1 | /*
|
---|
2 | * Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <string.h>
|
---|
11 | #include <openssl/crypto.h>
|
---|
12 | #include <openssl/err.h>
|
---|
13 | #include "crypto/modes.h"
|
---|
14 |
|
---|
15 | #ifndef OPENSSL_NO_OCB
|
---|
16 |
|
---|
17 | /*
|
---|
18 | * Calculate the number of binary trailing zero's in any given number
|
---|
19 | */
|
---|
20 | static u32 ocb_ntz(u64 n)
|
---|
21 | {
|
---|
22 | u32 cnt = 0;
|
---|
23 |
|
---|
24 | /*
|
---|
25 | * We do a right-to-left simple sequential search. This is surprisingly
|
---|
26 | * efficient as the distribution of trailing zeros is not uniform,
|
---|
27 | * e.g. the number of possible inputs with no trailing zeros is equal to
|
---|
28 | * the number with 1 or more; the number with exactly 1 is equal to the
|
---|
29 | * number with 2 or more, etc. Checking the last two bits covers 75% of
|
---|
30 | * all numbers. Checking the last three covers 87.5%
|
---|
31 | */
|
---|
32 | while (!(n & 1)) {
|
---|
33 | n >>= 1;
|
---|
34 | cnt++;
|
---|
35 | }
|
---|
36 | return cnt;
|
---|
37 | }
|
---|
38 |
|
---|
39 | /*
|
---|
40 | * Shift a block of 16 bytes left by shift bits
|
---|
41 | */
|
---|
42 | static void ocb_block_lshift(const unsigned char *in, size_t shift,
|
---|
43 | unsigned char *out)
|
---|
44 | {
|
---|
45 | int i;
|
---|
46 | unsigned char carry = 0, carry_next;
|
---|
47 |
|
---|
48 | for (i = 15; i >= 0; i--) {
|
---|
49 | carry_next = in[i] >> (8 - shift);
|
---|
50 | out[i] = (in[i] << shift) | carry;
|
---|
51 | carry = carry_next;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | /*
|
---|
56 | * Perform a "double" operation as per OCB spec
|
---|
57 | */
|
---|
58 | static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
|
---|
59 | {
|
---|
60 | unsigned char mask;
|
---|
61 |
|
---|
62 | /*
|
---|
63 | * Calculate the mask based on the most significant bit. There are more
|
---|
64 | * efficient ways to do this - but this way is constant time
|
---|
65 | */
|
---|
66 | mask = in->c[0] & 0x80;
|
---|
67 | mask >>= 7;
|
---|
68 | mask = (0 - mask) & 0x87;
|
---|
69 |
|
---|
70 | ocb_block_lshift(in->c, 1, out->c);
|
---|
71 |
|
---|
72 | out->c[15] ^= mask;
|
---|
73 | }
|
---|
74 |
|
---|
75 | /*
|
---|
76 | * Perform an xor on in1 and in2 - each of len bytes. Store result in out
|
---|
77 | */
|
---|
78 | static void ocb_block_xor(const unsigned char *in1,
|
---|
79 | const unsigned char *in2, size_t len,
|
---|
80 | unsigned char *out)
|
---|
81 | {
|
---|
82 | size_t i;
|
---|
83 | for (i = 0; i < len; i++) {
|
---|
84 | out[i] = in1[i] ^ in2[i];
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 | /*
|
---|
89 | * Lookup L_index in our lookup table. If we haven't already got it we need to
|
---|
90 | * calculate it
|
---|
91 | */
|
---|
92 | static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
|
---|
93 | {
|
---|
94 | size_t l_index = ctx->l_index;
|
---|
95 |
|
---|
96 | if (idx <= l_index) {
|
---|
97 | return ctx->l + idx;
|
---|
98 | }
|
---|
99 |
|
---|
100 | /* We don't have it - so calculate it */
|
---|
101 | if (idx >= ctx->max_l_index) {
|
---|
102 | void *tmp_ptr;
|
---|
103 | /*
|
---|
104 | * Each additional entry allows to process almost double as
|
---|
105 | * much data, so that in linear world the table will need to
|
---|
106 | * be expanded with smaller and smaller increments. Originally
|
---|
107 | * it was doubling in size, which was a waste. Growing it
|
---|
108 | * linearly is not formally optimal, but is simpler to implement.
|
---|
109 | * We grow table by minimally required 4*n that would accommodate
|
---|
110 | * the index.
|
---|
111 | */
|
---|
112 | ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
|
---|
113 | tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
|
---|
114 | if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
|
---|
115 | return NULL;
|
---|
116 | ctx->l = tmp_ptr;
|
---|
117 | }
|
---|
118 | while (l_index < idx) {
|
---|
119 | ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
|
---|
120 | l_index++;
|
---|
121 | }
|
---|
122 | ctx->l_index = l_index;
|
---|
123 |
|
---|
124 | return ctx->l + idx;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /*
|
---|
128 | * Create a new OCB128_CONTEXT
|
---|
129 | */
|
---|
130 | OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
|
---|
131 | block128_f encrypt, block128_f decrypt,
|
---|
132 | ocb128_f stream)
|
---|
133 | {
|
---|
134 | OCB128_CONTEXT *octx;
|
---|
135 | int ret;
|
---|
136 |
|
---|
137 | if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
|
---|
138 | ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
|
---|
139 | stream);
|
---|
140 | if (ret)
|
---|
141 | return octx;
|
---|
142 | OPENSSL_free(octx);
|
---|
143 | }
|
---|
144 |
|
---|
145 | return NULL;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /*
|
---|
149 | * Initialise an existing OCB128_CONTEXT
|
---|
150 | */
|
---|
151 | int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
|
---|
152 | block128_f encrypt, block128_f decrypt,
|
---|
153 | ocb128_f stream)
|
---|
154 | {
|
---|
155 | memset(ctx, 0, sizeof(*ctx));
|
---|
156 | ctx->l_index = 0;
|
---|
157 | ctx->max_l_index = 5;
|
---|
158 | if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
|
---|
159 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
|
---|
160 | return 0;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * We set both the encryption and decryption key schedules - decryption
|
---|
165 | * needs both. Don't really need decryption schedule if only doing
|
---|
166 | * encryption - but it simplifies things to take it anyway
|
---|
167 | */
|
---|
168 | ctx->encrypt = encrypt;
|
---|
169 | ctx->decrypt = decrypt;
|
---|
170 | ctx->stream = stream;
|
---|
171 | ctx->keyenc = keyenc;
|
---|
172 | ctx->keydec = keydec;
|
---|
173 |
|
---|
174 | /* L_* = ENCIPHER(K, zeros(128)) */
|
---|
175 | ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
|
---|
176 |
|
---|
177 | /* L_$ = double(L_*) */
|
---|
178 | ocb_double(&ctx->l_star, &ctx->l_dollar);
|
---|
179 |
|
---|
180 | /* L_0 = double(L_$) */
|
---|
181 | ocb_double(&ctx->l_dollar, ctx->l);
|
---|
182 |
|
---|
183 | /* L_{i} = double(L_{i-1}) */
|
---|
184 | ocb_double(ctx->l, ctx->l+1);
|
---|
185 | ocb_double(ctx->l+1, ctx->l+2);
|
---|
186 | ocb_double(ctx->l+2, ctx->l+3);
|
---|
187 | ocb_double(ctx->l+3, ctx->l+4);
|
---|
188 | ctx->l_index = 4; /* enough to process up to 496 bytes */
|
---|
189 |
|
---|
190 | return 1;
|
---|
191 | }
|
---|
192 |
|
---|
193 | /*
|
---|
194 | * Copy an OCB128_CONTEXT object
|
---|
195 | */
|
---|
196 | int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
|
---|
197 | void *keyenc, void *keydec)
|
---|
198 | {
|
---|
199 | memcpy(dest, src, sizeof(OCB128_CONTEXT));
|
---|
200 | if (keyenc)
|
---|
201 | dest->keyenc = keyenc;
|
---|
202 | if (keydec)
|
---|
203 | dest->keydec = keydec;
|
---|
204 | if (src->l) {
|
---|
205 | if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
|
---|
206 | ERR_raise(ERR_LIB_CRYPTO, ERR_R_MALLOC_FAILURE);
|
---|
207 | return 0;
|
---|
208 | }
|
---|
209 | memcpy(dest->l, src->l, (src->l_index + 1) * 16);
|
---|
210 | }
|
---|
211 | return 1;
|
---|
212 | }
|
---|
213 |
|
---|
214 | /*
|
---|
215 | * Set the IV to be used for this operation. Must be 1 - 15 bytes.
|
---|
216 | */
|
---|
217 | int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
|
---|
218 | size_t len, size_t taglen)
|
---|
219 | {
|
---|
220 | unsigned char ktop[16], tmp[16], mask;
|
---|
221 | unsigned char stretch[24], nonce[16];
|
---|
222 | size_t bottom, shift;
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
|
---|
226 | * We don't support this at this stage
|
---|
227 | */
|
---|
228 | if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
|
---|
229 | return -1;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* Reset nonce-dependent variables */
|
---|
233 | memset(&ctx->sess, 0, sizeof(ctx->sess));
|
---|
234 |
|
---|
235 | /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
|
---|
236 | nonce[0] = ((taglen * 8) % 128) << 1;
|
---|
237 | memset(nonce + 1, 0, 15);
|
---|
238 | memcpy(nonce + 16 - len, iv, len);
|
---|
239 | nonce[15 - len] |= 1;
|
---|
240 |
|
---|
241 | /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
|
---|
242 | memcpy(tmp, nonce, 16);
|
---|
243 | tmp[15] &= 0xc0;
|
---|
244 | ctx->encrypt(tmp, ktop, ctx->keyenc);
|
---|
245 |
|
---|
246 | /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
|
---|
247 | memcpy(stretch, ktop, 16);
|
---|
248 | ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
|
---|
249 |
|
---|
250 | /* bottom = str2num(Nonce[123..128]) */
|
---|
251 | bottom = nonce[15] & 0x3f;
|
---|
252 |
|
---|
253 | /* Offset_0 = Stretch[1+bottom..128+bottom] */
|
---|
254 | shift = bottom % 8;
|
---|
255 | ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
|
---|
256 | mask = 0xff;
|
---|
257 | mask <<= 8 - shift;
|
---|
258 | ctx->sess.offset.c[15] |=
|
---|
259 | (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
|
---|
260 |
|
---|
261 | return 1;
|
---|
262 | }
|
---|
263 |
|
---|
264 | /*
|
---|
265 | * Provide any AAD. This can be called multiple times. Only the final time can
|
---|
266 | * have a partial block
|
---|
267 | */
|
---|
268 | int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
|
---|
269 | size_t len)
|
---|
270 | {
|
---|
271 | u64 i, all_num_blocks;
|
---|
272 | size_t num_blocks, last_len;
|
---|
273 | OCB_BLOCK tmp;
|
---|
274 |
|
---|
275 | /* Calculate the number of blocks of AAD provided now, and so far */
|
---|
276 | num_blocks = len / 16;
|
---|
277 | all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
|
---|
278 |
|
---|
279 | /* Loop through all full blocks of AAD */
|
---|
280 | for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
|
---|
281 | OCB_BLOCK *lookup;
|
---|
282 |
|
---|
283 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
|
---|
284 | lookup = ocb_lookup_l(ctx, ocb_ntz(i));
|
---|
285 | if (lookup == NULL)
|
---|
286 | return 0;
|
---|
287 | ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
|
---|
288 |
|
---|
289 | memcpy(tmp.c, aad, 16);
|
---|
290 | aad += 16;
|
---|
291 |
|
---|
292 | /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
|
---|
293 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
|
---|
294 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
|
---|
295 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
|
---|
296 | }
|
---|
297 |
|
---|
298 | /*
|
---|
299 | * Check if we have any partial blocks left over. This is only valid in the
|
---|
300 | * last call to this function
|
---|
301 | */
|
---|
302 | last_len = len % 16;
|
---|
303 |
|
---|
304 | if (last_len > 0) {
|
---|
305 | /* Offset_* = Offset_m xor L_* */
|
---|
306 | ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
|
---|
307 | &ctx->sess.offset_aad);
|
---|
308 |
|
---|
309 | /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
|
---|
310 | memset(tmp.c, 0, 16);
|
---|
311 | memcpy(tmp.c, aad, last_len);
|
---|
312 | tmp.c[last_len] = 0x80;
|
---|
313 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
|
---|
314 |
|
---|
315 | /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
|
---|
316 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
|
---|
317 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
|
---|
318 | }
|
---|
319 |
|
---|
320 | ctx->sess.blocks_hashed = all_num_blocks;
|
---|
321 |
|
---|
322 | return 1;
|
---|
323 | }
|
---|
324 |
|
---|
325 | /*
|
---|
326 | * Provide any data to be encrypted. This can be called multiple times. Only
|
---|
327 | * the final time can have a partial block
|
---|
328 | */
|
---|
329 | int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
|
---|
330 | const unsigned char *in, unsigned char *out,
|
---|
331 | size_t len)
|
---|
332 | {
|
---|
333 | u64 i, all_num_blocks;
|
---|
334 | size_t num_blocks, last_len;
|
---|
335 |
|
---|
336 | /*
|
---|
337 | * Calculate the number of blocks of data to be encrypted provided now, and
|
---|
338 | * so far
|
---|
339 | */
|
---|
340 | num_blocks = len / 16;
|
---|
341 | all_num_blocks = num_blocks + ctx->sess.blocks_processed;
|
---|
342 |
|
---|
343 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks
|
---|
344 | && ctx->stream != NULL) {
|
---|
345 | size_t max_idx = 0, top = (size_t)all_num_blocks;
|
---|
346 |
|
---|
347 | /*
|
---|
348 | * See how many L_{i} entries we need to process data at hand
|
---|
349 | * and pre-compute missing entries in the table [if any]...
|
---|
350 | */
|
---|
351 | while (top >>= 1)
|
---|
352 | max_idx++;
|
---|
353 | if (ocb_lookup_l(ctx, max_idx) == NULL)
|
---|
354 | return 0;
|
---|
355 |
|
---|
356 | ctx->stream(in, out, num_blocks, ctx->keyenc,
|
---|
357 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
|
---|
358 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
|
---|
359 | } else {
|
---|
360 | /* Loop through all full blocks to be encrypted */
|
---|
361 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
|
---|
362 | OCB_BLOCK *lookup;
|
---|
363 | OCB_BLOCK tmp;
|
---|
364 |
|
---|
365 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
|
---|
366 | lookup = ocb_lookup_l(ctx, ocb_ntz(i));
|
---|
367 | if (lookup == NULL)
|
---|
368 | return 0;
|
---|
369 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
|
---|
370 |
|
---|
371 | memcpy(tmp.c, in, 16);
|
---|
372 | in += 16;
|
---|
373 |
|
---|
374 | /* Checksum_i = Checksum_{i-1} xor P_i */
|
---|
375 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
|
---|
376 |
|
---|
377 | /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
|
---|
378 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
|
---|
379 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
|
---|
380 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
|
---|
381 |
|
---|
382 | memcpy(out, tmp.c, 16);
|
---|
383 | out += 16;
|
---|
384 | }
|
---|
385 | }
|
---|
386 |
|
---|
387 | /*
|
---|
388 | * Check if we have any partial blocks left over. This is only valid in the
|
---|
389 | * last call to this function
|
---|
390 | */
|
---|
391 | last_len = len % 16;
|
---|
392 |
|
---|
393 | if (last_len > 0) {
|
---|
394 | OCB_BLOCK pad;
|
---|
395 |
|
---|
396 | /* Offset_* = Offset_m xor L_* */
|
---|
397 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
|
---|
398 |
|
---|
399 | /* Pad = ENCIPHER(K, Offset_*) */
|
---|
400 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
|
---|
401 |
|
---|
402 | /* C_* = P_* xor Pad[1..bitlen(P_*)] */
|
---|
403 | ocb_block_xor(in, pad.c, last_len, out);
|
---|
404 |
|
---|
405 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
|
---|
406 | memset(pad.c, 0, 16); /* borrow pad */
|
---|
407 | memcpy(pad.c, in, last_len);
|
---|
408 | pad.c[last_len] = 0x80;
|
---|
409 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
|
---|
410 | }
|
---|
411 |
|
---|
412 | ctx->sess.blocks_processed = all_num_blocks;
|
---|
413 |
|
---|
414 | return 1;
|
---|
415 | }
|
---|
416 |
|
---|
417 | /*
|
---|
418 | * Provide any data to be decrypted. This can be called multiple times. Only
|
---|
419 | * the final time can have a partial block
|
---|
420 | */
|
---|
421 | int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
|
---|
422 | const unsigned char *in, unsigned char *out,
|
---|
423 | size_t len)
|
---|
424 | {
|
---|
425 | u64 i, all_num_blocks;
|
---|
426 | size_t num_blocks, last_len;
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * Calculate the number of blocks of data to be decrypted provided now, and
|
---|
430 | * so far
|
---|
431 | */
|
---|
432 | num_blocks = len / 16;
|
---|
433 | all_num_blocks = num_blocks + ctx->sess.blocks_processed;
|
---|
434 |
|
---|
435 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks
|
---|
436 | && ctx->stream != NULL) {
|
---|
437 | size_t max_idx = 0, top = (size_t)all_num_blocks;
|
---|
438 |
|
---|
439 | /*
|
---|
440 | * See how many L_{i} entries we need to process data at hand
|
---|
441 | * and pre-compute missing entries in the table [if any]...
|
---|
442 | */
|
---|
443 | while (top >>= 1)
|
---|
444 | max_idx++;
|
---|
445 | if (ocb_lookup_l(ctx, max_idx) == NULL)
|
---|
446 | return 0;
|
---|
447 |
|
---|
448 | ctx->stream(in, out, num_blocks, ctx->keydec,
|
---|
449 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
|
---|
450 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
|
---|
451 | } else {
|
---|
452 | OCB_BLOCK tmp;
|
---|
453 |
|
---|
454 | /* Loop through all full blocks to be decrypted */
|
---|
455 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
|
---|
456 |
|
---|
457 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
|
---|
458 | OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
|
---|
459 | if (lookup == NULL)
|
---|
460 | return 0;
|
---|
461 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
|
---|
462 |
|
---|
463 | memcpy(tmp.c, in, 16);
|
---|
464 | in += 16;
|
---|
465 |
|
---|
466 | /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
|
---|
467 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
|
---|
468 | ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
|
---|
469 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
|
---|
470 |
|
---|
471 | /* Checksum_i = Checksum_{i-1} xor P_i */
|
---|
472 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
|
---|
473 |
|
---|
474 | memcpy(out, tmp.c, 16);
|
---|
475 | out += 16;
|
---|
476 | }
|
---|
477 | }
|
---|
478 |
|
---|
479 | /*
|
---|
480 | * Check if we have any partial blocks left over. This is only valid in the
|
---|
481 | * last call to this function
|
---|
482 | */
|
---|
483 | last_len = len % 16;
|
---|
484 |
|
---|
485 | if (last_len > 0) {
|
---|
486 | OCB_BLOCK pad;
|
---|
487 |
|
---|
488 | /* Offset_* = Offset_m xor L_* */
|
---|
489 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
|
---|
490 |
|
---|
491 | /* Pad = ENCIPHER(K, Offset_*) */
|
---|
492 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
|
---|
493 |
|
---|
494 | /* P_* = C_* xor Pad[1..bitlen(C_*)] */
|
---|
495 | ocb_block_xor(in, pad.c, last_len, out);
|
---|
496 |
|
---|
497 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
|
---|
498 | memset(pad.c, 0, 16); /* borrow pad */
|
---|
499 | memcpy(pad.c, out, last_len);
|
---|
500 | pad.c[last_len] = 0x80;
|
---|
501 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
|
---|
502 | }
|
---|
503 |
|
---|
504 | ctx->sess.blocks_processed = all_num_blocks;
|
---|
505 |
|
---|
506 | return 1;
|
---|
507 | }
|
---|
508 |
|
---|
509 | static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
|
---|
510 | int write)
|
---|
511 | {
|
---|
512 | OCB_BLOCK tmp;
|
---|
513 |
|
---|
514 | if (len > 16 || len < 1) {
|
---|
515 | return -1;
|
---|
516 | }
|
---|
517 |
|
---|
518 | /*
|
---|
519 | * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
|
---|
520 | */
|
---|
521 | ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
|
---|
522 | ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
|
---|
523 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
|
---|
524 | ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
|
---|
525 |
|
---|
526 | if (write) {
|
---|
527 | memcpy(tag, &tmp, len);
|
---|
528 | return 1;
|
---|
529 | } else {
|
---|
530 | return CRYPTO_memcmp(&tmp, tag, len);
|
---|
531 | }
|
---|
532 | }
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * Calculate the tag and verify it against the supplied tag
|
---|
536 | */
|
---|
537 | int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
|
---|
538 | size_t len)
|
---|
539 | {
|
---|
540 | return ocb_finish(ctx, (unsigned char*)tag, len, 0);
|
---|
541 | }
|
---|
542 |
|
---|
543 | /*
|
---|
544 | * Retrieve the calculated tag
|
---|
545 | */
|
---|
546 | int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
|
---|
547 | {
|
---|
548 | return ocb_finish(ctx, tag, len, 1);
|
---|
549 | }
|
---|
550 |
|
---|
551 | /*
|
---|
552 | * Release all resources
|
---|
553 | */
|
---|
554 | void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
|
---|
555 | {
|
---|
556 | if (ctx) {
|
---|
557 | OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
|
---|
558 | OPENSSL_cleanse(ctx, sizeof(*ctx));
|
---|
559 | }
|
---|
560 | }
|
---|
561 |
|
---|
562 | #endif /* OPENSSL_NO_OCB */
|
---|