1 | /*
|
---|
2 | * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <string.h>
|
---|
11 | #include <openssl/crypto.h>
|
---|
12 | #include "crypto/modes.h"
|
---|
13 |
|
---|
14 | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)
|
---|
15 | typedef size_t size_t_aX __attribute((__aligned__(1)));
|
---|
16 | #else
|
---|
17 | typedef size_t size_t_aX;
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * The input and output encrypted as though 128bit cfb mode is being used.
|
---|
22 | * The extra state information to record how much of the 128bit block we have
|
---|
23 | * used is contained in *num;
|
---|
24 | */
|
---|
25 | void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,
|
---|
26 | size_t len, const void *key,
|
---|
27 | unsigned char ivec[16], int *num,
|
---|
28 | int enc, block128_f block)
|
---|
29 | {
|
---|
30 | unsigned int n;
|
---|
31 | size_t l = 0;
|
---|
32 |
|
---|
33 | if (*num < 0) {
|
---|
34 | /* There is no good way to signal an error return from here */
|
---|
35 | *num = -1;
|
---|
36 | return;
|
---|
37 | }
|
---|
38 | n = *num;
|
---|
39 |
|
---|
40 | if (enc) {
|
---|
41 | #if !defined(OPENSSL_SMALL_FOOTPRINT)
|
---|
42 | if (16 % sizeof(size_t) == 0) { /* always true actually */
|
---|
43 | do {
|
---|
44 | while (n && len) {
|
---|
45 | *(out++) = ivec[n] ^= *(in++);
|
---|
46 | --len;
|
---|
47 | n = (n + 1) % 16;
|
---|
48 | }
|
---|
49 | # if defined(STRICT_ALIGNMENT)
|
---|
50 | if (((size_t)in | (size_t)out | (size_t)ivec) %
|
---|
51 | sizeof(size_t) != 0)
|
---|
52 | break;
|
---|
53 | # endif
|
---|
54 | while (len >= 16) {
|
---|
55 | (*block) (ivec, ivec, key);
|
---|
56 | for (; n < 16; n += sizeof(size_t)) {
|
---|
57 | *(size_t_aX *)(out + n) =
|
---|
58 | *(size_t_aX *)(ivec + n)
|
---|
59 | ^= *(size_t_aX *)(in + n);
|
---|
60 | }
|
---|
61 | len -= 16;
|
---|
62 | out += 16;
|
---|
63 | in += 16;
|
---|
64 | n = 0;
|
---|
65 | }
|
---|
66 | if (len) {
|
---|
67 | (*block) (ivec, ivec, key);
|
---|
68 | while (len--) {
|
---|
69 | out[n] = ivec[n] ^= in[n];
|
---|
70 | ++n;
|
---|
71 | }
|
---|
72 | }
|
---|
73 | *num = n;
|
---|
74 | return;
|
---|
75 | } while (0);
|
---|
76 | }
|
---|
77 | /* the rest would be commonly eliminated by x86* compiler */
|
---|
78 | #endif
|
---|
79 | while (l < len) {
|
---|
80 | if (n == 0) {
|
---|
81 | (*block) (ivec, ivec, key);
|
---|
82 | }
|
---|
83 | out[l] = ivec[n] ^= in[l];
|
---|
84 | ++l;
|
---|
85 | n = (n + 1) % 16;
|
---|
86 | }
|
---|
87 | *num = n;
|
---|
88 | } else {
|
---|
89 | #if !defined(OPENSSL_SMALL_FOOTPRINT)
|
---|
90 | if (16 % sizeof(size_t) == 0) { /* always true actually */
|
---|
91 | do {
|
---|
92 | while (n && len) {
|
---|
93 | unsigned char c;
|
---|
94 | *(out++) = ivec[n] ^ (c = *(in++));
|
---|
95 | ivec[n] = c;
|
---|
96 | --len;
|
---|
97 | n = (n + 1) % 16;
|
---|
98 | }
|
---|
99 | # if defined(STRICT_ALIGNMENT)
|
---|
100 | if (((size_t)in | (size_t)out | (size_t)ivec) %
|
---|
101 | sizeof(size_t) != 0)
|
---|
102 | break;
|
---|
103 | # endif
|
---|
104 | while (len >= 16) {
|
---|
105 | (*block) (ivec, ivec, key);
|
---|
106 | for (; n < 16; n += sizeof(size_t)) {
|
---|
107 | size_t t = *(size_t_aX *)(in + n);
|
---|
108 | *(size_t_aX *)(out + n)
|
---|
109 | = *(size_t_aX *)(ivec + n) ^ t;
|
---|
110 | *(size_t_aX *)(ivec + n) = t;
|
---|
111 | }
|
---|
112 | len -= 16;
|
---|
113 | out += 16;
|
---|
114 | in += 16;
|
---|
115 | n = 0;
|
---|
116 | }
|
---|
117 | if (len) {
|
---|
118 | (*block) (ivec, ivec, key);
|
---|
119 | while (len--) {
|
---|
120 | unsigned char c;
|
---|
121 | out[n] = ivec[n] ^ (c = in[n]);
|
---|
122 | ivec[n] = c;
|
---|
123 | ++n;
|
---|
124 | }
|
---|
125 | }
|
---|
126 | *num = n;
|
---|
127 | return;
|
---|
128 | } while (0);
|
---|
129 | }
|
---|
130 | /* the rest would be commonly eliminated by x86* compiler */
|
---|
131 | #endif
|
---|
132 | while (l < len) {
|
---|
133 | unsigned char c;
|
---|
134 | if (n == 0) {
|
---|
135 | (*block) (ivec, ivec, key);
|
---|
136 | }
|
---|
137 | out[l] = ivec[n] ^ (c = in[l]);
|
---|
138 | ivec[n] = c;
|
---|
139 | ++l;
|
---|
140 | n = (n + 1) % 16;
|
---|
141 | }
|
---|
142 | *num = n;
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 | /*
|
---|
147 | * This expects a single block of size nbits for both in and out. Note that
|
---|
148 | * it corrupts any extra bits in the last byte of out
|
---|
149 | */
|
---|
150 | static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,
|
---|
151 | int nbits, const void *key,
|
---|
152 | unsigned char ivec[16], int enc,
|
---|
153 | block128_f block)
|
---|
154 | {
|
---|
155 | int n, rem, num;
|
---|
156 | unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't
|
---|
157 | * use) one byte off the end */
|
---|
158 |
|
---|
159 | if (nbits <= 0 || nbits > 128)
|
---|
160 | return;
|
---|
161 |
|
---|
162 | /* fill in the first half of the new IV with the current IV */
|
---|
163 | memcpy(ovec, ivec, 16);
|
---|
164 | /* construct the new IV */
|
---|
165 | (*block) (ivec, ivec, key);
|
---|
166 | num = (nbits + 7) / 8;
|
---|
167 | if (enc) /* encrypt the input */
|
---|
168 | for (n = 0; n < num; ++n)
|
---|
169 | out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);
|
---|
170 | else /* decrypt the input */
|
---|
171 | for (n = 0; n < num; ++n)
|
---|
172 | out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];
|
---|
173 | /* shift ovec left... */
|
---|
174 | rem = nbits % 8;
|
---|
175 | num = nbits / 8;
|
---|
176 | if (rem == 0)
|
---|
177 | memcpy(ivec, ovec + num, 16);
|
---|
178 | else
|
---|
179 | for (n = 0; n < 16; ++n)
|
---|
180 | ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);
|
---|
181 |
|
---|
182 | /* it is not necessary to cleanse ovec, since the IV is not secret */
|
---|
183 | }
|
---|
184 |
|
---|
185 | /* N.B. This expects the input to be packed, MS bit first */
|
---|
186 | void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,
|
---|
187 | size_t bits, const void *key,
|
---|
188 | unsigned char ivec[16], int *num,
|
---|
189 | int enc, block128_f block)
|
---|
190 | {
|
---|
191 | size_t n;
|
---|
192 | unsigned char c[1], d[1];
|
---|
193 |
|
---|
194 | for (n = 0; n < bits; ++n) {
|
---|
195 | c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;
|
---|
196 | cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);
|
---|
197 | out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |
|
---|
198 | ((d[0] & 0x80) >> (unsigned int)(n % 8));
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,
|
---|
203 | size_t length, const void *key,
|
---|
204 | unsigned char ivec[16], int *num,
|
---|
205 | int enc, block128_f block)
|
---|
206 | {
|
---|
207 | size_t n;
|
---|
208 |
|
---|
209 | for (n = 0; n < length; ++n)
|
---|
210 | cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);
|
---|
211 | }
|
---|