_free(storage);
244 }
245 return ret;
246}
247
248/*
249 * Dual 1024-bit w-ary modular exponentiation using prime moduli of the same
250 * bit size using Almost Montgomery Multiplication, optimized with AVX512_IFMA
251 * ISA.
252 *
253 * The parameter w (window size) = 5.
254 *
255 * [out] res - result of modular exponentiation: 2x20 qword
256 * values in 2^52 radix.
257 * [in] base - base (2x20 qword values in 2^52 radix)
258 * [in] exp - array of 2 pointers to 16 qword values in 2^64 radix.
259 * Exponent is not converted to redundant representation.
260 * [in] m - moduli (2x20 qword values in 2^52 radix)
261 * [in] rr - Montgomery parameter for 2 moduli: RR = 2^2080 mod m.
262 * (2x20 qword values in 2^52 radix)
263 * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
264 *
265 * \return (void).
266 */
267static void RSAZ_exp52x20_x2_256(BN_ULONG *out, /* [2][20] */
268 const BN_ULONG *base, /* [2][20] */
269 const BN_ULONG *exp[2], /* 2x16 */
270 const BN_ULONG *m, /* [2][20] */
271 const BN_ULONG *rr, /* [2][20] */
272 const BN_ULONG k0[2])
273{
274# define BITSIZE_MODULUS (1024)
275# define EXP_WIN_SIZE (5)
276# define EXP_WIN_MASK ((1U << EXP_WIN_SIZE) - 1)
277/*
278 * Number of digits (64-bit words) in redundant representation to handle
279 * modulus bits
280 */
281# define RED_DIGITS (20)
282# define EXP_DIGITS (16)
283# define DAMM ossl_rsaz_amm52x20_x2_256
284/*
285 * Squaring is done using multiplication now. That can be a subject of
286 * optimization in future.
287 */
288# define DAMS(r,a,m,k0) \
289 ossl_rsaz_amm52x20_x2_256((r),(a),(a),(m),(k0))
290
291 /* Allocate stack for red(undant) result Y and multiplier X */
292 ALIGN64 BN_ULONG red_Y[2][RED_DIGITS];
293 ALIGN64 BN_ULONG red_X[2][RED_DIGITS];
294
295 /* Allocate expanded exponent */
296 ALIGN64 BN_ULONG expz[2][EXP_DIGITS + 1];
297
298 /* Pre-computed table of base powers */
299 ALIGN64 BN_ULONG red_table[1U << EXP_WIN_SIZE][2][RED_DIGITS];
300
301 int idx;
302
303 memset(red_Y, 0, sizeof(red_Y));
304 memset(red_table, 0, sizeof(red_table));
305 memset(red_X, 0, sizeof(red_X));
306
307 /*
308 * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
309 * table[0] = mont(x^0) = mont(1)
310 * table[1] = mont(x^1) = mont(x)
311 */
312 red_X[0][0] = 1;
313 red_X[1][0] = 1;
314 DAMM(red_table[0][0], (const BN_ULONG*)red_X, rr, m, k0);
315 DAMM(red_table[1][0], base, rr, m, k0);
316
317 for (idx = 1; idx < (int)((1U << EXP_WIN_SIZE) / 2); idx++) {
318 DAMS(red_table[2 * idx + 0][0], red_table[1 * idx][0], m, k0);
319 DAMM(red_table[2 * idx + 1][0], red_table[2 * idx][0], red_table[1][0], m, k0);
320 }
321
322 /* Copy and expand exponents */
323 memcpy(expz[0], exp[0], EXP_DIGITS * sizeof(BN_ULONG));
324 expz[0][EXP_DIGITS] = 0;
325 memcpy(expz[1], exp[1], EXP_DIGITS * sizeof(BN_ULONG));
326 expz[1][EXP_DIGITS] = 0;
327
328 /* Exponentiation */
329 {
330 const int rem = BITSIZE_MODULUS % EXP_WIN_SIZE;
331 BN_ULONG table_idx_mask = EXP_WIN_MASK;
332
333 int exp_bit_no = BITSIZE_MODULUS - rem;
334 int exp_chunk_no = exp_bit_no / 64;
335 int exp_chunk_shift = exp_bit_no % 64;
336
337 BN_ULONG red_table_idx_0, red_table_idx_1;
338
339 /*
340 * If rem == 0, then
341 * exp_bit_no = modulus_bitsize - exp_win_size
342 * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
343 * which is { 4, 1, 3 } respectively.
344 *
345 * If this assertion ever fails the fix above is easy.
346 */
347 OPENSSL_assert(rem != 0);
348
349 /* Process 1-st exp window - just init result */
350 red_table_idx_0 = expz[0][exp_chunk_no];
351 red_table_idx_1 = expz[1][exp_chunk_no];
352 /*
353 * The function operates with fixed moduli sizes divisible by 64,
354 * thus table index here is always in supported range [0, EXP_WIN_SIZE).
355 */
356 red_table_idx_0 >>= exp_chunk_shift;
357 red_table_idx_1 >>= exp_chunk_shift;
358
359 ossl_extract_multiplier_2x20_win5(red_Y[0], (const BN_ULONG*)red_table,
360 (int)red_table_idx_0, 0);
361 ossl_extract_multiplier_2x20_win5(red_Y[1], (const BN_ULONG*)red_table,
362 (int)red_table_idx_1, 1);
363
364 /* Process other exp windows */
365 for (exp_bit_no -= EXP_WIN_SIZE; exp_bit_no >= 0; exp_bit_no -= EXP_WIN_SIZE) {
366 /* Extract pre-computed multiplier from the table */
367 {
368 BN_ULONG T;
369
370 exp_chunk_no = exp_bit_no / 64;
371 exp_chunk_shift = exp_bit_no % 64;
372 {
373 red_table_idx_0 = expz[0][exp_chunk_no];
374 T = expz[0][exp_chunk_no + 1];
375
376 red_table_idx_0 >>= exp_chunk_shift;
377 /*
378 * Get additional bits from then next quadword
379 * when 64-bit boundaries are crossed.
380 */
381 if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
382 T <<= (64 - exp_chunk_shift);
383 red_table_idx_0 ^= T;
384 }
385 red_table_idx_0 &= table_idx_mask;
386
387 ossl_extract_multiplier_2x20_win5(red_X[0],
388 (const BN_ULONG*)red_table,
389 (int)red_table_idx_0, 0);
390 }
391 {
392 red_table_idx_1 = expz[1][exp_chunk_no];
393 T = expz[1][exp_chunk_no + 1];
394
395 red_table_idx_1 >>= exp_chunk_shift;
396 /*
397 * Get additional bits from then next quadword
398 * when 64-bit boundaries are crossed.
399 */
400 if (exp_chunk_shift > 64 - EXP_WIN_SIZE) {
401 T <<= (64 - exp_chunk_shift);
402 red_table_idx_1 ^= T;
403 }
404 red_table_idx_1 &= table_idx_mask;
405
406 ossl_extract_multiplier_2x20_win5(red_X[1],
407 (const BN_ULONG*)red_table,
408 (int)red_table_idx_1, 1);
409 }
410 }
411
412 /* Series of squaring */
413 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
414 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
415 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
416 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
417 DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
418
419 DAMM((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
420 }
421 }
422
423 /*
424 *
425 * NB: After the last AMM of exponentiation in Montgomery domain, the result
426 * may be 1025-bit, but the conversion out of Montgomery domain performs an
427 * AMM(x,1) which guarantees that the final result is less than |m|, so no
428 * conditional subtraction is needed here. See "Efficient Software
429 * Implementations of Modular Exponentiation" (by Shay Gueron) paper for details.
430 */
431
432 /* Convert result back in regular 2^52 domain */
433 memset(red_X, 0, sizeof(red_X));
434 red_X[0][0] = 1;
435 red_X[1][0] = 1;
436 DAMM(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
437
438 /* Clear exponents */
439 OPENSSL_cleanse(expz, sizeof(expz));
440 OPENSSL_cleanse(red_Y, sizeof(red_Y));
441
442# undef DAMS
443# undef DAMM
444# undef EXP_DIGITS
445# undef RED_DIGITS
446# undef EXP_WIN_MASK
447# undef EXP_WIN_SIZE
448# undef BITSIZE_MODULUS
449}
450
451static ossl_inline uint64_t get_digit52(const uint8_t *in, int in_len)
452{
453 uint64_t digit = 0;
454
455 assert(in != NULL);
456
457 for (; in_len > 0; in_len--) {
458 digit <<= 8;
459 digit += (uint64_t)(in[in_len - 1]);
460 }
461 return digit;
462}
463
464/*
465 * Convert array of words in regular (base=2^64) representation to array of
466 * words in redundant (base=2^52) one.
467 */
468static void to_words52(BN_ULONG *out, int out_len,
469 const BN_ULONG *in, int in_bitsize)
470{
471 uint8_t *in_str = NULL;
472
473 assert(out != NULL);
474 assert(in != NULL);
475 /* Check destination buffer capacity */
476 assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
477
478 in_str = (uint8_t *)in;
479
480 for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
481 out[0] = (*(uint64_t_align1 *)in_str) & DIGIT_MASK;
482 in_str += 6;
483 out[1] = ((*(uint64_t_align1 *)in_str) >> 4) & DIGIT_MASK;
484 in_str += 7;
485 out_len -= 2;
486 }
487
488 if (in_bitsize > DIGIT_SIZE) {
489 uint64_t digit = get_digit52(in_str, 7);
490
491 out[0] = digit & DIGIT_MASK;
492 in_str += 6;
493 in_bitsize -= DIGIT_SIZE;
494 digit = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
495 out[1] = digit >> 4;
496 out += 2;
497 out_len -= 2;
498 } else if (in_bitsize > 0) {
499 out[0] = get_digit52(in_str, BITS2WORD8_SIZE(in_bitsize));
500 out++;
501 out_len--;
502 }
503
504 while (out_len > 0) {
505 *out = 0;
506 out_len--;
507 out++;
508 }
509}
510
511static ossl_inline void put_digit52(uint8_t *pStr, int strLen, uint64_t digit)
512{
513 assert(pStr != NULL);
514
515 for (; strLen > 0; strLen--) {
516 *pStr++ = (uint8_t)(digit & 0xFF);
517 digit >>= 8;
518 }
519}
520
521/*
522 * Convert array of words in redundant (base=2^52) representation to array of
523 * words in regular (base=2^64) one.
524 */
525static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
526{
527 int i;
528 int out_len = BITS2WORD64_SIZE(out_bitsize);
529
530 assert(out != NULL);
531 assert(in != NULL);
532
533 for (i = 0; i < out_len; i++)
534 out[i] = 0;
535
536 {
537 uint8_t *out_str = (uint8_t *)out;
538
539 for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
540 (*(uint64_t_align1 *)out_str) = in[0];
541 out_str += 6;
542 (*(uint64_t_align1 *)out_str) ^= in[1] << 4;
543 out_str += 7;
544 }
545
546 if (out_bitsize > DIGIT_SIZE) {
547 put_digit52(out_str, 7, in[0]);
548 out_str += 6;
549 out_bitsize -= DIGIT_SIZE;
550 put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize),
551 (in[1] << 4 | in[0] >> 48));
552 } else if (out_bitsize) {
553 put_digit52(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
554 }
555 }
556}
557
558/*
559 * Set bit at index |idx| in the words array |a|.
560 * It does not do any boundaries checks, make sure the index is valid before
561 * calling the function.
562 */
563static ossl_inline void set_bit(BN_ULONG *a, int idx)
564{
565 assert(a != NULL);
566
567 {
568 int i, j;
569
570 i = idx / BN_BITS2;
571 j = idx % BN_BITS2;
572 a[i] |= (((BN_ULONG)1) << j);
573 }
574}
575
576#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette