VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.7/crypto/x509/v3_addr.c@ 97371

Last change on this file since 97371 was 94320, checked in by vboxsync, 3 years ago

libs/openssl-3.0.1: Export to OSE and fix copyright headers in Makefiles, bugref:10128

File size: 40.3 KB
Line 
1/*
2 * Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * Implementation of RFC 3779 section 2.2.
12 */
13
14#include <stdio.h>
15#include <stdlib.h>
16
17#include "internal/cryptlib.h"
18#include <openssl/conf.h>
19#include <openssl/asn1.h>
20#include <openssl/asn1t.h>
21#include <openssl/buffer.h>
22#include <openssl/x509v3.h>
23#include "crypto/x509.h"
24#include "ext_dat.h"
25#include "x509_local.h"
26
27#ifndef OPENSSL_NO_RFC3779
28
29/*
30 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
31 */
32
33ASN1_SEQUENCE(IPAddressRange) = {
34 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
35 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
36} ASN1_SEQUENCE_END(IPAddressRange)
37
38ASN1_CHOICE(IPAddressOrRange) = {
39 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
40 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
41} ASN1_CHOICE_END(IPAddressOrRange)
42
43ASN1_CHOICE(IPAddressChoice) = {
44 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
45 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
46} ASN1_CHOICE_END(IPAddressChoice)
47
48ASN1_SEQUENCE(IPAddressFamily) = {
49 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
50 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
51} ASN1_SEQUENCE_END(IPAddressFamily)
52
53ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
54 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
55 IPAddrBlocks, IPAddressFamily)
56static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
57
58IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
59IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
60IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
61IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
62
63/*
64 * How much buffer space do we need for a raw address?
65 */
66#define ADDR_RAW_BUF_LEN 16
67
68/*
69 * What's the address length associated with this AFI?
70 */
71static int length_from_afi(const unsigned afi)
72{
73 switch (afi) {
74 case IANA_AFI_IPV4:
75 return 4;
76 case IANA_AFI_IPV6:
77 return 16;
78 default:
79 return 0;
80 }
81}
82
83/*
84 * Extract the AFI from an IPAddressFamily.
85 */
86unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
87{
88 if (f == NULL
89 || f->addressFamily == NULL
90 || f->addressFamily->data == NULL
91 || f->addressFamily->length < 2)
92 return 0;
93 return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
94}
95
96/*
97 * Expand the bitstring form of an address into a raw byte array.
98 * At the moment this is coded for simplicity, not speed.
99 */
100static int addr_expand(unsigned char *addr,
101 const ASN1_BIT_STRING *bs,
102 const int length, const unsigned char fill)
103{
104 if (bs->length < 0 || bs->length > length)
105 return 0;
106 if (bs->length > 0) {
107 memcpy(addr, bs->data, bs->length);
108 if ((bs->flags & 7) != 0) {
109 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
110 if (fill == 0)
111 addr[bs->length - 1] &= ~mask;
112 else
113 addr[bs->length - 1] |= mask;
114 }
115 }
116 memset(addr + bs->length, fill, length - bs->length);
117 return 1;
118}
119
120/*
121 * Extract the prefix length from a bitstring.
122 */
123#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
124
125/*
126 * i2r handler for one address bitstring.
127 */
128static int i2r_address(BIO *out,
129 const unsigned afi,
130 const unsigned char fill, const ASN1_BIT_STRING *bs)
131{
132 unsigned char addr[ADDR_RAW_BUF_LEN];
133 int i, n;
134
135 if (bs->length < 0)
136 return 0;
137 switch (afi) {
138 case IANA_AFI_IPV4:
139 if (!addr_expand(addr, bs, 4, fill))
140 return 0;
141 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
142 break;
143 case IANA_AFI_IPV6:
144 if (!addr_expand(addr, bs, 16, fill))
145 return 0;
146 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
147 n -= 2) ;
148 for (i = 0; i < n; i += 2)
149 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
150 (i < 14 ? ":" : ""));
151 if (i < 16)
152 BIO_puts(out, ":");
153 if (i == 0)
154 BIO_puts(out, ":");
155 break;
156 default:
157 for (i = 0; i < bs->length; i++)
158 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
159 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
160 break;
161 }
162 return 1;
163}
164
165/*
166 * i2r handler for a sequence of addresses and ranges.
167 */
168static int i2r_IPAddressOrRanges(BIO *out,
169 const int indent,
170 const IPAddressOrRanges *aors,
171 const unsigned afi)
172{
173 int i;
174 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
175 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
176 BIO_printf(out, "%*s", indent, "");
177 switch (aor->type) {
178 case IPAddressOrRange_addressPrefix:
179 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
180 return 0;
181 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
182 continue;
183 case IPAddressOrRange_addressRange:
184 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
185 return 0;
186 BIO_puts(out, "-");
187 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
188 return 0;
189 BIO_puts(out, "\n");
190 continue;
191 }
192 }
193 return 1;
194}
195
196/*
197 * i2r handler for an IPAddrBlocks extension.
198 */
199static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
200 void *ext, BIO *out, int indent)
201{
202 const IPAddrBlocks *addr = ext;
203 int i;
204 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
205 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
206 const unsigned int afi = X509v3_addr_get_afi(f);
207 switch (afi) {
208 case IANA_AFI_IPV4:
209 BIO_printf(out, "%*sIPv4", indent, "");
210 break;
211 case IANA_AFI_IPV6:
212 BIO_printf(out, "%*sIPv6", indent, "");
213 break;
214 default:
215 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
216 break;
217 }
218 if (f->addressFamily->length > 2) {
219 switch (f->addressFamily->data[2]) {
220 case 1:
221 BIO_puts(out, " (Unicast)");
222 break;
223 case 2:
224 BIO_puts(out, " (Multicast)");
225 break;
226 case 3:
227 BIO_puts(out, " (Unicast/Multicast)");
228 break;
229 case 4:
230 BIO_puts(out, " (MPLS)");
231 break;
232 case 64:
233 BIO_puts(out, " (Tunnel)");
234 break;
235 case 65:
236 BIO_puts(out, " (VPLS)");
237 break;
238 case 66:
239 BIO_puts(out, " (BGP MDT)");
240 break;
241 case 128:
242 BIO_puts(out, " (MPLS-labeled VPN)");
243 break;
244 default:
245 BIO_printf(out, " (Unknown SAFI %u)",
246 (unsigned)f->addressFamily->data[2]);
247 break;
248 }
249 }
250 switch (f->ipAddressChoice->type) {
251 case IPAddressChoice_inherit:
252 BIO_puts(out, ": inherit\n");
253 break;
254 case IPAddressChoice_addressesOrRanges:
255 BIO_puts(out, ":\n");
256 if (!i2r_IPAddressOrRanges(out,
257 indent + 2,
258 f->ipAddressChoice->
259 u.addressesOrRanges, afi))
260 return 0;
261 break;
262 }
263 }
264 return 1;
265}
266
267/*
268 * Sort comparison function for a sequence of IPAddressOrRange
269 * elements.
270 *
271 * There's no sane answer we can give if addr_expand() fails, and an
272 * assertion failure on externally supplied data is seriously uncool,
273 * so we just arbitrarily declare that if given invalid inputs this
274 * function returns -1. If this messes up your preferred sort order
275 * for garbage input, tough noogies.
276 */
277static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
278 const IPAddressOrRange *b, const int length)
279{
280 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
281 int prefixlen_a = 0, prefixlen_b = 0;
282 int r;
283
284 switch (a->type) {
285 case IPAddressOrRange_addressPrefix:
286 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
287 return -1;
288 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
289 break;
290 case IPAddressOrRange_addressRange:
291 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
292 return -1;
293 prefixlen_a = length * 8;
294 break;
295 }
296
297 switch (b->type) {
298 case IPAddressOrRange_addressPrefix:
299 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
300 return -1;
301 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
302 break;
303 case IPAddressOrRange_addressRange:
304 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
305 return -1;
306 prefixlen_b = length * 8;
307 break;
308 }
309
310 if ((r = memcmp(addr_a, addr_b, length)) != 0)
311 return r;
312 else
313 return prefixlen_a - prefixlen_b;
314}
315
316/*
317 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
318 * comparison routines are only allowed two arguments.
319 */
320static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
321 const IPAddressOrRange *const *b)
322{
323 return IPAddressOrRange_cmp(*a, *b, 4);
324}
325
326/*
327 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
328 * comparison routines are only allowed two arguments.
329 */
330static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
331 const IPAddressOrRange *const *b)
332{
333 return IPAddressOrRange_cmp(*a, *b, 16);
334}
335
336/*
337 * Calculate whether a range collapses to a prefix.
338 * See last paragraph of RFC 3779 2.2.3.7.
339 */
340static int range_should_be_prefix(const unsigned char *min,
341 const unsigned char *max, const int length)
342{
343 unsigned char mask;
344 int i, j;
345
346 if (memcmp(min, max, length) <= 0)
347 return -1;
348 for (i = 0; i < length && min[i] == max[i]; i++) ;
349 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
350 if (i < j)
351 return -1;
352 if (i > j)
353 return i * 8;
354 mask = min[i] ^ max[i];
355 switch (mask) {
356 case 0x01:
357 j = 7;
358 break;
359 case 0x03:
360 j = 6;
361 break;
362 case 0x07:
363 j = 5;
364 break;
365 case 0x0F:
366 j = 4;
367 break;
368 case 0x1F:
369 j = 3;
370 break;
371 case 0x3F:
372 j = 2;
373 break;
374 case 0x7F:
375 j = 1;
376 break;
377 default:
378 return -1;
379 }
380 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
381 return -1;
382 else
383 return i * 8 + j;
384}
385
386/*
387 * Construct a prefix.
388 */
389static int make_addressPrefix(IPAddressOrRange **result,
390 unsigned char *addr, const int prefixlen)
391{
392 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
393 IPAddressOrRange *aor = IPAddressOrRange_new();
394
395 if (aor == NULL)
396 return 0;
397 aor->type = IPAddressOrRange_addressPrefix;
398 if (aor->u.addressPrefix == NULL &&
399 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
400 goto err;
401 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
402 goto err;
403 aor->u.addressPrefix->flags &= ~7;
404 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
405 if (bitlen > 0) {
406 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
407 aor->u.addressPrefix->flags |= 8 - bitlen;
408 }
409
410 *result = aor;
411 return 1;
412
413 err:
414 IPAddressOrRange_free(aor);
415 return 0;
416}
417
418/*
419 * Construct a range. If it can be expressed as a prefix,
420 * return a prefix instead. Doing this here simplifies
421 * the rest of the code considerably.
422 */
423static int make_addressRange(IPAddressOrRange **result,
424 unsigned char *min,
425 unsigned char *max, const int length)
426{
427 IPAddressOrRange *aor;
428 int i, prefixlen;
429
430 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
431 return make_addressPrefix(result, min, prefixlen);
432
433 if ((aor = IPAddressOrRange_new()) == NULL)
434 return 0;
435 aor->type = IPAddressOrRange_addressRange;
436 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
437 goto err;
438 if (aor->u.addressRange->min == NULL &&
439 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
440 goto err;
441 if (aor->u.addressRange->max == NULL &&
442 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
443 goto err;
444
445 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
446 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
447 goto err;
448 aor->u.addressRange->min->flags &= ~7;
449 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
450 if (i > 0) {
451 unsigned char b = min[i - 1];
452 int j = 1;
453 while ((b & (0xFFU >> j)) != 0)
454 ++j;
455 aor->u.addressRange->min->flags |= 8 - j;
456 }
457
458 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
459 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
460 goto err;
461 aor->u.addressRange->max->flags &= ~7;
462 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
463 if (i > 0) {
464 unsigned char b = max[i - 1];
465 int j = 1;
466 while ((b & (0xFFU >> j)) != (0xFFU >> j))
467 ++j;
468 aor->u.addressRange->max->flags |= 8 - j;
469 }
470
471 *result = aor;
472 return 1;
473
474 err:
475 IPAddressOrRange_free(aor);
476 return 0;
477}
478
479/*
480 * Construct a new address family or find an existing one.
481 */
482static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
483 const unsigned afi,
484 const unsigned *safi)
485{
486 IPAddressFamily *f;
487 unsigned char key[3];
488 int keylen;
489 int i;
490
491 key[0] = (afi >> 8) & 0xFF;
492 key[1] = afi & 0xFF;
493 if (safi != NULL) {
494 key[2] = *safi & 0xFF;
495 keylen = 3;
496 } else {
497 keylen = 2;
498 }
499
500 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
501 f = sk_IPAddressFamily_value(addr, i);
502 if (f->addressFamily->length == keylen &&
503 !memcmp(f->addressFamily->data, key, keylen))
504 return f;
505 }
506
507 if ((f = IPAddressFamily_new()) == NULL)
508 goto err;
509 if (f->ipAddressChoice == NULL &&
510 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
511 goto err;
512 if (f->addressFamily == NULL &&
513 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
514 goto err;
515 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
516 goto err;
517 if (!sk_IPAddressFamily_push(addr, f))
518 goto err;
519
520 return f;
521
522 err:
523 IPAddressFamily_free(f);
524 return NULL;
525}
526
527/*
528 * Add an inheritance element.
529 */
530int X509v3_addr_add_inherit(IPAddrBlocks *addr,
531 const unsigned afi, const unsigned *safi)
532{
533 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
534 if (f == NULL ||
535 f->ipAddressChoice == NULL ||
536 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
537 f->ipAddressChoice->u.addressesOrRanges != NULL))
538 return 0;
539 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
540 f->ipAddressChoice->u.inherit != NULL)
541 return 1;
542 if (f->ipAddressChoice->u.inherit == NULL &&
543 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
544 return 0;
545 f->ipAddressChoice->type = IPAddressChoice_inherit;
546 return 1;
547}
548
549/*
550 * Construct an IPAddressOrRange sequence, or return an existing one.
551 */
552static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
553 const unsigned afi,
554 const unsigned *safi)
555{
556 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
557 IPAddressOrRanges *aors = NULL;
558
559 if (f == NULL ||
560 f->ipAddressChoice == NULL ||
561 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
562 f->ipAddressChoice->u.inherit != NULL))
563 return NULL;
564 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
565 aors = f->ipAddressChoice->u.addressesOrRanges;
566 if (aors != NULL)
567 return aors;
568 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
569 return NULL;
570 switch (afi) {
571 case IANA_AFI_IPV4:
572 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
573 break;
574 case IANA_AFI_IPV6:
575 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
576 break;
577 }
578 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
579 f->ipAddressChoice->u.addressesOrRanges = aors;
580 return aors;
581}
582
583/*
584 * Add a prefix.
585 */
586int X509v3_addr_add_prefix(IPAddrBlocks *addr,
587 const unsigned afi,
588 const unsigned *safi,
589 unsigned char *a, const int prefixlen)
590{
591 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
592 IPAddressOrRange *aor;
593 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
594 return 0;
595 if (sk_IPAddressOrRange_push(aors, aor))
596 return 1;
597 IPAddressOrRange_free(aor);
598 return 0;
599}
600
601/*
602 * Add a range.
603 */
604int X509v3_addr_add_range(IPAddrBlocks *addr,
605 const unsigned afi,
606 const unsigned *safi,
607 unsigned char *min, unsigned char *max)
608{
609 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
610 IPAddressOrRange *aor;
611 int length = length_from_afi(afi);
612 if (aors == NULL)
613 return 0;
614 if (!make_addressRange(&aor, min, max, length))
615 return 0;
616 if (sk_IPAddressOrRange_push(aors, aor))
617 return 1;
618 IPAddressOrRange_free(aor);
619 return 0;
620}
621
622/*
623 * Extract min and max values from an IPAddressOrRange.
624 */
625static int extract_min_max(IPAddressOrRange *aor,
626 unsigned char *min, unsigned char *max, int length)
627{
628 if (aor == NULL || min == NULL || max == NULL)
629 return 0;
630 switch (aor->type) {
631 case IPAddressOrRange_addressPrefix:
632 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
633 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
634 case IPAddressOrRange_addressRange:
635 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
636 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
637 }
638 return 0;
639}
640
641/*
642 * Public wrapper for extract_min_max().
643 */
644int X509v3_addr_get_range(IPAddressOrRange *aor,
645 const unsigned afi,
646 unsigned char *min,
647 unsigned char *max, const int length)
648{
649 int afi_length = length_from_afi(afi);
650 if (aor == NULL || min == NULL || max == NULL ||
651 afi_length == 0 || length < afi_length ||
652 (aor->type != IPAddressOrRange_addressPrefix &&
653 aor->type != IPAddressOrRange_addressRange) ||
654 !extract_min_max(aor, min, max, afi_length))
655 return 0;
656
657 return afi_length;
658}
659
660/*
661 * Sort comparison function for a sequence of IPAddressFamily.
662 *
663 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
664 * the ordering: I can read it as meaning that IPv6 without a SAFI
665 * comes before IPv4 with a SAFI, which seems pretty weird. The
666 * examples in appendix B suggest that the author intended the
667 * null-SAFI rule to apply only within a single AFI, which is what I
668 * would have expected and is what the following code implements.
669 */
670static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
671 const IPAddressFamily *const *b_)
672{
673 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
674 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
675 int len = ((a->length <= b->length) ? a->length : b->length);
676 int cmp = memcmp(a->data, b->data, len);
677 return cmp ? cmp : a->length - b->length;
678}
679
680/*
681 * Check whether an IPAddrBLocks is in canonical form.
682 */
683int X509v3_addr_is_canonical(IPAddrBlocks *addr)
684{
685 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
686 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
687 IPAddressOrRanges *aors;
688 int i, j, k;
689
690 /*
691 * Empty extension is canonical.
692 */
693 if (addr == NULL)
694 return 1;
695
696 /*
697 * Check whether the top-level list is in order.
698 */
699 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
700 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
701 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
702 if (IPAddressFamily_cmp(&a, &b) >= 0)
703 return 0;
704 }
705
706 /*
707 * Top level's ok, now check each address family.
708 */
709 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
710 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
711 int length = length_from_afi(X509v3_addr_get_afi(f));
712
713 /*
714 * Inheritance is canonical. Anything other than inheritance or
715 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
716 */
717 if (f == NULL || f->ipAddressChoice == NULL)
718 return 0;
719 switch (f->ipAddressChoice->type) {
720 case IPAddressChoice_inherit:
721 continue;
722 case IPAddressChoice_addressesOrRanges:
723 break;
724 default:
725 return 0;
726 }
727
728 /*
729 * It's an IPAddressOrRanges sequence, check it.
730 */
731 aors = f->ipAddressChoice->u.addressesOrRanges;
732 if (sk_IPAddressOrRange_num(aors) == 0)
733 return 0;
734 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
735 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
736 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
737
738 if (!extract_min_max(a, a_min, a_max, length) ||
739 !extract_min_max(b, b_min, b_max, length))
740 return 0;
741
742 /*
743 * Punt misordered list, overlapping start, or inverted range.
744 */
745 if (memcmp(a_min, b_min, length) >= 0 ||
746 memcmp(a_min, a_max, length) > 0 ||
747 memcmp(b_min, b_max, length) > 0)
748 return 0;
749
750 /*
751 * Punt if adjacent or overlapping. Check for adjacency by
752 * subtracting one from b_min first.
753 */
754 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
755 if (memcmp(a_max, b_min, length) >= 0)
756 return 0;
757
758 /*
759 * Check for range that should be expressed as a prefix.
760 */
761 if (a->type == IPAddressOrRange_addressRange &&
762 range_should_be_prefix(a_min, a_max, length) >= 0)
763 return 0;
764 }
765
766 /*
767 * Check range to see if it's inverted or should be a
768 * prefix.
769 */
770 j = sk_IPAddressOrRange_num(aors) - 1;
771 {
772 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
773 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
774 if (!extract_min_max(a, a_min, a_max, length))
775 return 0;
776 if (memcmp(a_min, a_max, length) > 0 ||
777 range_should_be_prefix(a_min, a_max, length) >= 0)
778 return 0;
779 }
780 }
781 }
782
783 /*
784 * If we made it through all that, we're happy.
785 */
786 return 1;
787}
788
789/*
790 * Whack an IPAddressOrRanges into canonical form.
791 */
792static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
793 const unsigned afi)
794{
795 int i, j, length = length_from_afi(afi);
796
797 /*
798 * Sort the IPAddressOrRanges sequence.
799 */
800 sk_IPAddressOrRange_sort(aors);
801
802 /*
803 * Clean up representation issues, punt on duplicates or overlaps.
804 */
805 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
806 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
807 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
808 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
809 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
810
811 if (!extract_min_max(a, a_min, a_max, length) ||
812 !extract_min_max(b, b_min, b_max, length))
813 return 0;
814
815 /*
816 * Punt inverted ranges.
817 */
818 if (memcmp(a_min, a_max, length) > 0 ||
819 memcmp(b_min, b_max, length) > 0)
820 return 0;
821
822 /*
823 * Punt overlaps.
824 */
825 if (memcmp(a_max, b_min, length) >= 0)
826 return 0;
827
828 /*
829 * Merge if a and b are adjacent. We check for
830 * adjacency by subtracting one from b_min first.
831 */
832 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
833 if (memcmp(a_max, b_min, length) == 0) {
834 IPAddressOrRange *merged;
835 if (!make_addressRange(&merged, a_min, b_max, length))
836 return 0;
837 (void)sk_IPAddressOrRange_set(aors, i, merged);
838 (void)sk_IPAddressOrRange_delete(aors, i + 1);
839 IPAddressOrRange_free(a);
840 IPAddressOrRange_free(b);
841 --i;
842 continue;
843 }
844 }
845
846 /*
847 * Check for inverted final range.
848 */
849 j = sk_IPAddressOrRange_num(aors) - 1;
850 {
851 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
852 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
853 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
854 if (!extract_min_max(a, a_min, a_max, length))
855 return 0;
856 if (memcmp(a_min, a_max, length) > 0)
857 return 0;
858 }
859 }
860
861 return 1;
862}
863
864/*
865 * Whack an IPAddrBlocks extension into canonical form.
866 */
867int X509v3_addr_canonize(IPAddrBlocks *addr)
868{
869 int i;
870 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
871 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
872 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
873 !IPAddressOrRanges_canonize(f->ipAddressChoice->
874 u.addressesOrRanges,
875 X509v3_addr_get_afi(f)))
876 return 0;
877 }
878 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
879 sk_IPAddressFamily_sort(addr);
880 if (!ossl_assert(X509v3_addr_is_canonical(addr)))
881 return 0;
882 return 1;
883}
884
885/*
886 * v2i handler for the IPAddrBlocks extension.
887 */
888static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
889 struct v3_ext_ctx *ctx,
890 STACK_OF(CONF_VALUE) *values)
891{
892 static const char v4addr_chars[] = "0123456789.";
893 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
894 IPAddrBlocks *addr = NULL;
895 char *s = NULL, *t;
896 int i;
897
898 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
899 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
900 return NULL;
901 }
902
903 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
904 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
905 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
906 unsigned afi, *safi = NULL, safi_;
907 const char *addr_chars = NULL;
908 int prefixlen, i1, i2, delim, length;
909
910 if (!ossl_v3_name_cmp(val->name, "IPv4")) {
911 afi = IANA_AFI_IPV4;
912 } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
913 afi = IANA_AFI_IPV6;
914 } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
915 afi = IANA_AFI_IPV4;
916 safi = &safi_;
917 } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
918 afi = IANA_AFI_IPV6;
919 safi = &safi_;
920 } else {
921 ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
922 "%s", val->name);
923 goto err;
924 }
925
926 switch (afi) {
927 case IANA_AFI_IPV4:
928 addr_chars = v4addr_chars;
929 break;
930 case IANA_AFI_IPV6:
931 addr_chars = v6addr_chars;
932 break;
933 }
934
935 length = length_from_afi(afi);
936
937 /*
938 * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
939 * the other input values.
940 */
941 if (safi != NULL) {
942 *safi = strtoul(val->value, &t, 0);
943 t += strspn(t, " \t");
944 if (*safi > 0xFF || *t++ != ':') {
945 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
946 X509V3_conf_add_error_name_value(val);
947 goto err;
948 }
949 t += strspn(t, " \t");
950 s = OPENSSL_strdup(t);
951 } else {
952 s = OPENSSL_strdup(val->value);
953 }
954 if (s == NULL) {
955 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
956 goto err;
957 }
958
959 /*
960 * Check for inheritance. Not worth additional complexity to
961 * optimize this (seldom-used) case.
962 */
963 if (strcmp(s, "inherit") == 0) {
964 if (!X509v3_addr_add_inherit(addr, afi, safi)) {
965 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
966 X509V3_conf_add_error_name_value(val);
967 goto err;
968 }
969 OPENSSL_free(s);
970 s = NULL;
971 continue;
972 }
973
974 i1 = strspn(s, addr_chars);
975 i2 = i1 + strspn(s + i1, " \t");
976 delim = s[i2++];
977 s[i1] = '\0';
978
979 if (ossl_a2i_ipadd(min, s) != length) {
980 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
981 X509V3_conf_add_error_name_value(val);
982 goto err;
983 }
984
985 switch (delim) {
986 case '/':
987 prefixlen = (int)strtoul(s + i2, &t, 10);
988 if (t == s + i2 || *t != '\0') {
989 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
990 X509V3_conf_add_error_name_value(val);
991 goto err;
992 }
993 if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
994 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
995 goto err;
996 }
997 break;
998 case '-':
999 i1 = i2 + strspn(s + i2, " \t");
1000 i2 = i1 + strspn(s + i1, addr_chars);
1001 if (i1 == i2 || s[i2] != '\0') {
1002 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1003 X509V3_conf_add_error_name_value(val);
1004 goto err;
1005 }
1006 if (ossl_a2i_ipadd(max, s + i1) != length) {
1007 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1008 X509V3_conf_add_error_name_value(val);
1009 goto err;
1010 }
1011 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1012 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1013 X509V3_conf_add_error_name_value(val);
1014 goto err;
1015 }
1016 if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1017 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1018 goto err;
1019 }
1020 break;
1021 case '\0':
1022 if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1023 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1024 goto err;
1025 }
1026 break;
1027 default:
1028 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1029 X509V3_conf_add_error_name_value(val);
1030 goto err;
1031 }
1032
1033 OPENSSL_free(s);
1034 s = NULL;
1035 }
1036
1037 /*
1038 * Canonize the result, then we're done.
1039 */
1040 if (!X509v3_addr_canonize(addr))
1041 goto err;
1042 return addr;
1043
1044 err:
1045 OPENSSL_free(s);
1046 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1047 return NULL;
1048}
1049
1050/*
1051 * OpenSSL dispatch
1052 */
1053const X509V3_EXT_METHOD ossl_v3_addr = {
1054 NID_sbgp_ipAddrBlock, /* nid */
1055 0, /* flags */
1056 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1057 0, 0, 0, 0, /* old functions, ignored */
1058 0, /* i2s */
1059 0, /* s2i */
1060 0, /* i2v */
1061 v2i_IPAddrBlocks, /* v2i */
1062 i2r_IPAddrBlocks, /* i2r */
1063 0, /* r2i */
1064 NULL /* extension-specific data */
1065};
1066
1067/*
1068 * Figure out whether extension sues inheritance.
1069 */
1070int X509v3_addr_inherits(IPAddrBlocks *addr)
1071{
1072 int i;
1073 if (addr == NULL)
1074 return 0;
1075 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1076 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1077 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1078 return 1;
1079 }
1080 return 0;
1081}
1082
1083/*
1084 * Figure out whether parent contains child.
1085 */
1086static int addr_contains(IPAddressOrRanges *parent,
1087 IPAddressOrRanges *child, int length)
1088{
1089 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1090 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1091 int p, c;
1092
1093 if (child == NULL || parent == child)
1094 return 1;
1095 if (parent == NULL)
1096 return 0;
1097
1098 p = 0;
1099 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1100 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1101 c_min, c_max, length))
1102 return -1;
1103 for (;; p++) {
1104 if (p >= sk_IPAddressOrRange_num(parent))
1105 return 0;
1106 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1107 p_min, p_max, length))
1108 return 0;
1109 if (memcmp(p_max, c_max, length) < 0)
1110 continue;
1111 if (memcmp(p_min, c_min, length) > 0)
1112 return 0;
1113 break;
1114 }
1115 }
1116
1117 return 1;
1118}
1119
1120/*
1121 * Test whether a is a subset of b.
1122 */
1123int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1124{
1125 int i;
1126 if (a == NULL || a == b)
1127 return 1;
1128 if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1129 return 0;
1130 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1131 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1132 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1133 int j = sk_IPAddressFamily_find(b, fa);
1134 IPAddressFamily *fb;
1135 fb = sk_IPAddressFamily_value(b, j);
1136 if (fb == NULL)
1137 return 0;
1138 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1139 fa->ipAddressChoice->u.addressesOrRanges,
1140 length_from_afi(X509v3_addr_get_afi(fb))))
1141 return 0;
1142 }
1143 return 1;
1144}
1145
1146/*
1147 * Validation error handling via callback.
1148 */
1149#define validation_err(_err_) \
1150 do { \
1151 if (ctx != NULL) { \
1152 ctx->error = _err_; \
1153 ctx->error_depth = i; \
1154 ctx->current_cert = x; \
1155 ret = ctx->verify_cb(0, ctx); \
1156 } else { \
1157 ret = 0; \
1158 } \
1159 if (!ret) \
1160 goto done; \
1161 } while (0)
1162
1163/*
1164 * Core code for RFC 3779 2.3 path validation.
1165 *
1166 * Returns 1 for success, 0 on error.
1167 *
1168 * When returning 0, ctx->error MUST be set to an appropriate value other than
1169 * X509_V_OK.
1170 */
1171static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1172 STACK_OF(X509) *chain,
1173 IPAddrBlocks *ext)
1174{
1175 IPAddrBlocks *child = NULL;
1176 int i, j, ret = 1;
1177 X509 *x;
1178
1179 if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1180 || !ossl_assert(ctx != NULL || ext != NULL)
1181 || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1182 if (ctx != NULL)
1183 ctx->error = X509_V_ERR_UNSPECIFIED;
1184 return 0;
1185 }
1186
1187 /*
1188 * Figure out where to start. If we don't have an extension to
1189 * check, we're done. Otherwise, check canonical form and
1190 * set up for walking up the chain.
1191 */
1192 if (ext != NULL) {
1193 i = -1;
1194 x = NULL;
1195 } else {
1196 i = 0;
1197 x = sk_X509_value(chain, i);
1198 if ((ext = x->rfc3779_addr) == NULL)
1199 goto done;
1200 }
1201 if (!X509v3_addr_is_canonical(ext))
1202 validation_err(X509_V_ERR_INVALID_EXTENSION);
1203 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1204 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1205 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1206 if (ctx != NULL)
1207 ctx->error = X509_V_ERR_OUT_OF_MEM;
1208 ret = 0;
1209 goto done;
1210 }
1211
1212 /*
1213 * Now walk up the chain. No cert may list resources that its
1214 * parent doesn't list.
1215 */
1216 for (i++; i < sk_X509_num(chain); i++) {
1217 x = sk_X509_value(chain, i);
1218 if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1219 validation_err(X509_V_ERR_INVALID_EXTENSION);
1220 if (x->rfc3779_addr == NULL) {
1221 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1222 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1223 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1224 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1225 break;
1226 }
1227 }
1228 continue;
1229 }
1230 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1231 IPAddressFamily_cmp);
1232 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1233 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1234 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1235 IPAddressFamily *fp =
1236 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1237 if (fp == NULL) {
1238 if (fc->ipAddressChoice->type ==
1239 IPAddressChoice_addressesOrRanges) {
1240 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1241 break;
1242 }
1243 continue;
1244 }
1245 if (fp->ipAddressChoice->type ==
1246 IPAddressChoice_addressesOrRanges) {
1247 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1248 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1249 fc->ipAddressChoice->u.addressesOrRanges,
1250 length_from_afi(X509v3_addr_get_afi(fc))))
1251 (void)sk_IPAddressFamily_set(child, j, fp);
1252 else
1253 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1254 }
1255 }
1256 }
1257
1258 /*
1259 * Trust anchor can't inherit.
1260 */
1261 if (x->rfc3779_addr != NULL) {
1262 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1263 IPAddressFamily *fp =
1264 sk_IPAddressFamily_value(x->rfc3779_addr, j);
1265 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1266 && sk_IPAddressFamily_find(child, fp) >= 0)
1267 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1268 }
1269 }
1270
1271 done:
1272 sk_IPAddressFamily_free(child);
1273 return ret;
1274}
1275
1276#undef validation_err
1277
1278/*
1279 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1280 */
1281int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1282{
1283 if (ctx->chain == NULL
1284 || sk_X509_num(ctx->chain) == 0
1285 || ctx->verify_cb == NULL) {
1286 ctx->error = X509_V_ERR_UNSPECIFIED;
1287 return 0;
1288 }
1289 return addr_validate_path_internal(ctx, ctx->chain, NULL);
1290}
1291
1292/*
1293 * RFC 3779 2.3 path validation of an extension.
1294 * Test whether chain covers extension.
1295 */
1296int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1297 IPAddrBlocks *ext, int allow_inheritance)
1298{
1299 if (ext == NULL)
1300 return 1;
1301 if (chain == NULL || sk_X509_num(chain) == 0)
1302 return 0;
1303 if (!allow_inheritance && X509v3_addr_inherits(ext))
1304 return 0;
1305 return addr_validate_path_internal(NULL, chain, ext);
1306}
1307
1308#endif /* OPENSSL_NO_RFC3779 */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette