1 | /*
|
---|
2 | * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright 2015-2016 Cryptography Research, Inc.
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | *
|
---|
10 | * Originally written by Mike Hamburg
|
---|
11 | */
|
---|
12 | #include <openssl/crypto.h>
|
---|
13 | #include "word.h"
|
---|
14 | #include "field.h"
|
---|
15 |
|
---|
16 | #include "point_448.h"
|
---|
17 | #include "ed448.h"
|
---|
18 | #include "crypto/ecx.h"
|
---|
19 | #include "curve448_local.h"
|
---|
20 |
|
---|
21 | #define COFACTOR 4
|
---|
22 |
|
---|
23 | #define C448_WNAF_FIXED_TABLE_BITS 5
|
---|
24 | #define C448_WNAF_VAR_TABLE_BITS 3
|
---|
25 |
|
---|
26 | #define EDWARDS_D (-39081)
|
---|
27 |
|
---|
28 | static const curve448_scalar_t precomputed_scalarmul_adjustment = {
|
---|
29 | {
|
---|
30 | {
|
---|
31 | SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
|
---|
32 | SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL)
|
---|
33 | }
|
---|
34 | }
|
---|
35 | };
|
---|
36 |
|
---|
37 | #define TWISTED_D (EDWARDS_D - 1)
|
---|
38 |
|
---|
39 | #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
|
---|
40 |
|
---|
41 | /* Inverse. */
|
---|
42 | static void gf_invert(gf y, const gf x, int assert_nonzero)
|
---|
43 | {
|
---|
44 | mask_t ret;
|
---|
45 | gf t1, t2;
|
---|
46 |
|
---|
47 | gf_sqr(t1, x); /* o^2 */
|
---|
48 | ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */
|
---|
49 | (void)ret;
|
---|
50 | if (assert_nonzero)
|
---|
51 | assert(ret);
|
---|
52 | gf_sqr(t1, t2);
|
---|
53 | gf_mul(t2, t1, x); /* not direct to y in case of alias. */
|
---|
54 | gf_copy(y, t2);
|
---|
55 | }
|
---|
56 |
|
---|
57 | /** identity = (0,1) */
|
---|
58 | const curve448_point_t ossl_curve448_point_identity =
|
---|
59 | { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} };
|
---|
60 |
|
---|
61 | static void point_double_internal(curve448_point_t p, const curve448_point_t q,
|
---|
62 | int before_double)
|
---|
63 | {
|
---|
64 | gf a, b, c, d;
|
---|
65 |
|
---|
66 | gf_sqr(c, q->x);
|
---|
67 | gf_sqr(a, q->y);
|
---|
68 | gf_add_nr(d, c, a); /* 2+e */
|
---|
69 | gf_add_nr(p->t, q->y, q->x); /* 2+e */
|
---|
70 | gf_sqr(b, p->t);
|
---|
71 | gf_subx_nr(b, b, d, 3); /* 4+e */
|
---|
72 | gf_sub_nr(p->t, a, c); /* 3+e */
|
---|
73 | gf_sqr(p->x, q->z);
|
---|
74 | gf_add_nr(p->z, p->x, p->x); /* 2+e */
|
---|
75 | gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
|
---|
76 | if (GF_HEADROOM == 5)
|
---|
77 | gf_weak_reduce(a); /* or 1+e */
|
---|
78 | gf_mul(p->x, a, b);
|
---|
79 | gf_mul(p->z, p->t, a);
|
---|
80 | gf_mul(p->y, p->t, d);
|
---|
81 | if (!before_double)
|
---|
82 | gf_mul(p->t, b, d);
|
---|
83 | }
|
---|
84 |
|
---|
85 | void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
|
---|
86 | {
|
---|
87 | point_double_internal(p, q, 0);
|
---|
88 | }
|
---|
89 |
|
---|
90 | /* Operations on [p]niels */
|
---|
91 | static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
|
---|
92 | {
|
---|
93 | gf_cond_swap(n->a, n->b, neg);
|
---|
94 | gf_cond_neg(n->c, neg);
|
---|
95 | }
|
---|
96 |
|
---|
97 | static void pt_to_pniels(pniels_t b, const curve448_point_t a)
|
---|
98 | {
|
---|
99 | gf_sub(b->n->a, a->y, a->x);
|
---|
100 | gf_add(b->n->b, a->x, a->y);
|
---|
101 | gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
|
---|
102 | gf_add(b->z, a->z, a->z);
|
---|
103 | }
|
---|
104 |
|
---|
105 | static void pniels_to_pt(curve448_point_t e, const pniels_t d)
|
---|
106 | {
|
---|
107 | gf eu;
|
---|
108 |
|
---|
109 | gf_add(eu, d->n->b, d->n->a);
|
---|
110 | gf_sub(e->y, d->n->b, d->n->a);
|
---|
111 | gf_mul(e->t, e->y, eu);
|
---|
112 | gf_mul(e->x, d->z, e->y);
|
---|
113 | gf_mul(e->y, d->z, eu);
|
---|
114 | gf_sqr(e->z, d->z);
|
---|
115 | }
|
---|
116 |
|
---|
117 | static void niels_to_pt(curve448_point_t e, const niels_t n)
|
---|
118 | {
|
---|
119 | gf_add(e->y, n->b, n->a);
|
---|
120 | gf_sub(e->x, n->b, n->a);
|
---|
121 | gf_mul(e->t, e->y, e->x);
|
---|
122 | gf_copy(e->z, ONE);
|
---|
123 | }
|
---|
124 |
|
---|
125 | static void add_niels_to_pt(curve448_point_t d, const niels_t e,
|
---|
126 | int before_double)
|
---|
127 | {
|
---|
128 | gf a, b, c;
|
---|
129 |
|
---|
130 | gf_sub_nr(b, d->y, d->x); /* 3+e */
|
---|
131 | gf_mul(a, e->a, b);
|
---|
132 | gf_add_nr(b, d->x, d->y); /* 2+e */
|
---|
133 | gf_mul(d->y, e->b, b);
|
---|
134 | gf_mul(d->x, e->c, d->t);
|
---|
135 | gf_add_nr(c, a, d->y); /* 2+e */
|
---|
136 | gf_sub_nr(b, d->y, a); /* 3+e */
|
---|
137 | gf_sub_nr(d->y, d->z, d->x); /* 3+e */
|
---|
138 | gf_add_nr(a, d->x, d->z); /* 2+e */
|
---|
139 | gf_mul(d->z, a, d->y);
|
---|
140 | gf_mul(d->x, d->y, b);
|
---|
141 | gf_mul(d->y, a, c);
|
---|
142 | if (!before_double)
|
---|
143 | gf_mul(d->t, b, c);
|
---|
144 | }
|
---|
145 |
|
---|
146 | static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
|
---|
147 | int before_double)
|
---|
148 | {
|
---|
149 | gf a, b, c;
|
---|
150 |
|
---|
151 | gf_sub_nr(b, d->y, d->x); /* 3+e */
|
---|
152 | gf_mul(a, e->b, b);
|
---|
153 | gf_add_nr(b, d->x, d->y); /* 2+e */
|
---|
154 | gf_mul(d->y, e->a, b);
|
---|
155 | gf_mul(d->x, e->c, d->t);
|
---|
156 | gf_add_nr(c, a, d->y); /* 2+e */
|
---|
157 | gf_sub_nr(b, d->y, a); /* 3+e */
|
---|
158 | gf_add_nr(d->y, d->z, d->x); /* 2+e */
|
---|
159 | gf_sub_nr(a, d->z, d->x); /* 3+e */
|
---|
160 | gf_mul(d->z, a, d->y);
|
---|
161 | gf_mul(d->x, d->y, b);
|
---|
162 | gf_mul(d->y, a, c);
|
---|
163 | if (!before_double)
|
---|
164 | gf_mul(d->t, b, c);
|
---|
165 | }
|
---|
166 |
|
---|
167 | static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
|
---|
168 | int before_double)
|
---|
169 | {
|
---|
170 | gf L0;
|
---|
171 |
|
---|
172 | gf_mul(L0, p->z, pn->z);
|
---|
173 | gf_copy(p->z, L0);
|
---|
174 | add_niels_to_pt(p, pn->n, before_double);
|
---|
175 | }
|
---|
176 |
|
---|
177 | static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
|
---|
178 | int before_double)
|
---|
179 | {
|
---|
180 | gf L0;
|
---|
181 |
|
---|
182 | gf_mul(L0, p->z, pn->z);
|
---|
183 | gf_copy(p->z, L0);
|
---|
184 | sub_niels_from_pt(p, pn->n, before_double);
|
---|
185 | }
|
---|
186 |
|
---|
187 | c448_bool_t
|
---|
188 | ossl_curve448_point_eq(const curve448_point_t p,
|
---|
189 | const curve448_point_t q)
|
---|
190 | {
|
---|
191 | mask_t succ;
|
---|
192 | gf a, b;
|
---|
193 |
|
---|
194 | /* equality mod 2-torsion compares x/y */
|
---|
195 | gf_mul(a, p->y, q->x);
|
---|
196 | gf_mul(b, q->y, p->x);
|
---|
197 | succ = gf_eq(a, b);
|
---|
198 |
|
---|
199 | return mask_to_bool(succ);
|
---|
200 | }
|
---|
201 |
|
---|
202 | c448_bool_t
|
---|
203 | ossl_curve448_point_valid(const curve448_point_t p)
|
---|
204 | {
|
---|
205 | mask_t out;
|
---|
206 | gf a, b, c;
|
---|
207 |
|
---|
208 | gf_mul(a, p->x, p->y);
|
---|
209 | gf_mul(b, p->z, p->t);
|
---|
210 | out = gf_eq(a, b);
|
---|
211 | gf_sqr(a, p->x);
|
---|
212 | gf_sqr(b, p->y);
|
---|
213 | gf_sub(a, b, a);
|
---|
214 | gf_sqr(b, p->t);
|
---|
215 | gf_mulw(c, b, TWISTED_D);
|
---|
216 | gf_sqr(b, p->z);
|
---|
217 | gf_add(b, b, c);
|
---|
218 | out &= gf_eq(a, b);
|
---|
219 | out &= ~gf_eq(p->z, ZERO);
|
---|
220 | return mask_to_bool(out);
|
---|
221 | }
|
---|
222 |
|
---|
223 | static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
|
---|
224 | const niels_t * table,
|
---|
225 | int nelts, int idx)
|
---|
226 | {
|
---|
227 | constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
|
---|
228 | }
|
---|
229 |
|
---|
230 | void
|
---|
231 | ossl_curve448_precomputed_scalarmul(curve448_point_t out,
|
---|
232 | const curve448_precomputed_s * table,
|
---|
233 | const curve448_scalar_t scalar)
|
---|
234 | {
|
---|
235 | unsigned int i, j, k;
|
---|
236 | const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
|
---|
237 | niels_t ni;
|
---|
238 | curve448_scalar_t scalar1x;
|
---|
239 |
|
---|
240 | ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
|
---|
241 | ossl_curve448_scalar_halve(scalar1x, scalar1x);
|
---|
242 |
|
---|
243 | for (i = s; i > 0; i--) {
|
---|
244 | if (i != s)
|
---|
245 | point_double_internal(out, out, 0);
|
---|
246 |
|
---|
247 | for (j = 0; j < n; j++) {
|
---|
248 | int tab = 0;
|
---|
249 | mask_t invert;
|
---|
250 |
|
---|
251 | for (k = 0; k < t; k++) {
|
---|
252 | unsigned int bit = (i - 1) + s * (k + j * t);
|
---|
253 |
|
---|
254 | if (bit < C448_SCALAR_BITS)
|
---|
255 | tab |=
|
---|
256 | (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
|
---|
257 | }
|
---|
258 |
|
---|
259 | invert = (tab >> (t - 1)) - 1;
|
---|
260 | tab ^= invert;
|
---|
261 | tab &= (1 << (t - 1)) - 1;
|
---|
262 |
|
---|
263 | constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
|
---|
264 | 1 << (t - 1), tab);
|
---|
265 |
|
---|
266 | cond_neg_niels(ni, invert);
|
---|
267 | if ((i != s) || j != 0)
|
---|
268 | add_niels_to_pt(out, ni, j == n - 1 && i != 1);
|
---|
269 | else
|
---|
270 | niels_to_pt(out, ni);
|
---|
271 | }
|
---|
272 | }
|
---|
273 |
|
---|
274 | OPENSSL_cleanse(ni, sizeof(ni));
|
---|
275 | OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
|
---|
276 | }
|
---|
277 |
|
---|
278 | void
|
---|
279 | ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
|
---|
280 | uint8_t enc[EDDSA_448_PUBLIC_BYTES],
|
---|
281 | const curve448_point_t p)
|
---|
282 | {
|
---|
283 | gf x, y, z, t;
|
---|
284 | curve448_point_t q;
|
---|
285 |
|
---|
286 | /* The point is now on the twisted curve. Move it to untwisted. */
|
---|
287 | curve448_point_copy(q, p);
|
---|
288 |
|
---|
289 | {
|
---|
290 | /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
|
---|
291 | gf u;
|
---|
292 |
|
---|
293 | gf_sqr(x, q->x);
|
---|
294 | gf_sqr(t, q->y);
|
---|
295 | gf_add(u, x, t);
|
---|
296 | gf_add(z, q->y, q->x);
|
---|
297 | gf_sqr(y, z);
|
---|
298 | gf_sub(y, y, u);
|
---|
299 | gf_sub(z, t, x);
|
---|
300 | gf_sqr(x, q->z);
|
---|
301 | gf_add(t, x, x);
|
---|
302 | gf_sub(t, t, z);
|
---|
303 | gf_mul(x, t, y);
|
---|
304 | gf_mul(y, z, u);
|
---|
305 | gf_mul(z, u, t);
|
---|
306 | OPENSSL_cleanse(u, sizeof(u));
|
---|
307 | }
|
---|
308 |
|
---|
309 | /* Affinize */
|
---|
310 | gf_invert(z, z, 1);
|
---|
311 | gf_mul(t, x, z);
|
---|
312 | gf_mul(x, y, z);
|
---|
313 |
|
---|
314 | /* Encode */
|
---|
315 | enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
|
---|
316 | gf_serialize(enc, x, 1);
|
---|
317 | enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
|
---|
318 |
|
---|
319 | OPENSSL_cleanse(x, sizeof(x));
|
---|
320 | OPENSSL_cleanse(y, sizeof(y));
|
---|
321 | OPENSSL_cleanse(z, sizeof(z));
|
---|
322 | OPENSSL_cleanse(t, sizeof(t));
|
---|
323 | ossl_curve448_point_destroy(q);
|
---|
324 | }
|
---|
325 |
|
---|
326 | c448_error_t
|
---|
327 | ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
|
---|
328 | curve448_point_t p,
|
---|
329 | const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
|
---|
330 | {
|
---|
331 | uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
|
---|
332 | mask_t low;
|
---|
333 | mask_t succ;
|
---|
334 |
|
---|
335 | memcpy(enc2, enc, sizeof(enc2));
|
---|
336 |
|
---|
337 | low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
|
---|
338 | enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
|
---|
339 |
|
---|
340 | succ = gf_deserialize(p->y, enc2, 1, 0);
|
---|
341 | succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
|
---|
342 |
|
---|
343 | gf_sqr(p->x, p->y);
|
---|
344 | gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */
|
---|
345 | gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
|
---|
346 | gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
|
---|
347 |
|
---|
348 | gf_mul(p->x, p->z, p->t);
|
---|
349 | succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
|
---|
350 |
|
---|
351 | gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */
|
---|
352 | gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
|
---|
353 | gf_copy(p->z, ONE);
|
---|
354 |
|
---|
355 | {
|
---|
356 | gf a, b, c, d;
|
---|
357 |
|
---|
358 | /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
|
---|
359 | gf_sqr(c, p->x);
|
---|
360 | gf_sqr(a, p->y);
|
---|
361 | gf_add(d, c, a);
|
---|
362 | gf_add(p->t, p->y, p->x);
|
---|
363 | gf_sqr(b, p->t);
|
---|
364 | gf_sub(b, b, d);
|
---|
365 | gf_sub(p->t, a, c);
|
---|
366 | gf_sqr(p->x, p->z);
|
---|
367 | gf_add(p->z, p->x, p->x);
|
---|
368 | gf_sub(a, p->z, d);
|
---|
369 | gf_mul(p->x, a, b);
|
---|
370 | gf_mul(p->z, p->t, a);
|
---|
371 | gf_mul(p->y, p->t, d);
|
---|
372 | gf_mul(p->t, b, d);
|
---|
373 | OPENSSL_cleanse(a, sizeof(a));
|
---|
374 | OPENSSL_cleanse(b, sizeof(b));
|
---|
375 | OPENSSL_cleanse(c, sizeof(c));
|
---|
376 | OPENSSL_cleanse(d, sizeof(d));
|
---|
377 | }
|
---|
378 |
|
---|
379 | OPENSSL_cleanse(enc2, sizeof(enc2));
|
---|
380 | assert(ossl_curve448_point_valid(p) || ~succ);
|
---|
381 |
|
---|
382 | return c448_succeed_if(mask_to_bool(succ));
|
---|
383 | }
|
---|
384 |
|
---|
385 | c448_error_t
|
---|
386 | ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
|
---|
387 | const uint8_t base[X_PUBLIC_BYTES],
|
---|
388 | const uint8_t scalar[X_PRIVATE_BYTES])
|
---|
389 | {
|
---|
390 | gf x1, x2, z2, x3, z3, t1, t2;
|
---|
391 | int t;
|
---|
392 | mask_t swap = 0;
|
---|
393 | mask_t nz;
|
---|
394 |
|
---|
395 | (void)gf_deserialize(x1, base, 1, 0);
|
---|
396 | gf_copy(x2, ONE);
|
---|
397 | gf_copy(z2, ZERO);
|
---|
398 | gf_copy(x3, x1);
|
---|
399 | gf_copy(z3, ONE);
|
---|
400 |
|
---|
401 | for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
|
---|
402 | uint8_t sb = scalar[t / 8];
|
---|
403 | mask_t k_t;
|
---|
404 |
|
---|
405 | /* Scalar conditioning */
|
---|
406 | if (t / 8 == 0)
|
---|
407 | sb &= -(uint8_t)COFACTOR;
|
---|
408 | else if (t == X_PRIVATE_BITS - 1)
|
---|
409 | sb = -1;
|
---|
410 |
|
---|
411 | k_t = (sb >> (t % 8)) & 1;
|
---|
412 | k_t = 0 - k_t; /* set to all 0s or all 1s */
|
---|
413 |
|
---|
414 | swap ^= k_t;
|
---|
415 | gf_cond_swap(x2, x3, swap);
|
---|
416 | gf_cond_swap(z2, z3, swap);
|
---|
417 | swap = k_t;
|
---|
418 |
|
---|
419 | /*
|
---|
420 | * The "_nr" below skips coefficient reduction. In the following
|
---|
421 | * comments, "2+e" is saying that the coefficients are at most 2+epsilon
|
---|
422 | * times the reduction limit.
|
---|
423 | */
|
---|
424 | gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */
|
---|
425 | gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */
|
---|
426 | gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */
|
---|
427 | gf_mul(x2, t1, z2); /* DA */
|
---|
428 | gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */
|
---|
429 | gf_mul(x3, t2, z2); /* CB */
|
---|
430 | gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */
|
---|
431 | gf_sqr(z2, z3); /* (DA-CB)^2 */
|
---|
432 | gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */
|
---|
433 | gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */
|
---|
434 | gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */
|
---|
435 |
|
---|
436 | gf_sqr(z2, t1); /* AA = A^2 */
|
---|
437 | gf_sqr(t1, t2); /* BB = B^2 */
|
---|
438 | gf_mul(x2, z2, t1); /* x2 = AA*BB */
|
---|
439 | gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */
|
---|
440 |
|
---|
441 | gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
|
---|
442 | gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */
|
---|
443 | gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */
|
---|
444 | }
|
---|
445 |
|
---|
446 | /* Finish */
|
---|
447 | gf_cond_swap(x2, x3, swap);
|
---|
448 | gf_cond_swap(z2, z3, swap);
|
---|
449 | gf_invert(z2, z2, 0);
|
---|
450 | gf_mul(x1, x2, z2);
|
---|
451 | gf_serialize(out, x1, 1);
|
---|
452 | nz = ~gf_eq(x1, ZERO);
|
---|
453 |
|
---|
454 | OPENSSL_cleanse(x1, sizeof(x1));
|
---|
455 | OPENSSL_cleanse(x2, sizeof(x2));
|
---|
456 | OPENSSL_cleanse(z2, sizeof(z2));
|
---|
457 | OPENSSL_cleanse(x3, sizeof(x3));
|
---|
458 | OPENSSL_cleanse(z3, sizeof(z3));
|
---|
459 | OPENSSL_cleanse(t1, sizeof(t1));
|
---|
460 | OPENSSL_cleanse(t2, sizeof(t2));
|
---|
461 |
|
---|
462 | return c448_succeed_if(mask_to_bool(nz));
|
---|
463 | }
|
---|
464 |
|
---|
465 | void
|
---|
466 | ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
|
---|
467 | out[X_PUBLIC_BYTES],
|
---|
468 | const curve448_point_t p)
|
---|
469 | {
|
---|
470 | curve448_point_t q;
|
---|
471 |
|
---|
472 | curve448_point_copy(q, p);
|
---|
473 | gf_invert(q->t, q->x, 0); /* 1/x */
|
---|
474 | gf_mul(q->z, q->t, q->y); /* y/x */
|
---|
475 | gf_sqr(q->y, q->z); /* (y/x)^2 */
|
---|
476 | gf_serialize(out, q->y, 1);
|
---|
477 | ossl_curve448_point_destroy(q);
|
---|
478 | }
|
---|
479 |
|
---|
480 | void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
|
---|
481 | const uint8_t scalar[X_PRIVATE_BYTES])
|
---|
482 | {
|
---|
483 | /* Scalar conditioning */
|
---|
484 | uint8_t scalar2[X_PRIVATE_BYTES];
|
---|
485 | curve448_scalar_t the_scalar;
|
---|
486 | curve448_point_t p;
|
---|
487 | unsigned int i;
|
---|
488 |
|
---|
489 | memcpy(scalar2, scalar, sizeof(scalar2));
|
---|
490 | scalar2[0] &= -(uint8_t)COFACTOR;
|
---|
491 |
|
---|
492 | scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
|
---|
493 | scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
|
---|
494 |
|
---|
495 | ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
|
---|
496 |
|
---|
497 | /* Compensate for the encoding ratio */
|
---|
498 | for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
|
---|
499 | ossl_curve448_scalar_halve(the_scalar, the_scalar);
|
---|
500 |
|
---|
501 | ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
|
---|
502 | the_scalar);
|
---|
503 | ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
|
---|
504 | ossl_curve448_point_destroy(p);
|
---|
505 | }
|
---|
506 |
|
---|
507 | /* Control for variable-time scalar multiply algorithms. */
|
---|
508 | struct smvt_control {
|
---|
509 | int power, addend;
|
---|
510 | };
|
---|
511 |
|
---|
512 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
|
---|
513 | # define NUMTRAILINGZEROS __builtin_ctz
|
---|
514 | #else
|
---|
515 | # define NUMTRAILINGZEROS numtrailingzeros
|
---|
516 | static uint32_t numtrailingzeros(uint32_t i)
|
---|
517 | {
|
---|
518 | uint32_t tmp;
|
---|
519 | uint32_t num = 31;
|
---|
520 |
|
---|
521 | if (i == 0)
|
---|
522 | return 32;
|
---|
523 |
|
---|
524 | tmp = i << 16;
|
---|
525 | if (tmp != 0) {
|
---|
526 | i = tmp;
|
---|
527 | num -= 16;
|
---|
528 | }
|
---|
529 | tmp = i << 8;
|
---|
530 | if (tmp != 0) {
|
---|
531 | i = tmp;
|
---|
532 | num -= 8;
|
---|
533 | }
|
---|
534 | tmp = i << 4;
|
---|
535 | if (tmp != 0) {
|
---|
536 | i = tmp;
|
---|
537 | num -= 4;
|
---|
538 | }
|
---|
539 | tmp = i << 2;
|
---|
540 | if (tmp != 0) {
|
---|
541 | i = tmp;
|
---|
542 | num -= 2;
|
---|
543 | }
|
---|
544 | tmp = i << 1;
|
---|
545 | if (tmp != 0)
|
---|
546 | num--;
|
---|
547 |
|
---|
548 | return num;
|
---|
549 | }
|
---|
550 | #endif
|
---|
551 |
|
---|
552 | static int recode_wnaf(struct smvt_control *control,
|
---|
553 | /* [nbits/(table_bits + 1) + 3] */
|
---|
554 | const curve448_scalar_t scalar,
|
---|
555 | unsigned int table_bits)
|
---|
556 | {
|
---|
557 | unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
|
---|
558 | int position = table_size - 1; /* at the end */
|
---|
559 | uint64_t current = scalar->limb[0] & 0xFFFF;
|
---|
560 | uint32_t mask = (1 << (table_bits + 1)) - 1;
|
---|
561 | unsigned int w;
|
---|
562 | const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
|
---|
563 | unsigned int n, i;
|
---|
564 |
|
---|
565 | /* place the end marker */
|
---|
566 | control[position].power = -1;
|
---|
567 | control[position].addend = 0;
|
---|
568 | position--;
|
---|
569 |
|
---|
570 | /*
|
---|
571 | * PERF: Could negate scalar if it's large. But then would need more cases
|
---|
572 | * in the actual code that uses it, all for an expected reduction of like
|
---|
573 | * 1/5 op. Probably not worth it.
|
---|
574 | */
|
---|
575 |
|
---|
576 | for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
|
---|
577 | if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
|
---|
578 | /* Refill the 16 high bits of current */
|
---|
579 | current += (uint32_t)((scalar->limb[w / B_OVER_16]
|
---|
580 | >> (16 * (w % B_OVER_16))) << 16);
|
---|
581 | }
|
---|
582 |
|
---|
583 | while (current & 0xFFFF) {
|
---|
584 | uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
|
---|
585 | uint32_t odd = (uint32_t)current >> pos;
|
---|
586 | int32_t delta = odd & mask;
|
---|
587 |
|
---|
588 | assert(position >= 0);
|
---|
589 | assert(pos < 32); /* can't fail since current & 0xFFFF != 0 */
|
---|
590 | if (odd & (1 << (table_bits + 1)))
|
---|
591 | delta -= (1 << (table_bits + 1));
|
---|
592 | current -= delta * (1 << pos);
|
---|
593 | control[position].power = pos + 16 * (w - 1);
|
---|
594 | control[position].addend = delta;
|
---|
595 | position--;
|
---|
596 | }
|
---|
597 | current >>= 16;
|
---|
598 | }
|
---|
599 | assert(current == 0);
|
---|
600 |
|
---|
601 | position++;
|
---|
602 | n = table_size - position;
|
---|
603 | for (i = 0; i < n; i++)
|
---|
604 | control[i] = control[i + position];
|
---|
605 |
|
---|
606 | return n - 1;
|
---|
607 | }
|
---|
608 |
|
---|
609 | static void prepare_wnaf_table(pniels_t * output,
|
---|
610 | const curve448_point_t working,
|
---|
611 | unsigned int tbits)
|
---|
612 | {
|
---|
613 | curve448_point_t tmp;
|
---|
614 | int i;
|
---|
615 | pniels_t twop;
|
---|
616 |
|
---|
617 | pt_to_pniels(output[0], working);
|
---|
618 |
|
---|
619 | if (tbits == 0)
|
---|
620 | return;
|
---|
621 |
|
---|
622 | ossl_curve448_point_double(tmp, working);
|
---|
623 | pt_to_pniels(twop, tmp);
|
---|
624 |
|
---|
625 | add_pniels_to_pt(tmp, output[0], 0);
|
---|
626 | pt_to_pniels(output[1], tmp);
|
---|
627 |
|
---|
628 | for (i = 2; i < 1 << tbits; i++) {
|
---|
629 | add_pniels_to_pt(tmp, twop, 0);
|
---|
630 | pt_to_pniels(output[i], tmp);
|
---|
631 | }
|
---|
632 |
|
---|
633 | ossl_curve448_point_destroy(tmp);
|
---|
634 | OPENSSL_cleanse(twop, sizeof(twop));
|
---|
635 | }
|
---|
636 |
|
---|
637 | void
|
---|
638 | ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
|
---|
639 | const curve448_scalar_t scalar1,
|
---|
640 | const curve448_point_t base2,
|
---|
641 | const curve448_scalar_t scalar2)
|
---|
642 | {
|
---|
643 | const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
|
---|
644 | const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
|
---|
645 | struct smvt_control control_var[C448_SCALAR_BITS /
|
---|
646 | (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
|
---|
647 | struct smvt_control control_pre[C448_SCALAR_BITS /
|
---|
648 | (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
|
---|
649 | int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
|
---|
650 | int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
|
---|
651 | pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
|
---|
652 | int contp = 0, contv = 0, i;
|
---|
653 |
|
---|
654 | prepare_wnaf_table(precmp_var, base2, table_bits_var);
|
---|
655 | i = control_var[0].power;
|
---|
656 |
|
---|
657 | if (i < 0) {
|
---|
658 | curve448_point_copy(combo, ossl_curve448_point_identity);
|
---|
659 | return;
|
---|
660 | }
|
---|
661 | if (i > control_pre[0].power) {
|
---|
662 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
|
---|
663 | contv++;
|
---|
664 | } else if (i == control_pre[0].power && i >= 0) {
|
---|
665 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
|
---|
666 | add_niels_to_pt(combo,
|
---|
667 | ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
|
---|
668 | i);
|
---|
669 | contv++;
|
---|
670 | contp++;
|
---|
671 | } else {
|
---|
672 | i = control_pre[0].power;
|
---|
673 | niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
|
---|
674 | contp++;
|
---|
675 | }
|
---|
676 |
|
---|
677 | for (i--; i >= 0; i--) {
|
---|
678 | int cv = (i == control_var[contv].power);
|
---|
679 | int cp = (i == control_pre[contp].power);
|
---|
680 |
|
---|
681 | point_double_internal(combo, combo, i && !(cv || cp));
|
---|
682 |
|
---|
683 | if (cv) {
|
---|
684 | assert(control_var[contv].addend);
|
---|
685 |
|
---|
686 | if (control_var[contv].addend > 0)
|
---|
687 | add_pniels_to_pt(combo,
|
---|
688 | precmp_var[control_var[contv].addend >> 1],
|
---|
689 | i && !cp);
|
---|
690 | else
|
---|
691 | sub_pniels_from_pt(combo,
|
---|
692 | precmp_var[(-control_var[contv].addend)
|
---|
693 | >> 1], i && !cp);
|
---|
694 | contv++;
|
---|
695 | }
|
---|
696 |
|
---|
697 | if (cp) {
|
---|
698 | assert(control_pre[contp].addend);
|
---|
699 |
|
---|
700 | if (control_pre[contp].addend > 0)
|
---|
701 | add_niels_to_pt(combo,
|
---|
702 | ossl_curve448_wnaf_base[control_pre[contp].addend
|
---|
703 | >> 1], i);
|
---|
704 | else
|
---|
705 | sub_niels_from_pt(combo,
|
---|
706 | ossl_curve448_wnaf_base[(-control_pre
|
---|
707 | [contp].addend) >> 1], i);
|
---|
708 | contp++;
|
---|
709 | }
|
---|
710 | }
|
---|
711 |
|
---|
712 | /* This function is non-secret, but whatever this is cheap. */
|
---|
713 | OPENSSL_cleanse(control_var, sizeof(control_var));
|
---|
714 | OPENSSL_cleanse(control_pre, sizeof(control_pre));
|
---|
715 | OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
|
---|
716 |
|
---|
717 | assert(contv == ncb_var);
|
---|
718 | (void)ncb_var;
|
---|
719 | assert(contp == ncb_pre);
|
---|
720 | (void)ncb_pre;
|
---|
721 | }
|
---|
722 |
|
---|
723 | void ossl_curve448_point_destroy(curve448_point_t point)
|
---|
724 | {
|
---|
725 | OPENSSL_cleanse(point, sizeof(curve448_point_t));
|
---|
726 | }
|
---|
727 |
|
---|
728 | int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
|
---|
729 | const uint8_t peer_public_value[56])
|
---|
730 | {
|
---|
731 | return ossl_x448_int(out_shared_key, peer_public_value, private_key)
|
---|
732 | == C448_SUCCESS;
|
---|
733 | }
|
---|
734 |
|
---|
735 | void ossl_x448_public_from_private(uint8_t out_public_value[56],
|
---|
736 | const uint8_t private_key[56])
|
---|
737 | {
|
---|
738 | ossl_x448_derive_public_key(out_public_value, private_key);
|
---|
739 | }
|
---|