VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.7/ssl/t1_lib.c@ 97371

Last change on this file since 97371 was 94404, checked in by vboxsync, 3 years ago

libs/openssl: Update to 3.0.2 and switch to it, bugref:10128

File size: 109.7 KB
Line 
1/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "e_os.h"
12#include <stdlib.h>
13#include <openssl/objects.h>
14#include <openssl/evp.h>
15#include <openssl/hmac.h>
16#include <openssl/core_names.h>
17#include <openssl/ocsp.h>
18#include <openssl/conf.h>
19#include <openssl/x509v3.h>
20#include <openssl/dh.h>
21#include <openssl/bn.h>
22#include <openssl/provider.h>
23#include <openssl/param_build.h>
24#include "internal/nelem.h"
25#include "internal/sizes.h"
26#include "internal/tlsgroups.h"
27#include "ssl_local.h"
28#include <openssl/ct.h>
29
30static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey);
31static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu);
32
33SSL3_ENC_METHOD const TLSv1_enc_data = {
34 tls1_enc,
35 tls1_mac,
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48};
49
50SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_enc,
52 tls1_mac,
53 tls1_setup_key_block,
54 tls1_generate_master_secret,
55 tls1_change_cipher_state,
56 tls1_final_finish_mac,
57 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
58 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
59 tls1_alert_code,
60 tls1_export_keying_material,
61 SSL_ENC_FLAG_EXPLICIT_IV,
62 ssl3_set_handshake_header,
63 tls_close_construct_packet,
64 ssl3_handshake_write
65};
66
67SSL3_ENC_METHOD const TLSv1_2_enc_data = {
68 tls1_enc,
69 tls1_mac,
70 tls1_setup_key_block,
71 tls1_generate_master_secret,
72 tls1_change_cipher_state,
73 tls1_final_finish_mac,
74 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
75 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
76 tls1_alert_code,
77 tls1_export_keying_material,
78 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
79 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
80 ssl3_set_handshake_header,
81 tls_close_construct_packet,
82 ssl3_handshake_write
83};
84
85SSL3_ENC_METHOD const TLSv1_3_enc_data = {
86 tls13_enc,
87 tls1_mac,
88 tls13_setup_key_block,
89 tls13_generate_master_secret,
90 tls13_change_cipher_state,
91 tls13_final_finish_mac,
92 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
93 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
94 tls13_alert_code,
95 tls13_export_keying_material,
96 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
97 ssl3_set_handshake_header,
98 tls_close_construct_packet,
99 ssl3_handshake_write
100};
101
102long tls1_default_timeout(void)
103{
104 /*
105 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
106 * http, the cache would over fill
107 */
108 return (60 * 60 * 2);
109}
110
111int tls1_new(SSL *s)
112{
113 if (!ssl3_new(s))
114 return 0;
115 if (!s->method->ssl_clear(s))
116 return 0;
117
118 return 1;
119}
120
121void tls1_free(SSL *s)
122{
123 OPENSSL_free(s->ext.session_ticket);
124 ssl3_free(s);
125}
126
127int tls1_clear(SSL *s)
128{
129 if (!ssl3_clear(s))
130 return 0;
131
132 if (s->method->version == TLS_ANY_VERSION)
133 s->version = TLS_MAX_VERSION_INTERNAL;
134 else
135 s->version = s->method->version;
136
137 return 1;
138}
139
140/* Legacy NID to group_id mapping. Only works for groups we know about */
141static struct {
142 int nid;
143 uint16_t group_id;
144} nid_to_group[] = {
145 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
146 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
147 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
148 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
149 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
150 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
151 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
152 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
153 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
154 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
155 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
156 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
157 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
158 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
159 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
160 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
161 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
162 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
163 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
164 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
165 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
166 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
167 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
168 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
169 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
170 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
171 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
172 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
173 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
174 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
175 {NID_id_tc26_gost_3410_2012_256_paramSetA, 0x0022},
176 {NID_id_tc26_gost_3410_2012_256_paramSetB, 0x0023},
177 {NID_id_tc26_gost_3410_2012_256_paramSetC, 0x0024},
178 {NID_id_tc26_gost_3410_2012_256_paramSetD, 0x0025},
179 {NID_id_tc26_gost_3410_2012_512_paramSetA, 0x0026},
180 {NID_id_tc26_gost_3410_2012_512_paramSetB, 0x0027},
181 {NID_id_tc26_gost_3410_2012_512_paramSetC, 0x0028},
182 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
183 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
184 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
185 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
186 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
187};
188
189static const unsigned char ecformats_default[] = {
190 TLSEXT_ECPOINTFORMAT_uncompressed,
191 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
192 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
193};
194
195/* The default curves */
196static const uint16_t supported_groups_default[] = {
197 29, /* X25519 (29) */
198 23, /* secp256r1 (23) */
199 30, /* X448 (30) */
200 25, /* secp521r1 (25) */
201 24, /* secp384r1 (24) */
202 34, /* GC256A (34) */
203 35, /* GC256B (35) */
204 36, /* GC256C (36) */
205 37, /* GC256D (37) */
206 38, /* GC512A (38) */
207 39, /* GC512B (39) */
208 40, /* GC512C (40) */
209 0x100, /* ffdhe2048 (0x100) */
210 0x101, /* ffdhe3072 (0x101) */
211 0x102, /* ffdhe4096 (0x102) */
212 0x103, /* ffdhe6144 (0x103) */
213 0x104, /* ffdhe8192 (0x104) */
214};
215
216static const uint16_t suiteb_curves[] = {
217 TLSEXT_curve_P_256,
218 TLSEXT_curve_P_384
219};
220
221struct provider_group_data_st {
222 SSL_CTX *ctx;
223 OSSL_PROVIDER *provider;
224};
225
226#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
227static OSSL_CALLBACK add_provider_groups;
228static int add_provider_groups(const OSSL_PARAM params[], void *data)
229{
230 struct provider_group_data_st *pgd = data;
231 SSL_CTX *ctx = pgd->ctx;
232 OSSL_PROVIDER *provider = pgd->provider;
233 const OSSL_PARAM *p;
234 TLS_GROUP_INFO *ginf = NULL;
235 EVP_KEYMGMT *keymgmt;
236 unsigned int gid;
237 unsigned int is_kem = 0;
238 int ret = 0;
239
240 if (ctx->group_list_max_len == ctx->group_list_len) {
241 TLS_GROUP_INFO *tmp = NULL;
242
243 if (ctx->group_list_max_len == 0)
244 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
245 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
246 else
247 tmp = OPENSSL_realloc(ctx->group_list,
248 (ctx->group_list_max_len
249 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
250 * sizeof(TLS_GROUP_INFO));
251 if (tmp == NULL) {
252 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
253 return 0;
254 }
255 ctx->group_list = tmp;
256 memset(tmp + ctx->group_list_max_len,
257 0,
258 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
259 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
260 }
261
262 ginf = &ctx->group_list[ctx->group_list_len];
263
264 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
265 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
266 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
267 goto err;
268 }
269 ginf->tlsname = OPENSSL_strdup(p->data);
270 if (ginf->tlsname == NULL) {
271 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
272 goto err;
273 }
274
275 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
276 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
277 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
278 goto err;
279 }
280 ginf->realname = OPENSSL_strdup(p->data);
281 if (ginf->realname == NULL) {
282 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
283 goto err;
284 }
285
286 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289 goto err;
290 }
291 ginf->group_id = (uint16_t)gid;
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->algorithm = OPENSSL_strdup(p->data);
299 if (ginf->algorithm == NULL) {
300 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
301 goto err;
302 }
303
304 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
305 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
306 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
307 goto err;
308 }
309
310 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
311 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
312 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
313 goto err;
314 }
315 ginf->is_kem = 1 & is_kem;
316
317 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
318 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
319 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
320 goto err;
321 }
322
323 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
324 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
325 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
326 goto err;
327 }
328
329 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
330 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
331 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
332 goto err;
333 }
334
335 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
336 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
337 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
338 goto err;
339 }
340 /*
341 * Now check that the algorithm is actually usable for our property query
342 * string. Regardless of the result we still return success because we have
343 * successfully processed this group, even though we may decide not to use
344 * it.
345 */
346 ret = 1;
347 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
348 if (keymgmt != NULL) {
349 /*
350 * We have successfully fetched the algorithm - however if the provider
351 * doesn't match this one then we ignore it.
352 *
353 * Note: We're cheating a little here. Technically if the same algorithm
354 * is available from more than one provider then it is undefined which
355 * implementation you will get back. Theoretically this could be
356 * different every time...we assume here that you'll always get the
357 * same one back if you repeat the exact same fetch. Is this a reasonable
358 * assumption to make (in which case perhaps we should document this
359 * behaviour)?
360 */
361 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
362 /* We have a match - so we will use this group */
363 ctx->group_list_len++;
364 ginf = NULL;
365 }
366 EVP_KEYMGMT_free(keymgmt);
367 }
368 err:
369 if (ginf != NULL) {
370 OPENSSL_free(ginf->tlsname);
371 OPENSSL_free(ginf->realname);
372 OPENSSL_free(ginf->algorithm);
373 ginf->tlsname = ginf->realname = NULL;
374 }
375 return ret;
376}
377
378static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
379{
380 struct provider_group_data_st pgd;
381
382 pgd.ctx = vctx;
383 pgd.provider = provider;
384 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
385 add_provider_groups, &pgd);
386}
387
388int ssl_load_groups(SSL_CTX *ctx)
389{
390 size_t i, j, num_deflt_grps = 0;
391 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
392
393 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
394 return 0;
395
396 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
397 for (j = 0; j < ctx->group_list_len; j++) {
398 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
399 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
400 break;
401 }
402 }
403 }
404
405 if (num_deflt_grps == 0)
406 return 1;
407
408 ctx->ext.supported_groups_default
409 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
410
411 if (ctx->ext.supported_groups_default == NULL) {
412 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
413 return 0;
414 }
415
416 memcpy(ctx->ext.supported_groups_default,
417 tmp_supp_groups,
418 num_deflt_grps * sizeof(tmp_supp_groups[0]));
419 ctx->ext.supported_groups_default_len = num_deflt_grps;
420
421 return 1;
422}
423
424static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
425{
426 size_t i;
427
428 for (i = 0; i < ctx->group_list_len; i++) {
429 if (strcmp(ctx->group_list[i].tlsname, name) == 0
430 || strcmp(ctx->group_list[i].realname, name) == 0)
431 return ctx->group_list[i].group_id;
432 }
433
434 return 0;
435}
436
437const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
438{
439 size_t i;
440
441 for (i = 0; i < ctx->group_list_len; i++) {
442 if (ctx->group_list[i].group_id == group_id)
443 return &ctx->group_list[i];
444 }
445
446 return NULL;
447}
448
449int tls1_group_id2nid(uint16_t group_id, int include_unknown)
450{
451 size_t i;
452
453 if (group_id == 0)
454 return NID_undef;
455
456 /*
457 * Return well known Group NIDs - for backwards compatibility. This won't
458 * work for groups we don't know about.
459 */
460 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
461 {
462 if (nid_to_group[i].group_id == group_id)
463 return nid_to_group[i].nid;
464 }
465 if (!include_unknown)
466 return NID_undef;
467 return TLSEXT_nid_unknown | (int)group_id;
468}
469
470uint16_t tls1_nid2group_id(int nid)
471{
472 size_t i;
473
474 /*
475 * Return well known Group ids - for backwards compatibility. This won't
476 * work for groups we don't know about.
477 */
478 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
479 {
480 if (nid_to_group[i].nid == nid)
481 return nid_to_group[i].group_id;
482 }
483
484 return 0;
485}
486
487/*
488 * Set *pgroups to the supported groups list and *pgroupslen to
489 * the number of groups supported.
490 */
491void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups,
492 size_t *pgroupslen)
493{
494 /* For Suite B mode only include P-256, P-384 */
495 switch (tls1_suiteb(s)) {
496 case SSL_CERT_FLAG_SUITEB_128_LOS:
497 *pgroups = suiteb_curves;
498 *pgroupslen = OSSL_NELEM(suiteb_curves);
499 break;
500
501 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
502 *pgroups = suiteb_curves;
503 *pgroupslen = 1;
504 break;
505
506 case SSL_CERT_FLAG_SUITEB_192_LOS:
507 *pgroups = suiteb_curves + 1;
508 *pgroupslen = 1;
509 break;
510
511 default:
512 if (s->ext.supportedgroups == NULL) {
513 *pgroups = s->ctx->ext.supported_groups_default;
514 *pgroupslen = s->ctx->ext.supported_groups_default_len;
515 } else {
516 *pgroups = s->ext.supportedgroups;
517 *pgroupslen = s->ext.supportedgroups_len;
518 }
519 break;
520 }
521}
522
523int tls_valid_group(SSL *s, uint16_t group_id, int minversion, int maxversion,
524 int isec, int *okfortls13)
525{
526 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group_id);
527 int ret;
528
529 if (okfortls13 != NULL)
530 *okfortls13 = 0;
531
532 if (ginfo == NULL)
533 return 0;
534
535 if (SSL_IS_DTLS(s)) {
536 if (ginfo->mindtls < 0 || ginfo->maxdtls < 0)
537 return 0;
538 if (ginfo->maxdtls == 0)
539 ret = 1;
540 else
541 ret = DTLS_VERSION_LE(minversion, ginfo->maxdtls);
542 if (ginfo->mindtls > 0)
543 ret &= DTLS_VERSION_GE(maxversion, ginfo->mindtls);
544 } else {
545 if (ginfo->mintls < 0 || ginfo->maxtls < 0)
546 return 0;
547 if (ginfo->maxtls == 0)
548 ret = 1;
549 else
550 ret = (minversion <= ginfo->maxtls);
551 if (ginfo->mintls > 0)
552 ret &= (maxversion >= ginfo->mintls);
553 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
554 *okfortls13 = (ginfo->maxtls == 0)
555 || (ginfo->maxtls >= TLS1_3_VERSION);
556 }
557 ret &= !isec
558 || strcmp(ginfo->algorithm, "EC") == 0
559 || strcmp(ginfo->algorithm, "X25519") == 0
560 || strcmp(ginfo->algorithm, "X448") == 0;
561
562 return ret;
563}
564
565/* See if group is allowed by security callback */
566int tls_group_allowed(SSL *s, uint16_t group, int op)
567{
568 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(s->ctx, group);
569 unsigned char gtmp[2];
570
571 if (ginfo == NULL)
572 return 0;
573
574 gtmp[0] = group >> 8;
575 gtmp[1] = group & 0xff;
576 return ssl_security(s, op, ginfo->secbits,
577 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
578}
579
580/* Return 1 if "id" is in "list" */
581static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
582{
583 size_t i;
584 for (i = 0; i < listlen; i++)
585 if (list[i] == id)
586 return 1;
587 return 0;
588}
589
590/*-
591 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
592 * if there is no match.
593 * For nmatch == -1, return number of matches
594 * For nmatch == -2, return the id of the group to use for
595 * a tmp key, or 0 if there is no match.
596 */
597uint16_t tls1_shared_group(SSL *s, int nmatch)
598{
599 const uint16_t *pref, *supp;
600 size_t num_pref, num_supp, i;
601 int k;
602
603 /* Can't do anything on client side */
604 if (s->server == 0)
605 return 0;
606 if (nmatch == -2) {
607 if (tls1_suiteb(s)) {
608 /*
609 * For Suite B ciphersuite determines curve: we already know
610 * these are acceptable due to previous checks.
611 */
612 unsigned long cid = s->s3.tmp.new_cipher->id;
613
614 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
615 return TLSEXT_curve_P_256;
616 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
617 return TLSEXT_curve_P_384;
618 /* Should never happen */
619 return 0;
620 }
621 /* If not Suite B just return first preference shared curve */
622 nmatch = 0;
623 }
624 /*
625 * If server preference set, our groups are the preference order
626 * otherwise peer decides.
627 */
628 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
629 tls1_get_supported_groups(s, &pref, &num_pref);
630 tls1_get_peer_groups(s, &supp, &num_supp);
631 } else {
632 tls1_get_peer_groups(s, &pref, &num_pref);
633 tls1_get_supported_groups(s, &supp, &num_supp);
634 }
635
636 for (k = 0, i = 0; i < num_pref; i++) {
637 uint16_t id = pref[i];
638
639 if (!tls1_in_list(id, supp, num_supp)
640 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
641 continue;
642 if (nmatch == k)
643 return id;
644 k++;
645 }
646 if (nmatch == -1)
647 return k;
648 /* Out of range (nmatch > k). */
649 return 0;
650}
651
652int tls1_set_groups(uint16_t **pext, size_t *pextlen,
653 int *groups, size_t ngroups)
654{
655 uint16_t *glist;
656 size_t i;
657 /*
658 * Bitmap of groups included to detect duplicates: two variables are added
659 * to detect duplicates as some values are more than 32.
660 */
661 unsigned long *dup_list = NULL;
662 unsigned long dup_list_egrp = 0;
663 unsigned long dup_list_dhgrp = 0;
664
665 if (ngroups == 0) {
666 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
667 return 0;
668 }
669 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) {
670 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
671 return 0;
672 }
673 for (i = 0; i < ngroups; i++) {
674 unsigned long idmask;
675 uint16_t id;
676 id = tls1_nid2group_id(groups[i]);
677 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
678 goto err;
679 idmask = 1L << (id & 0x00FF);
680 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
681 if (!id || ((*dup_list) & idmask))
682 goto err;
683 *dup_list |= idmask;
684 glist[i] = id;
685 }
686 OPENSSL_free(*pext);
687 *pext = glist;
688 *pextlen = ngroups;
689 return 1;
690err:
691 OPENSSL_free(glist);
692 return 0;
693}
694
695# define GROUPLIST_INCREMENT 40
696# define GROUP_NAME_BUFFER_LENGTH 64
697typedef struct {
698 SSL_CTX *ctx;
699 size_t gidcnt;
700 size_t gidmax;
701 uint16_t *gid_arr;
702} gid_cb_st;
703
704static int gid_cb(const char *elem, int len, void *arg)
705{
706 gid_cb_st *garg = arg;
707 size_t i;
708 uint16_t gid = 0;
709 char etmp[GROUP_NAME_BUFFER_LENGTH];
710
711 if (elem == NULL)
712 return 0;
713 if (garg->gidcnt == garg->gidmax) {
714 uint16_t *tmp =
715 OPENSSL_realloc(garg->gid_arr, garg->gidmax + GROUPLIST_INCREMENT);
716 if (tmp == NULL)
717 return 0;
718 garg->gidmax += GROUPLIST_INCREMENT;
719 garg->gid_arr = tmp;
720 }
721 if (len > (int)(sizeof(etmp) - 1))
722 return 0;
723 memcpy(etmp, elem, len);
724 etmp[len] = 0;
725
726 gid = tls1_group_name2id(garg->ctx, etmp);
727 if (gid == 0)
728 return 0;
729 for (i = 0; i < garg->gidcnt; i++)
730 if (garg->gid_arr[i] == gid)
731 return 0;
732 garg->gid_arr[garg->gidcnt++] = gid;
733 return 1;
734}
735
736/* Set groups based on a colon separated list */
737int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
738 const char *str)
739{
740 gid_cb_st gcb;
741 uint16_t *tmparr;
742 int ret = 0;
743
744 gcb.gidcnt = 0;
745 gcb.gidmax = GROUPLIST_INCREMENT;
746 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
747 if (gcb.gid_arr == NULL)
748 return 0;
749 gcb.ctx = ctx;
750 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
751 goto end;
752 if (pext == NULL) {
753 ret = 1;
754 goto end;
755 }
756
757 /*
758 * gid_cb ensurse there are no duplicates so we can just go ahead and set
759 * the result
760 */
761 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
762 if (tmparr == NULL)
763 goto end;
764 *pext = tmparr;
765 *pextlen = gcb.gidcnt;
766 ret = 1;
767 end:
768 OPENSSL_free(gcb.gid_arr);
769 return ret;
770}
771
772/* Check a group id matches preferences */
773int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups)
774 {
775 const uint16_t *groups;
776 size_t groups_len;
777
778 if (group_id == 0)
779 return 0;
780
781 /* Check for Suite B compliance */
782 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
783 unsigned long cid = s->s3.tmp.new_cipher->id;
784
785 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
786 if (group_id != TLSEXT_curve_P_256)
787 return 0;
788 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
789 if (group_id != TLSEXT_curve_P_384)
790 return 0;
791 } else {
792 /* Should never happen */
793 return 0;
794 }
795 }
796
797 if (check_own_groups) {
798 /* Check group is one of our preferences */
799 tls1_get_supported_groups(s, &groups, &groups_len);
800 if (!tls1_in_list(group_id, groups, groups_len))
801 return 0;
802 }
803
804 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
805 return 0;
806
807 /* For clients, nothing more to check */
808 if (!s->server)
809 return 1;
810
811 /* Check group is one of peers preferences */
812 tls1_get_peer_groups(s, &groups, &groups_len);
813
814 /*
815 * RFC 4492 does not require the supported elliptic curves extension
816 * so if it is not sent we can just choose any curve.
817 * It is invalid to send an empty list in the supported groups
818 * extension, so groups_len == 0 always means no extension.
819 */
820 if (groups_len == 0)
821 return 1;
822 return tls1_in_list(group_id, groups, groups_len);
823}
824
825void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
826 size_t *num_formats)
827{
828 /*
829 * If we have a custom point format list use it otherwise use default
830 */
831 if (s->ext.ecpointformats) {
832 *pformats = s->ext.ecpointformats;
833 *num_formats = s->ext.ecpointformats_len;
834 } else {
835 *pformats = ecformats_default;
836 /* For Suite B we don't support char2 fields */
837 if (tls1_suiteb(s))
838 *num_formats = sizeof(ecformats_default) - 1;
839 else
840 *num_formats = sizeof(ecformats_default);
841 }
842}
843
844/* Check a key is compatible with compression extension */
845static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey)
846{
847 unsigned char comp_id;
848 size_t i;
849 int point_conv;
850
851 /* If not an EC key nothing to check */
852 if (!EVP_PKEY_is_a(pkey, "EC"))
853 return 1;
854
855
856 /* Get required compression id */
857 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
858 if (point_conv == 0)
859 return 0;
860 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
861 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
862 } else if (SSL_IS_TLS13(s)) {
863 /*
864 * ec_point_formats extension is not used in TLSv1.3 so we ignore
865 * this check.
866 */
867 return 1;
868 } else {
869 int field_type = EVP_PKEY_get_field_type(pkey);
870
871 if (field_type == NID_X9_62_prime_field)
872 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
873 else if (field_type == NID_X9_62_characteristic_two_field)
874 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
875 else
876 return 0;
877 }
878 /*
879 * If point formats extension present check it, otherwise everything is
880 * supported (see RFC4492).
881 */
882 if (s->ext.peer_ecpointformats == NULL)
883 return 1;
884
885 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
886 if (s->ext.peer_ecpointformats[i] == comp_id)
887 return 1;
888 }
889 return 0;
890}
891
892/* Return group id of a key */
893static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
894{
895 int curve_nid = ssl_get_EC_curve_nid(pkey);
896
897 if (curve_nid == NID_undef)
898 return 0;
899 return tls1_nid2group_id(curve_nid);
900}
901
902/*
903 * Check cert parameters compatible with extensions: currently just checks EC
904 * certificates have compatible curves and compression.
905 */
906static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
907{
908 uint16_t group_id;
909 EVP_PKEY *pkey;
910 pkey = X509_get0_pubkey(x);
911 if (pkey == NULL)
912 return 0;
913 /* If not EC nothing to do */
914 if (!EVP_PKEY_is_a(pkey, "EC"))
915 return 1;
916 /* Check compression */
917 if (!tls1_check_pkey_comp(s, pkey))
918 return 0;
919 group_id = tls1_get_group_id(pkey);
920 /*
921 * For a server we allow the certificate to not be in our list of supported
922 * groups.
923 */
924 if (!tls1_check_group_id(s, group_id, !s->server))
925 return 0;
926 /*
927 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
928 * SHA384+P-384.
929 */
930 if (check_ee_md && tls1_suiteb(s)) {
931 int check_md;
932 size_t i;
933
934 /* Check to see we have necessary signing algorithm */
935 if (group_id == TLSEXT_curve_P_256)
936 check_md = NID_ecdsa_with_SHA256;
937 else if (group_id == TLSEXT_curve_P_384)
938 check_md = NID_ecdsa_with_SHA384;
939 else
940 return 0; /* Should never happen */
941 for (i = 0; i < s->shared_sigalgslen; i++) {
942 if (check_md == s->shared_sigalgs[i]->sigandhash)
943 return 1;;
944 }
945 return 0;
946 }
947 return 1;
948}
949
950/*
951 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
952 * @s: SSL connection
953 * @cid: Cipher ID we're considering using
954 *
955 * Checks that the kECDHE cipher suite we're considering using
956 * is compatible with the client extensions.
957 *
958 * Returns 0 when the cipher can't be used or 1 when it can.
959 */
960int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
961{
962 /* If not Suite B just need a shared group */
963 if (!tls1_suiteb(s))
964 return tls1_shared_group(s, 0) != 0;
965 /*
966 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
967 * curves permitted.
968 */
969 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
970 return tls1_check_group_id(s, TLSEXT_curve_P_256, 1);
971 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
972 return tls1_check_group_id(s, TLSEXT_curve_P_384, 1);
973
974 return 0;
975}
976
977/* Default sigalg schemes */
978static const uint16_t tls12_sigalgs[] = {
979 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
980 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
981 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
982 TLSEXT_SIGALG_ed25519,
983 TLSEXT_SIGALG_ed448,
984
985 TLSEXT_SIGALG_rsa_pss_pss_sha256,
986 TLSEXT_SIGALG_rsa_pss_pss_sha384,
987 TLSEXT_SIGALG_rsa_pss_pss_sha512,
988 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
989 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
990 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
991
992 TLSEXT_SIGALG_rsa_pkcs1_sha256,
993 TLSEXT_SIGALG_rsa_pkcs1_sha384,
994 TLSEXT_SIGALG_rsa_pkcs1_sha512,
995
996 TLSEXT_SIGALG_ecdsa_sha224,
997 TLSEXT_SIGALG_ecdsa_sha1,
998
999 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1000 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1001
1002 TLSEXT_SIGALG_dsa_sha224,
1003 TLSEXT_SIGALG_dsa_sha1,
1004
1005 TLSEXT_SIGALG_dsa_sha256,
1006 TLSEXT_SIGALG_dsa_sha384,
1007 TLSEXT_SIGALG_dsa_sha512,
1008
1009#ifndef OPENSSL_NO_GOST
1010 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1011 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1012 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1013 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1014 TLSEXT_SIGALG_gostr34102001_gostr3411,
1015#endif
1016};
1017
1018
1019static const uint16_t suiteb_sigalgs[] = {
1020 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1021 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1022};
1023
1024static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1025 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1026 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1027 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1028 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1029 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1030 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1031 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1032 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1033 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1034 {"ed25519", TLSEXT_SIGALG_ed25519,
1035 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1036 NID_undef, NID_undef, 1},
1037 {"ed448", TLSEXT_SIGALG_ed448,
1038 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1039 NID_undef, NID_undef, 1},
1040 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1041 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1042 NID_ecdsa_with_SHA224, NID_undef, 1},
1043 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1044 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1045 NID_ecdsa_with_SHA1, NID_undef, 1},
1046 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1047 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1048 NID_undef, NID_undef, 1},
1049 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1050 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1051 NID_undef, NID_undef, 1},
1052 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1053 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1054 NID_undef, NID_undef, 1},
1055 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1056 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1057 NID_undef, NID_undef, 1},
1058 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1059 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1060 NID_undef, NID_undef, 1},
1061 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1062 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1063 NID_undef, NID_undef, 1},
1064 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1065 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1066 NID_sha256WithRSAEncryption, NID_undef, 1},
1067 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1068 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1069 NID_sha384WithRSAEncryption, NID_undef, 1},
1070 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1071 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1072 NID_sha512WithRSAEncryption, NID_undef, 1},
1073 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1074 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1075 NID_sha224WithRSAEncryption, NID_undef, 1},
1076 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1077 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1078 NID_sha1WithRSAEncryption, NID_undef, 1},
1079 {NULL, TLSEXT_SIGALG_dsa_sha256,
1080 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1081 NID_dsa_with_SHA256, NID_undef, 1},
1082 {NULL, TLSEXT_SIGALG_dsa_sha384,
1083 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1084 NID_undef, NID_undef, 1},
1085 {NULL, TLSEXT_SIGALG_dsa_sha512,
1086 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1087 NID_undef, NID_undef, 1},
1088 {NULL, TLSEXT_SIGALG_dsa_sha224,
1089 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1090 NID_undef, NID_undef, 1},
1091 {NULL, TLSEXT_SIGALG_dsa_sha1,
1092 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1093 NID_dsaWithSHA1, NID_undef, 1},
1094#ifndef OPENSSL_NO_GOST
1095 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1096 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1097 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1098 NID_undef, NID_undef, 1},
1099 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1100 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1101 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1102 NID_undef, NID_undef, 1},
1103 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1104 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1105 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1106 NID_undef, NID_undef, 1},
1107 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1108 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1109 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1110 NID_undef, NID_undef, 1},
1111 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1112 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1113 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1114 NID_undef, NID_undef, 1}
1115#endif
1116};
1117/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1118static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1119 "rsa_pkcs1_md5_sha1", 0,
1120 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1121 EVP_PKEY_RSA, SSL_PKEY_RSA,
1122 NID_undef, NID_undef, 1
1123};
1124
1125/*
1126 * Default signature algorithm values used if signature algorithms not present.
1127 * From RFC5246. Note: order must match certificate index order.
1128 */
1129static const uint16_t tls_default_sigalg[] = {
1130 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1131 0, /* SSL_PKEY_RSA_PSS_SIGN */
1132 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1133 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1134 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1135 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1136 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1137 0, /* SSL_PKEY_ED25519 */
1138 0, /* SSL_PKEY_ED448 */
1139};
1140
1141int ssl_setup_sig_algs(SSL_CTX *ctx)
1142{
1143 size_t i;
1144 const SIGALG_LOOKUP *lu;
1145 SIGALG_LOOKUP *cache
1146 = OPENSSL_malloc(sizeof(*lu) * OSSL_NELEM(sigalg_lookup_tbl));
1147 EVP_PKEY *tmpkey = EVP_PKEY_new();
1148 int ret = 0;
1149
1150 if (cache == NULL || tmpkey == NULL)
1151 goto err;
1152
1153 ERR_set_mark();
1154 for (i = 0, lu = sigalg_lookup_tbl;
1155 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1156 EVP_PKEY_CTX *pctx;
1157
1158 cache[i] = *lu;
1159
1160 /*
1161 * Check hash is available.
1162 * This test is not perfect. A provider could have support
1163 * for a signature scheme, but not a particular hash. However the hash
1164 * could be available from some other loaded provider. In that case it
1165 * could be that the signature is available, and the hash is available
1166 * independently - but not as a combination. We ignore this for now.
1167 */
1168 if (lu->hash != NID_undef
1169 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1170 cache[i].enabled = 0;
1171 continue;
1172 }
1173
1174 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1175 cache[i].enabled = 0;
1176 continue;
1177 }
1178 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1179 /* If unable to create pctx we assume the sig algorithm is unavailable */
1180 if (pctx == NULL)
1181 cache[i].enabled = 0;
1182 EVP_PKEY_CTX_free(pctx);
1183 }
1184 ERR_pop_to_mark();
1185 ctx->sigalg_lookup_cache = cache;
1186 cache = NULL;
1187
1188 ret = 1;
1189 err:
1190 OPENSSL_free(cache);
1191 EVP_PKEY_free(tmpkey);
1192 return ret;
1193}
1194
1195/* Lookup TLS signature algorithm */
1196static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL *s, uint16_t sigalg)
1197{
1198 size_t i;
1199 const SIGALG_LOOKUP *lu;
1200
1201 for (i = 0, lu = s->ctx->sigalg_lookup_cache;
1202 /* cache should have the same number of elements as sigalg_lookup_tbl */
1203 i < OSSL_NELEM(sigalg_lookup_tbl);
1204 lu++, i++) {
1205 if (lu->sigalg == sigalg) {
1206 if (!lu->enabled)
1207 return NULL;
1208 return lu;
1209 }
1210 }
1211 return NULL;
1212}
1213/* Lookup hash: return 0 if invalid or not enabled */
1214int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1215{
1216 const EVP_MD *md;
1217 if (lu == NULL)
1218 return 0;
1219 /* lu->hash == NID_undef means no associated digest */
1220 if (lu->hash == NID_undef) {
1221 md = NULL;
1222 } else {
1223 md = ssl_md(ctx, lu->hash_idx);
1224 if (md == NULL)
1225 return 0;
1226 }
1227 if (pmd)
1228 *pmd = md;
1229 return 1;
1230}
1231
1232/*
1233 * Check if key is large enough to generate RSA-PSS signature.
1234 *
1235 * The key must greater than or equal to 2 * hash length + 2.
1236 * SHA512 has a hash length of 64 bytes, which is incompatible
1237 * with a 128 byte (1024 bit) key.
1238 */
1239#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1240static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1241 const SIGALG_LOOKUP *lu)
1242{
1243 const EVP_MD *md;
1244
1245 if (pkey == NULL)
1246 return 0;
1247 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1248 return 0;
1249 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1250 return 0;
1251 return 1;
1252}
1253
1254/*
1255 * Returns a signature algorithm when the peer did not send a list of supported
1256 * signature algorithms. The signature algorithm is fixed for the certificate
1257 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1258 * certificate type from |s| will be used.
1259 * Returns the signature algorithm to use, or NULL on error.
1260 */
1261static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
1262{
1263 if (idx == -1) {
1264 if (s->server) {
1265 size_t i;
1266
1267 /* Work out index corresponding to ciphersuite */
1268 for (i = 0; i < SSL_PKEY_NUM; i++) {
1269 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
1270
1271 if (clu == NULL)
1272 continue;
1273 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1274 idx = i;
1275 break;
1276 }
1277 }
1278
1279 /*
1280 * Some GOST ciphersuites allow more than one signature algorithms
1281 * */
1282 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1283 int real_idx;
1284
1285 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1286 real_idx--) {
1287 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1288 idx = real_idx;
1289 break;
1290 }
1291 }
1292 }
1293 /*
1294 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1295 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1296 */
1297 else if (idx == SSL_PKEY_GOST12_256) {
1298 int real_idx;
1299
1300 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1301 real_idx--) {
1302 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1303 idx = real_idx;
1304 break;
1305 }
1306 }
1307 }
1308 } else {
1309 idx = s->cert->key - s->cert->pkeys;
1310 }
1311 }
1312 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1313 return NULL;
1314 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1315 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1316
1317 if (lu == NULL)
1318 return NULL;
1319 if (!tls1_lookup_md(s->ctx, lu, NULL))
1320 return NULL;
1321 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1322 return NULL;
1323 return lu;
1324 }
1325 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1326 return NULL;
1327 return &legacy_rsa_sigalg;
1328}
1329/* Set peer sigalg based key type */
1330int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
1331{
1332 size_t idx;
1333 const SIGALG_LOOKUP *lu;
1334
1335 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
1336 return 0;
1337 lu = tls1_get_legacy_sigalg(s, idx);
1338 if (lu == NULL)
1339 return 0;
1340 s->s3.tmp.peer_sigalg = lu;
1341 return 1;
1342}
1343
1344size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
1345{
1346 /*
1347 * If Suite B mode use Suite B sigalgs only, ignore any other
1348 * preferences.
1349 */
1350 switch (tls1_suiteb(s)) {
1351 case SSL_CERT_FLAG_SUITEB_128_LOS:
1352 *psigs = suiteb_sigalgs;
1353 return OSSL_NELEM(suiteb_sigalgs);
1354
1355 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1356 *psigs = suiteb_sigalgs;
1357 return 1;
1358
1359 case SSL_CERT_FLAG_SUITEB_192_LOS:
1360 *psigs = suiteb_sigalgs + 1;
1361 return 1;
1362 }
1363 /*
1364 * We use client_sigalgs (if not NULL) if we're a server
1365 * and sending a certificate request or if we're a client and
1366 * determining which shared algorithm to use.
1367 */
1368 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1369 *psigs = s->cert->client_sigalgs;
1370 return s->cert->client_sigalgslen;
1371 } else if (s->cert->conf_sigalgs) {
1372 *psigs = s->cert->conf_sigalgs;
1373 return s->cert->conf_sigalgslen;
1374 } else {
1375 *psigs = tls12_sigalgs;
1376 return OSSL_NELEM(tls12_sigalgs);
1377 }
1378}
1379
1380/*
1381 * Called by servers only. Checks that we have a sig alg that supports the
1382 * specified EC curve.
1383 */
1384int tls_check_sigalg_curve(const SSL *s, int curve)
1385{
1386 const uint16_t *sigs;
1387 size_t siglen, i;
1388
1389 if (s->cert->conf_sigalgs) {
1390 sigs = s->cert->conf_sigalgs;
1391 siglen = s->cert->conf_sigalgslen;
1392 } else {
1393 sigs = tls12_sigalgs;
1394 siglen = OSSL_NELEM(tls12_sigalgs);
1395 }
1396
1397 for (i = 0; i < siglen; i++) {
1398 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1399
1400 if (lu == NULL)
1401 continue;
1402 if (lu->sig == EVP_PKEY_EC
1403 && lu->curve != NID_undef
1404 && curve == lu->curve)
1405 return 1;
1406 }
1407
1408 return 0;
1409}
1410
1411/*
1412 * Return the number of security bits for the signature algorithm, or 0 on
1413 * error.
1414 */
1415static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1416{
1417 const EVP_MD *md = NULL;
1418 int secbits = 0;
1419
1420 if (!tls1_lookup_md(ctx, lu, &md))
1421 return 0;
1422 if (md != NULL)
1423 {
1424 int md_type = EVP_MD_get_type(md);
1425
1426 /* Security bits: half digest bits */
1427 secbits = EVP_MD_get_size(md) * 4;
1428 /*
1429 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1430 * they're no longer accepted at security level 1. The real values don't
1431 * really matter as long as they're lower than 80, which is our
1432 * security level 1.
1433 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1434 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1435 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1436 * puts a chosen-prefix attack for MD5 at 2^39.
1437 */
1438 if (md_type == NID_sha1)
1439 secbits = 64;
1440 else if (md_type == NID_md5_sha1)
1441 secbits = 67;
1442 else if (md_type == NID_md5)
1443 secbits = 39;
1444 } else {
1445 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1446 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1447 secbits = 128;
1448 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1449 secbits = 224;
1450 }
1451 return secbits;
1452}
1453
1454/*
1455 * Check signature algorithm is consistent with sent supported signature
1456 * algorithms and if so set relevant digest and signature scheme in
1457 * s.
1458 */
1459int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
1460{
1461 const uint16_t *sent_sigs;
1462 const EVP_MD *md = NULL;
1463 char sigalgstr[2];
1464 size_t sent_sigslen, i, cidx;
1465 int pkeyid = -1;
1466 const SIGALG_LOOKUP *lu;
1467 int secbits = 0;
1468
1469 pkeyid = EVP_PKEY_get_id(pkey);
1470 /* Should never happen */
1471 if (pkeyid == -1)
1472 return -1;
1473 if (SSL_IS_TLS13(s)) {
1474 /* Disallow DSA for TLS 1.3 */
1475 if (pkeyid == EVP_PKEY_DSA) {
1476 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1477 return 0;
1478 }
1479 /* Only allow PSS for TLS 1.3 */
1480 if (pkeyid == EVP_PKEY_RSA)
1481 pkeyid = EVP_PKEY_RSA_PSS;
1482 }
1483 lu = tls1_lookup_sigalg(s, sig);
1484 /*
1485 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1486 * is consistent with signature: RSA keys can be used for RSA-PSS
1487 */
1488 if (lu == NULL
1489 || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1490 || (pkeyid != lu->sig
1491 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1492 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1493 return 0;
1494 }
1495 /* Check the sigalg is consistent with the key OID */
1496 if (!ssl_cert_lookup_by_nid(EVP_PKEY_get_id(pkey), &cidx)
1497 || lu->sig_idx != (int)cidx) {
1498 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1499 return 0;
1500 }
1501
1502 if (pkeyid == EVP_PKEY_EC) {
1503
1504 /* Check point compression is permitted */
1505 if (!tls1_check_pkey_comp(s, pkey)) {
1506 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1507 SSL_R_ILLEGAL_POINT_COMPRESSION);
1508 return 0;
1509 }
1510
1511 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1512 if (SSL_IS_TLS13(s) || tls1_suiteb(s)) {
1513 int curve = ssl_get_EC_curve_nid(pkey);
1514
1515 if (lu->curve != NID_undef && curve != lu->curve) {
1516 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1517 return 0;
1518 }
1519 }
1520 if (!SSL_IS_TLS13(s)) {
1521 /* Check curve matches extensions */
1522 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1523 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1524 return 0;
1525 }
1526 if (tls1_suiteb(s)) {
1527 /* Check sigalg matches a permissible Suite B value */
1528 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1529 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1530 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1531 SSL_R_WRONG_SIGNATURE_TYPE);
1532 return 0;
1533 }
1534 }
1535 }
1536 } else if (tls1_suiteb(s)) {
1537 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1538 return 0;
1539 }
1540
1541 /* Check signature matches a type we sent */
1542 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1543 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1544 if (sig == *sent_sigs)
1545 break;
1546 }
1547 /* Allow fallback to SHA1 if not strict mode */
1548 if (i == sent_sigslen && (lu->hash != NID_sha1
1549 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1550 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1551 return 0;
1552 }
1553 if (!tls1_lookup_md(s->ctx, lu, &md)) {
1554 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1555 return 0;
1556 }
1557 /*
1558 * Make sure security callback allows algorithm. For historical
1559 * reasons we have to pass the sigalg as a two byte char array.
1560 */
1561 sigalgstr[0] = (sig >> 8) & 0xff;
1562 sigalgstr[1] = sig & 0xff;
1563 secbits = sigalg_security_bits(s->ctx, lu);
1564 if (secbits == 0 ||
1565 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1566 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1567 (void *)sigalgstr)) {
1568 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1569 return 0;
1570 }
1571 /* Store the sigalg the peer uses */
1572 s->s3.tmp.peer_sigalg = lu;
1573 return 1;
1574}
1575
1576int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
1577{
1578 if (s->s3.tmp.peer_sigalg == NULL)
1579 return 0;
1580 *pnid = s->s3.tmp.peer_sigalg->sig;
1581 return 1;
1582}
1583
1584int SSL_get_signature_type_nid(const SSL *s, int *pnid)
1585{
1586 if (s->s3.tmp.sigalg == NULL)
1587 return 0;
1588 *pnid = s->s3.tmp.sigalg->sig;
1589 return 1;
1590}
1591
1592/*
1593 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
1594 * supported, doesn't appear in supported signature algorithms, isn't supported
1595 * by the enabled protocol versions or by the security level.
1596 *
1597 * This function should only be used for checking which ciphers are supported
1598 * by the client.
1599 *
1600 * Call ssl_cipher_disabled() to check that it's enabled or not.
1601 */
1602int ssl_set_client_disabled(SSL *s)
1603{
1604 s->s3.tmp.mask_a = 0;
1605 s->s3.tmp.mask_k = 0;
1606 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
1607 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
1608 &s->s3.tmp.max_ver, NULL) != 0)
1609 return 0;
1610#ifndef OPENSSL_NO_PSK
1611 /* with PSK there must be client callback set */
1612 if (!s->psk_client_callback) {
1613 s->s3.tmp.mask_a |= SSL_aPSK;
1614 s->s3.tmp.mask_k |= SSL_PSK;
1615 }
1616#endif /* OPENSSL_NO_PSK */
1617#ifndef OPENSSL_NO_SRP
1618 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
1619 s->s3.tmp.mask_a |= SSL_aSRP;
1620 s->s3.tmp.mask_k |= SSL_kSRP;
1621 }
1622#endif
1623 return 1;
1624}
1625
1626/*
1627 * ssl_cipher_disabled - check that a cipher is disabled or not
1628 * @s: SSL connection that you want to use the cipher on
1629 * @c: cipher to check
1630 * @op: Security check that you want to do
1631 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
1632 *
1633 * Returns 1 when it's disabled, 0 when enabled.
1634 */
1635int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
1636{
1637 if (c->algorithm_mkey & s->s3.tmp.mask_k
1638 || c->algorithm_auth & s->s3.tmp.mask_a)
1639 return 1;
1640 if (s->s3.tmp.max_ver == 0)
1641 return 1;
1642 if (!SSL_IS_DTLS(s)) {
1643 int min_tls = c->min_tls;
1644
1645 /*
1646 * For historical reasons we will allow ECHDE to be selected by a server
1647 * in SSLv3 if we are a client
1648 */
1649 if (min_tls == TLS1_VERSION && ecdhe
1650 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
1651 min_tls = SSL3_VERSION;
1652
1653 if ((min_tls > s->s3.tmp.max_ver) || (c->max_tls < s->s3.tmp.min_ver))
1654 return 1;
1655 }
1656 if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3.tmp.max_ver)
1657 || DTLS_VERSION_LT(c->max_dtls, s->s3.tmp.min_ver)))
1658 return 1;
1659
1660 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
1661}
1662
1663int tls_use_ticket(SSL *s)
1664{
1665 if ((s->options & SSL_OP_NO_TICKET))
1666 return 0;
1667 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
1668}
1669
1670int tls1_set_server_sigalgs(SSL *s)
1671{
1672 size_t i;
1673
1674 /* Clear any shared signature algorithms */
1675 OPENSSL_free(s->shared_sigalgs);
1676 s->shared_sigalgs = NULL;
1677 s->shared_sigalgslen = 0;
1678 /* Clear certificate validity flags */
1679 for (i = 0; i < SSL_PKEY_NUM; i++)
1680 s->s3.tmp.valid_flags[i] = 0;
1681 /*
1682 * If peer sent no signature algorithms check to see if we support
1683 * the default algorithm for each certificate type
1684 */
1685 if (s->s3.tmp.peer_cert_sigalgs == NULL
1686 && s->s3.tmp.peer_sigalgs == NULL) {
1687 const uint16_t *sent_sigs;
1688 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1689
1690 for (i = 0; i < SSL_PKEY_NUM; i++) {
1691 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
1692 size_t j;
1693
1694 if (lu == NULL)
1695 continue;
1696 /* Check default matches a type we sent */
1697 for (j = 0; j < sent_sigslen; j++) {
1698 if (lu->sigalg == sent_sigs[j]) {
1699 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
1700 break;
1701 }
1702 }
1703 }
1704 return 1;
1705 }
1706
1707 if (!tls1_process_sigalgs(s)) {
1708 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
1709 return 0;
1710 }
1711 if (s->shared_sigalgs != NULL)
1712 return 1;
1713
1714 /* Fatal error if no shared signature algorithms */
1715 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1716 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
1717 return 0;
1718}
1719
1720/*-
1721 * Gets the ticket information supplied by the client if any.
1722 *
1723 * hello: The parsed ClientHello data
1724 * ret: (output) on return, if a ticket was decrypted, then this is set to
1725 * point to the resulting session.
1726 */
1727SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
1728 SSL_SESSION **ret)
1729{
1730 size_t size;
1731 RAW_EXTENSION *ticketext;
1732
1733 *ret = NULL;
1734 s->ext.ticket_expected = 0;
1735
1736 /*
1737 * If tickets disabled or not supported by the protocol version
1738 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
1739 * resumption.
1740 */
1741 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
1742 return SSL_TICKET_NONE;
1743
1744 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
1745 if (!ticketext->present)
1746 return SSL_TICKET_NONE;
1747
1748 size = PACKET_remaining(&ticketext->data);
1749
1750 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
1751 hello->session_id, hello->session_id_len, ret);
1752}
1753
1754/*-
1755 * tls_decrypt_ticket attempts to decrypt a session ticket.
1756 *
1757 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
1758 * expecting a pre-shared key ciphersuite, in which case we have no use for
1759 * session tickets and one will never be decrypted, nor will
1760 * s->ext.ticket_expected be set to 1.
1761 *
1762 * Side effects:
1763 * Sets s->ext.ticket_expected to 1 if the server will have to issue
1764 * a new session ticket to the client because the client indicated support
1765 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
1766 * a session ticket or we couldn't use the one it gave us, or if
1767 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
1768 * Otherwise, s->ext.ticket_expected is set to 0.
1769 *
1770 * etick: points to the body of the session ticket extension.
1771 * eticklen: the length of the session tickets extension.
1772 * sess_id: points at the session ID.
1773 * sesslen: the length of the session ID.
1774 * psess: (output) on return, if a ticket was decrypted, then this is set to
1775 * point to the resulting session.
1776 */
1777SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick,
1778 size_t eticklen, const unsigned char *sess_id,
1779 size_t sesslen, SSL_SESSION **psess)
1780{
1781 SSL_SESSION *sess = NULL;
1782 unsigned char *sdec;
1783 const unsigned char *p;
1784 int slen, renew_ticket = 0, declen;
1785 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
1786 size_t mlen;
1787 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
1788 SSL_HMAC *hctx = NULL;
1789 EVP_CIPHER_CTX *ctx = NULL;
1790 SSL_CTX *tctx = s->session_ctx;
1791
1792 if (eticklen == 0) {
1793 /*
1794 * The client will accept a ticket but doesn't currently have
1795 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
1796 */
1797 ret = SSL_TICKET_EMPTY;
1798 goto end;
1799 }
1800 if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) {
1801 /*
1802 * Indicate that the ticket couldn't be decrypted rather than
1803 * generating the session from ticket now, trigger
1804 * abbreviated handshake based on external mechanism to
1805 * calculate the master secret later.
1806 */
1807 ret = SSL_TICKET_NO_DECRYPT;
1808 goto end;
1809 }
1810
1811 /* Need at least keyname + iv */
1812 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
1813 ret = SSL_TICKET_NO_DECRYPT;
1814 goto end;
1815 }
1816
1817 /* Initialize session ticket encryption and HMAC contexts */
1818 hctx = ssl_hmac_new(tctx);
1819 if (hctx == NULL) {
1820 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1821 goto end;
1822 }
1823 ctx = EVP_CIPHER_CTX_new();
1824 if (ctx == NULL) {
1825 ret = SSL_TICKET_FATAL_ERR_MALLOC;
1826 goto end;
1827 }
1828#ifndef OPENSSL_NO_DEPRECATED_3_0
1829 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
1830#else
1831 if (tctx->ext.ticket_key_evp_cb != NULL)
1832#endif
1833 {
1834 unsigned char *nctick = (unsigned char *)etick;
1835 int rv = 0;
1836
1837 if (tctx->ext.ticket_key_evp_cb != NULL)
1838 rv = tctx->ext.ticket_key_evp_cb(s, nctick,
1839 nctick + TLSEXT_KEYNAME_LENGTH,
1840 ctx,
1841 ssl_hmac_get0_EVP_MAC_CTX(hctx),
1842 0);
1843#ifndef OPENSSL_NO_DEPRECATED_3_0
1844 else if (tctx->ext.ticket_key_cb != NULL)
1845 /* if 0 is returned, write an empty ticket */
1846 rv = tctx->ext.ticket_key_cb(s, nctick,
1847 nctick + TLSEXT_KEYNAME_LENGTH,
1848 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
1849#endif
1850 if (rv < 0) {
1851 ret = SSL_TICKET_FATAL_ERR_OTHER;
1852 goto end;
1853 }
1854 if (rv == 0) {
1855 ret = SSL_TICKET_NO_DECRYPT;
1856 goto end;
1857 }
1858 if (rv == 2)
1859 renew_ticket = 1;
1860 } else {
1861 EVP_CIPHER *aes256cbc = NULL;
1862
1863 /* Check key name matches */
1864 if (memcmp(etick, tctx->ext.tick_key_name,
1865 TLSEXT_KEYNAME_LENGTH) != 0) {
1866 ret = SSL_TICKET_NO_DECRYPT;
1867 goto end;
1868 }
1869
1870 aes256cbc = EVP_CIPHER_fetch(s->ctx->libctx, "AES-256-CBC",
1871 s->ctx->propq);
1872 if (aes256cbc == NULL
1873 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
1874 sizeof(tctx->ext.secure->tick_hmac_key),
1875 "SHA256") <= 0
1876 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
1877 tctx->ext.secure->tick_aes_key,
1878 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
1879 EVP_CIPHER_free(aes256cbc);
1880 ret = SSL_TICKET_FATAL_ERR_OTHER;
1881 goto end;
1882 }
1883 EVP_CIPHER_free(aes256cbc);
1884 if (SSL_IS_TLS13(s))
1885 renew_ticket = 1;
1886 }
1887 /*
1888 * Attempt to process session ticket, first conduct sanity and integrity
1889 * checks on ticket.
1890 */
1891 mlen = ssl_hmac_size(hctx);
1892 if (mlen == 0) {
1893 ret = SSL_TICKET_FATAL_ERR_OTHER;
1894 goto end;
1895 }
1896
1897 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
1898 if (eticklen <=
1899 TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx) + mlen) {
1900 ret = SSL_TICKET_NO_DECRYPT;
1901 goto end;
1902 }
1903 eticklen -= mlen;
1904 /* Check HMAC of encrypted ticket */
1905 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
1906 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
1907 ret = SSL_TICKET_FATAL_ERR_OTHER;
1908 goto end;
1909 }
1910
1911 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
1912 ret = SSL_TICKET_NO_DECRYPT;
1913 goto end;
1914 }
1915 /* Attempt to decrypt session data */
1916 /* Move p after IV to start of encrypted ticket, update length */
1917 p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
1918 eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_get_iv_length(ctx);
1919 sdec = OPENSSL_malloc(eticklen);
1920 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
1921 (int)eticklen) <= 0) {
1922 OPENSSL_free(sdec);
1923 ret = SSL_TICKET_FATAL_ERR_OTHER;
1924 goto end;
1925 }
1926 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
1927 OPENSSL_free(sdec);
1928 ret = SSL_TICKET_NO_DECRYPT;
1929 goto end;
1930 }
1931 slen += declen;
1932 p = sdec;
1933
1934 sess = d2i_SSL_SESSION(NULL, &p, slen);
1935 slen -= p - sdec;
1936 OPENSSL_free(sdec);
1937 if (sess) {
1938 /* Some additional consistency checks */
1939 if (slen != 0) {
1940 SSL_SESSION_free(sess);
1941 sess = NULL;
1942 ret = SSL_TICKET_NO_DECRYPT;
1943 goto end;
1944 }
1945 /*
1946 * The session ID, if non-empty, is used by some clients to detect
1947 * that the ticket has been accepted. So we copy it to the session
1948 * structure. If it is empty set length to zero as required by
1949 * standard.
1950 */
1951 if (sesslen) {
1952 memcpy(sess->session_id, sess_id, sesslen);
1953 sess->session_id_length = sesslen;
1954 }
1955 if (renew_ticket)
1956 ret = SSL_TICKET_SUCCESS_RENEW;
1957 else
1958 ret = SSL_TICKET_SUCCESS;
1959 goto end;
1960 }
1961 ERR_clear_error();
1962 /*
1963 * For session parse failure, indicate that we need to send a new ticket.
1964 */
1965 ret = SSL_TICKET_NO_DECRYPT;
1966
1967 end:
1968 EVP_CIPHER_CTX_free(ctx);
1969 ssl_hmac_free(hctx);
1970
1971 /*
1972 * If set, the decrypt_ticket_cb() is called unless a fatal error was
1973 * detected above. The callback is responsible for checking |ret| before it
1974 * performs any action
1975 */
1976 if (s->session_ctx->decrypt_ticket_cb != NULL
1977 && (ret == SSL_TICKET_EMPTY
1978 || ret == SSL_TICKET_NO_DECRYPT
1979 || ret == SSL_TICKET_SUCCESS
1980 || ret == SSL_TICKET_SUCCESS_RENEW)) {
1981 size_t keyname_len = eticklen;
1982 int retcb;
1983
1984 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
1985 keyname_len = TLSEXT_KEYNAME_LENGTH;
1986 retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len,
1987 ret,
1988 s->session_ctx->ticket_cb_data);
1989 switch (retcb) {
1990 case SSL_TICKET_RETURN_ABORT:
1991 ret = SSL_TICKET_FATAL_ERR_OTHER;
1992 break;
1993
1994 case SSL_TICKET_RETURN_IGNORE:
1995 ret = SSL_TICKET_NONE;
1996 SSL_SESSION_free(sess);
1997 sess = NULL;
1998 break;
1999
2000 case SSL_TICKET_RETURN_IGNORE_RENEW:
2001 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2002 ret = SSL_TICKET_NO_DECRYPT;
2003 /* else the value of |ret| will already do the right thing */
2004 SSL_SESSION_free(sess);
2005 sess = NULL;
2006 break;
2007
2008 case SSL_TICKET_RETURN_USE:
2009 case SSL_TICKET_RETURN_USE_RENEW:
2010 if (ret != SSL_TICKET_SUCCESS
2011 && ret != SSL_TICKET_SUCCESS_RENEW)
2012 ret = SSL_TICKET_FATAL_ERR_OTHER;
2013 else if (retcb == SSL_TICKET_RETURN_USE)
2014 ret = SSL_TICKET_SUCCESS;
2015 else
2016 ret = SSL_TICKET_SUCCESS_RENEW;
2017 break;
2018
2019 default:
2020 ret = SSL_TICKET_FATAL_ERR_OTHER;
2021 }
2022 }
2023
2024 if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) {
2025 switch (ret) {
2026 case SSL_TICKET_NO_DECRYPT:
2027 case SSL_TICKET_SUCCESS_RENEW:
2028 case SSL_TICKET_EMPTY:
2029 s->ext.ticket_expected = 1;
2030 }
2031 }
2032
2033 *psess = sess;
2034
2035 return ret;
2036}
2037
2038/* Check to see if a signature algorithm is allowed */
2039static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu)
2040{
2041 unsigned char sigalgstr[2];
2042 int secbits;
2043
2044 if (lu == NULL || !lu->enabled)
2045 return 0;
2046 /* DSA is not allowed in TLS 1.3 */
2047 if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2048 return 0;
2049 /*
2050 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2051 * spec
2052 */
2053 if (!s->server && !SSL_IS_DTLS(s) && s->s3.tmp.min_ver >= TLS1_3_VERSION
2054 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2055 || lu->hash_idx == SSL_MD_MD5_IDX
2056 || lu->hash_idx == SSL_MD_SHA224_IDX))
2057 return 0;
2058
2059 /* See if public key algorithm allowed */
2060 if (ssl_cert_is_disabled(s->ctx, lu->sig_idx))
2061 return 0;
2062
2063 if (lu->sig == NID_id_GostR3410_2012_256
2064 || lu->sig == NID_id_GostR3410_2012_512
2065 || lu->sig == NID_id_GostR3410_2001) {
2066 /* We never allow GOST sig algs on the server with TLSv1.3 */
2067 if (s->server && SSL_IS_TLS13(s))
2068 return 0;
2069 if (!s->server
2070 && s->method->version == TLS_ANY_VERSION
2071 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2072 int i, num;
2073 STACK_OF(SSL_CIPHER) *sk;
2074
2075 /*
2076 * We're a client that could negotiate TLSv1.3. We only allow GOST
2077 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2078 * ciphersuites enabled.
2079 */
2080
2081 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2082 return 0;
2083
2084 sk = SSL_get_ciphers(s);
2085 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2086 for (i = 0; i < num; i++) {
2087 const SSL_CIPHER *c;
2088
2089 c = sk_SSL_CIPHER_value(sk, i);
2090 /* Skip disabled ciphers */
2091 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2092 continue;
2093
2094 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2095 break;
2096 }
2097 if (i == num)
2098 return 0;
2099 }
2100 }
2101
2102 /* Finally see if security callback allows it */
2103 secbits = sigalg_security_bits(s->ctx, lu);
2104 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2105 sigalgstr[1] = lu->sigalg & 0xff;
2106 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2107}
2108
2109/*
2110 * Get a mask of disabled public key algorithms based on supported signature
2111 * algorithms. For example if no signature algorithm supports RSA then RSA is
2112 * disabled.
2113 */
2114
2115void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
2116{
2117 const uint16_t *sigalgs;
2118 size_t i, sigalgslen;
2119 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2120 /*
2121 * Go through all signature algorithms seeing if we support any
2122 * in disabled_mask.
2123 */
2124 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2125 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2126 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2127 const SSL_CERT_LOOKUP *clu;
2128
2129 if (lu == NULL)
2130 continue;
2131
2132 clu = ssl_cert_lookup_by_idx(lu->sig_idx);
2133 if (clu == NULL)
2134 continue;
2135
2136 /* If algorithm is disabled see if we can enable it */
2137 if ((clu->amask & disabled_mask) != 0
2138 && tls12_sigalg_allowed(s, op, lu))
2139 disabled_mask &= ~clu->amask;
2140 }
2141 *pmask_a |= disabled_mask;
2142}
2143
2144int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
2145 const uint16_t *psig, size_t psiglen)
2146{
2147 size_t i;
2148 int rv = 0;
2149
2150 for (i = 0; i < psiglen; i++, psig++) {
2151 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2152
2153 if (lu == NULL
2154 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2155 continue;
2156 if (!WPACKET_put_bytes_u16(pkt, *psig))
2157 return 0;
2158 /*
2159 * If TLS 1.3 must have at least one valid TLS 1.3 message
2160 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2161 */
2162 if (rv == 0 && (!SSL_IS_TLS13(s)
2163 || (lu->sig != EVP_PKEY_RSA
2164 && lu->hash != NID_sha1
2165 && lu->hash != NID_sha224)))
2166 rv = 1;
2167 }
2168 if (rv == 0)
2169 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2170 return rv;
2171}
2172
2173/* Given preference and allowed sigalgs set shared sigalgs */
2174static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
2175 const uint16_t *pref, size_t preflen,
2176 const uint16_t *allow, size_t allowlen)
2177{
2178 const uint16_t *ptmp, *atmp;
2179 size_t i, j, nmatch = 0;
2180 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2181 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2182
2183 /* Skip disabled hashes or signature algorithms */
2184 if (lu == NULL
2185 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2186 continue;
2187 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2188 if (*ptmp == *atmp) {
2189 nmatch++;
2190 if (shsig)
2191 *shsig++ = lu;
2192 break;
2193 }
2194 }
2195 }
2196 return nmatch;
2197}
2198
2199/* Set shared signature algorithms for SSL structures */
2200static int tls1_set_shared_sigalgs(SSL *s)
2201{
2202 const uint16_t *pref, *allow, *conf;
2203 size_t preflen, allowlen, conflen;
2204 size_t nmatch;
2205 const SIGALG_LOOKUP **salgs = NULL;
2206 CERT *c = s->cert;
2207 unsigned int is_suiteb = tls1_suiteb(s);
2208
2209 OPENSSL_free(s->shared_sigalgs);
2210 s->shared_sigalgs = NULL;
2211 s->shared_sigalgslen = 0;
2212 /* If client use client signature algorithms if not NULL */
2213 if (!s->server && c->client_sigalgs && !is_suiteb) {
2214 conf = c->client_sigalgs;
2215 conflen = c->client_sigalgslen;
2216 } else if (c->conf_sigalgs && !is_suiteb) {
2217 conf = c->conf_sigalgs;
2218 conflen = c->conf_sigalgslen;
2219 } else
2220 conflen = tls12_get_psigalgs(s, 0, &conf);
2221 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2222 pref = conf;
2223 preflen = conflen;
2224 allow = s->s3.tmp.peer_sigalgs;
2225 allowlen = s->s3.tmp.peer_sigalgslen;
2226 } else {
2227 allow = conf;
2228 allowlen = conflen;
2229 pref = s->s3.tmp.peer_sigalgs;
2230 preflen = s->s3.tmp.peer_sigalgslen;
2231 }
2232 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2233 if (nmatch) {
2234 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) {
2235 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2236 return 0;
2237 }
2238 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2239 } else {
2240 salgs = NULL;
2241 }
2242 s->shared_sigalgs = salgs;
2243 s->shared_sigalgslen = nmatch;
2244 return 1;
2245}
2246
2247int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2248{
2249 unsigned int stmp;
2250 size_t size, i;
2251 uint16_t *buf;
2252
2253 size = PACKET_remaining(pkt);
2254
2255 /* Invalid data length */
2256 if (size == 0 || (size & 1) != 0)
2257 return 0;
2258
2259 size >>= 1;
2260
2261 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) {
2262 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2263 return 0;
2264 }
2265 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2266 buf[i] = stmp;
2267
2268 if (i != size) {
2269 OPENSSL_free(buf);
2270 return 0;
2271 }
2272
2273 OPENSSL_free(*pdest);
2274 *pdest = buf;
2275 *pdestlen = size;
2276
2277 return 1;
2278}
2279
2280int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert)
2281{
2282 /* Extension ignored for inappropriate versions */
2283 if (!SSL_USE_SIGALGS(s))
2284 return 1;
2285 /* Should never happen */
2286 if (s->cert == NULL)
2287 return 0;
2288
2289 if (cert)
2290 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2291 &s->s3.tmp.peer_cert_sigalgslen);
2292 else
2293 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2294 &s->s3.tmp.peer_sigalgslen);
2295
2296}
2297
2298/* Set preferred digest for each key type */
2299
2300int tls1_process_sigalgs(SSL *s)
2301{
2302 size_t i;
2303 uint32_t *pvalid = s->s3.tmp.valid_flags;
2304
2305 if (!tls1_set_shared_sigalgs(s))
2306 return 0;
2307
2308 for (i = 0; i < SSL_PKEY_NUM; i++)
2309 pvalid[i] = 0;
2310
2311 for (i = 0; i < s->shared_sigalgslen; i++) {
2312 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2313 int idx = sigptr->sig_idx;
2314
2315 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2316 if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2317 continue;
2318 /* If not disabled indicate we can explicitly sign */
2319 if (pvalid[idx] == 0 && !ssl_cert_is_disabled(s->ctx, idx))
2320 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2321 }
2322 return 1;
2323}
2324
2325int SSL_get_sigalgs(SSL *s, int idx,
2326 int *psign, int *phash, int *psignhash,
2327 unsigned char *rsig, unsigned char *rhash)
2328{
2329 uint16_t *psig = s->s3.tmp.peer_sigalgs;
2330 size_t numsigalgs = s->s3.tmp.peer_sigalgslen;
2331 if (psig == NULL || numsigalgs > INT_MAX)
2332 return 0;
2333 if (idx >= 0) {
2334 const SIGALG_LOOKUP *lu;
2335
2336 if (idx >= (int)numsigalgs)
2337 return 0;
2338 psig += idx;
2339 if (rhash != NULL)
2340 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2341 if (rsig != NULL)
2342 *rsig = (unsigned char)(*psig & 0xff);
2343 lu = tls1_lookup_sigalg(s, *psig);
2344 if (psign != NULL)
2345 *psign = lu != NULL ? lu->sig : NID_undef;
2346 if (phash != NULL)
2347 *phash = lu != NULL ? lu->hash : NID_undef;
2348 if (psignhash != NULL)
2349 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2350 }
2351 return (int)numsigalgs;
2352}
2353
2354int SSL_get_shared_sigalgs(SSL *s, int idx,
2355 int *psign, int *phash, int *psignhash,
2356 unsigned char *rsig, unsigned char *rhash)
2357{
2358 const SIGALG_LOOKUP *shsigalgs;
2359 if (s->shared_sigalgs == NULL
2360 || idx < 0
2361 || idx >= (int)s->shared_sigalgslen
2362 || s->shared_sigalgslen > INT_MAX)
2363 return 0;
2364 shsigalgs = s->shared_sigalgs[idx];
2365 if (phash != NULL)
2366 *phash = shsigalgs->hash;
2367 if (psign != NULL)
2368 *psign = shsigalgs->sig;
2369 if (psignhash != NULL)
2370 *psignhash = shsigalgs->sigandhash;
2371 if (rsig != NULL)
2372 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2373 if (rhash != NULL)
2374 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2375 return (int)s->shared_sigalgslen;
2376}
2377
2378/* Maximum possible number of unique entries in sigalgs array */
2379#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2380
2381typedef struct {
2382 size_t sigalgcnt;
2383 /* TLSEXT_SIGALG_XXX values */
2384 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2385} sig_cb_st;
2386
2387static void get_sigorhash(int *psig, int *phash, const char *str)
2388{
2389 if (strcmp(str, "RSA") == 0) {
2390 *psig = EVP_PKEY_RSA;
2391 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2392 *psig = EVP_PKEY_RSA_PSS;
2393 } else if (strcmp(str, "DSA") == 0) {
2394 *psig = EVP_PKEY_DSA;
2395 } else if (strcmp(str, "ECDSA") == 0) {
2396 *psig = EVP_PKEY_EC;
2397 } else {
2398 *phash = OBJ_sn2nid(str);
2399 if (*phash == NID_undef)
2400 *phash = OBJ_ln2nid(str);
2401 }
2402}
2403/* Maximum length of a signature algorithm string component */
2404#define TLS_MAX_SIGSTRING_LEN 40
2405
2406static int sig_cb(const char *elem, int len, void *arg)
2407{
2408 sig_cb_st *sarg = arg;
2409 size_t i;
2410 const SIGALG_LOOKUP *s;
2411 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2412 int sig_alg = NID_undef, hash_alg = NID_undef;
2413 if (elem == NULL)
2414 return 0;
2415 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2416 return 0;
2417 if (len > (int)(sizeof(etmp) - 1))
2418 return 0;
2419 memcpy(etmp, elem, len);
2420 etmp[len] = 0;
2421 p = strchr(etmp, '+');
2422 /*
2423 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2424 * if there's no '+' in the provided name, look for the new-style combined
2425 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2426 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2427 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2428 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2429 * in the table.
2430 */
2431 if (p == NULL) {
2432 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2433 i++, s++) {
2434 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2435 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2436 break;
2437 }
2438 }
2439 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2440 return 0;
2441 } else {
2442 *p = 0;
2443 p++;
2444 if (*p == 0)
2445 return 0;
2446 get_sigorhash(&sig_alg, &hash_alg, etmp);
2447 get_sigorhash(&sig_alg, &hash_alg, p);
2448 if (sig_alg == NID_undef || hash_alg == NID_undef)
2449 return 0;
2450 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2451 i++, s++) {
2452 if (s->hash == hash_alg && s->sig == sig_alg) {
2453 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2454 break;
2455 }
2456 }
2457 if (i == OSSL_NELEM(sigalg_lookup_tbl))
2458 return 0;
2459 }
2460
2461 /* Reject duplicates */
2462 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2463 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2464 sarg->sigalgcnt--;
2465 return 0;
2466 }
2467 }
2468 return 1;
2469}
2470
2471/*
2472 * Set supported signature algorithms based on a colon separated list of the
2473 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2474 */
2475int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
2476{
2477 sig_cb_st sig;
2478 sig.sigalgcnt = 0;
2479 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2480 return 0;
2481 if (c == NULL)
2482 return 1;
2483 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2484}
2485
2486int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
2487 int client)
2488{
2489 uint16_t *sigalgs;
2490
2491 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) {
2492 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2493 return 0;
2494 }
2495 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
2496
2497 if (client) {
2498 OPENSSL_free(c->client_sigalgs);
2499 c->client_sigalgs = sigalgs;
2500 c->client_sigalgslen = salglen;
2501 } else {
2502 OPENSSL_free(c->conf_sigalgs);
2503 c->conf_sigalgs = sigalgs;
2504 c->conf_sigalgslen = salglen;
2505 }
2506
2507 return 1;
2508}
2509
2510int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
2511{
2512 uint16_t *sigalgs, *sptr;
2513 size_t i;
2514
2515 if (salglen & 1)
2516 return 0;
2517 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) {
2518 ERR_raise(ERR_LIB_SSL, ERR_R_MALLOC_FAILURE);
2519 return 0;
2520 }
2521 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
2522 size_t j;
2523 const SIGALG_LOOKUP *curr;
2524 int md_id = *psig_nids++;
2525 int sig_id = *psig_nids++;
2526
2527 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
2528 j++, curr++) {
2529 if (curr->hash == md_id && curr->sig == sig_id) {
2530 *sptr++ = curr->sigalg;
2531 break;
2532 }
2533 }
2534
2535 if (j == OSSL_NELEM(sigalg_lookup_tbl))
2536 goto err;
2537 }
2538
2539 if (client) {
2540 OPENSSL_free(c->client_sigalgs);
2541 c->client_sigalgs = sigalgs;
2542 c->client_sigalgslen = salglen / 2;
2543 } else {
2544 OPENSSL_free(c->conf_sigalgs);
2545 c->conf_sigalgs = sigalgs;
2546 c->conf_sigalgslen = salglen / 2;
2547 }
2548
2549 return 1;
2550
2551 err:
2552 OPENSSL_free(sigalgs);
2553 return 0;
2554}
2555
2556static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid)
2557{
2558 int sig_nid, use_pc_sigalgs = 0;
2559 size_t i;
2560 const SIGALG_LOOKUP *sigalg;
2561 size_t sigalgslen;
2562 if (default_nid == -1)
2563 return 1;
2564 sig_nid = X509_get_signature_nid(x);
2565 if (default_nid)
2566 return sig_nid == default_nid ? 1 : 0;
2567
2568 if (SSL_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
2569 /*
2570 * If we're in TLSv1.3 then we only get here if we're checking the
2571 * chain. If the peer has specified peer_cert_sigalgs then we use them
2572 * otherwise we default to normal sigalgs.
2573 */
2574 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
2575 use_pc_sigalgs = 1;
2576 } else {
2577 sigalgslen = s->shared_sigalgslen;
2578 }
2579 for (i = 0; i < sigalgslen; i++) {
2580 sigalg = use_pc_sigalgs
2581 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
2582 : s->shared_sigalgs[i];
2583 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
2584 return 1;
2585 }
2586 return 0;
2587}
2588
2589/* Check to see if a certificate issuer name matches list of CA names */
2590static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
2591{
2592 const X509_NAME *nm;
2593 int i;
2594 nm = X509_get_issuer_name(x);
2595 for (i = 0; i < sk_X509_NAME_num(names); i++) {
2596 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
2597 return 1;
2598 }
2599 return 0;
2600}
2601
2602/*
2603 * Check certificate chain is consistent with TLS extensions and is usable by
2604 * server. This servers two purposes: it allows users to check chains before
2605 * passing them to the server and it allows the server to check chains before
2606 * attempting to use them.
2607 */
2608
2609/* Flags which need to be set for a certificate when strict mode not set */
2610
2611#define CERT_PKEY_VALID_FLAGS \
2612 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
2613/* Strict mode flags */
2614#define CERT_PKEY_STRICT_FLAGS \
2615 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
2616 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
2617
2618int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
2619 int idx)
2620{
2621 int i;
2622 int rv = 0;
2623 int check_flags = 0, strict_mode;
2624 CERT_PKEY *cpk = NULL;
2625 CERT *c = s->cert;
2626 uint32_t *pvalid;
2627 unsigned int suiteb_flags = tls1_suiteb(s);
2628 /* idx == -1 means checking server chains */
2629 if (idx != -1) {
2630 /* idx == -2 means checking client certificate chains */
2631 if (idx == -2) {
2632 cpk = c->key;
2633 idx = (int)(cpk - c->pkeys);
2634 } else
2635 cpk = c->pkeys + idx;
2636 pvalid = s->s3.tmp.valid_flags + idx;
2637 x = cpk->x509;
2638 pk = cpk->privatekey;
2639 chain = cpk->chain;
2640 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
2641 /* If no cert or key, forget it */
2642 if (!x || !pk)
2643 goto end;
2644 } else {
2645 size_t certidx;
2646
2647 if (!x || !pk)
2648 return 0;
2649
2650 if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
2651 return 0;
2652 idx = certidx;
2653 pvalid = s->s3.tmp.valid_flags + idx;
2654
2655 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
2656 check_flags = CERT_PKEY_STRICT_FLAGS;
2657 else
2658 check_flags = CERT_PKEY_VALID_FLAGS;
2659 strict_mode = 1;
2660 }
2661
2662 if (suiteb_flags) {
2663 int ok;
2664 if (check_flags)
2665 check_flags |= CERT_PKEY_SUITEB;
2666 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
2667 if (ok == X509_V_OK)
2668 rv |= CERT_PKEY_SUITEB;
2669 else if (!check_flags)
2670 goto end;
2671 }
2672
2673 /*
2674 * Check all signature algorithms are consistent with signature
2675 * algorithms extension if TLS 1.2 or later and strict mode.
2676 */
2677 if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
2678 int default_nid;
2679 int rsign = 0;
2680 if (s->s3.tmp.peer_cert_sigalgs != NULL
2681 || s->s3.tmp.peer_sigalgs != NULL) {
2682 default_nid = 0;
2683 /* If no sigalgs extension use defaults from RFC5246 */
2684 } else {
2685 switch (idx) {
2686 case SSL_PKEY_RSA:
2687 rsign = EVP_PKEY_RSA;
2688 default_nid = NID_sha1WithRSAEncryption;
2689 break;
2690
2691 case SSL_PKEY_DSA_SIGN:
2692 rsign = EVP_PKEY_DSA;
2693 default_nid = NID_dsaWithSHA1;
2694 break;
2695
2696 case SSL_PKEY_ECC:
2697 rsign = EVP_PKEY_EC;
2698 default_nid = NID_ecdsa_with_SHA1;
2699 break;
2700
2701 case SSL_PKEY_GOST01:
2702 rsign = NID_id_GostR3410_2001;
2703 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
2704 break;
2705
2706 case SSL_PKEY_GOST12_256:
2707 rsign = NID_id_GostR3410_2012_256;
2708 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
2709 break;
2710
2711 case SSL_PKEY_GOST12_512:
2712 rsign = NID_id_GostR3410_2012_512;
2713 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
2714 break;
2715
2716 default:
2717 default_nid = -1;
2718 break;
2719 }
2720 }
2721 /*
2722 * If peer sent no signature algorithms extension and we have set
2723 * preferred signature algorithms check we support sha1.
2724 */
2725 if (default_nid > 0 && c->conf_sigalgs) {
2726 size_t j;
2727 const uint16_t *p = c->conf_sigalgs;
2728 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
2729 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
2730
2731 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
2732 break;
2733 }
2734 if (j == c->conf_sigalgslen) {
2735 if (check_flags)
2736 goto skip_sigs;
2737 else
2738 goto end;
2739 }
2740 }
2741 /* Check signature algorithm of each cert in chain */
2742 if (SSL_IS_TLS13(s)) {
2743 /*
2744 * We only get here if the application has called SSL_check_chain(),
2745 * so check_flags is always set.
2746 */
2747 if (find_sig_alg(s, x, pk) != NULL)
2748 rv |= CERT_PKEY_EE_SIGNATURE;
2749 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
2750 if (!check_flags)
2751 goto end;
2752 } else
2753 rv |= CERT_PKEY_EE_SIGNATURE;
2754 rv |= CERT_PKEY_CA_SIGNATURE;
2755 for (i = 0; i < sk_X509_num(chain); i++) {
2756 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
2757 if (check_flags) {
2758 rv &= ~CERT_PKEY_CA_SIGNATURE;
2759 break;
2760 } else
2761 goto end;
2762 }
2763 }
2764 }
2765 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
2766 else if (check_flags)
2767 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
2768 skip_sigs:
2769 /* Check cert parameters are consistent */
2770 if (tls1_check_cert_param(s, x, 1))
2771 rv |= CERT_PKEY_EE_PARAM;
2772 else if (!check_flags)
2773 goto end;
2774 if (!s->server)
2775 rv |= CERT_PKEY_CA_PARAM;
2776 /* In strict mode check rest of chain too */
2777 else if (strict_mode) {
2778 rv |= CERT_PKEY_CA_PARAM;
2779 for (i = 0; i < sk_X509_num(chain); i++) {
2780 X509 *ca = sk_X509_value(chain, i);
2781 if (!tls1_check_cert_param(s, ca, 0)) {
2782 if (check_flags) {
2783 rv &= ~CERT_PKEY_CA_PARAM;
2784 break;
2785 } else
2786 goto end;
2787 }
2788 }
2789 }
2790 if (!s->server && strict_mode) {
2791 STACK_OF(X509_NAME) *ca_dn;
2792 int check_type = 0;
2793
2794 if (EVP_PKEY_is_a(pk, "RSA"))
2795 check_type = TLS_CT_RSA_SIGN;
2796 else if (EVP_PKEY_is_a(pk, "DSA"))
2797 check_type = TLS_CT_DSS_SIGN;
2798 else if (EVP_PKEY_is_a(pk, "EC"))
2799 check_type = TLS_CT_ECDSA_SIGN;
2800
2801 if (check_type) {
2802 const uint8_t *ctypes = s->s3.tmp.ctype;
2803 size_t j;
2804
2805 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
2806 if (*ctypes == check_type) {
2807 rv |= CERT_PKEY_CERT_TYPE;
2808 break;
2809 }
2810 }
2811 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
2812 goto end;
2813 } else {
2814 rv |= CERT_PKEY_CERT_TYPE;
2815 }
2816
2817 ca_dn = s->s3.tmp.peer_ca_names;
2818
2819 if (!sk_X509_NAME_num(ca_dn))
2820 rv |= CERT_PKEY_ISSUER_NAME;
2821
2822 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2823 if (ssl_check_ca_name(ca_dn, x))
2824 rv |= CERT_PKEY_ISSUER_NAME;
2825 }
2826 if (!(rv & CERT_PKEY_ISSUER_NAME)) {
2827 for (i = 0; i < sk_X509_num(chain); i++) {
2828 X509 *xtmp = sk_X509_value(chain, i);
2829 if (ssl_check_ca_name(ca_dn, xtmp)) {
2830 rv |= CERT_PKEY_ISSUER_NAME;
2831 break;
2832 }
2833 }
2834 }
2835 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
2836 goto end;
2837 } else
2838 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
2839
2840 if (!check_flags || (rv & check_flags) == check_flags)
2841 rv |= CERT_PKEY_VALID;
2842
2843 end:
2844
2845 if (TLS1_get_version(s) >= TLS1_2_VERSION)
2846 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
2847 else
2848 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
2849
2850 /*
2851 * When checking a CERT_PKEY structure all flags are irrelevant if the
2852 * chain is invalid.
2853 */
2854 if (!check_flags) {
2855 if (rv & CERT_PKEY_VALID) {
2856 *pvalid = rv;
2857 } else {
2858 /* Preserve sign and explicit sign flag, clear rest */
2859 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2860 return 0;
2861 }
2862 }
2863 return rv;
2864}
2865
2866/* Set validity of certificates in an SSL structure */
2867void tls1_set_cert_validity(SSL *s)
2868{
2869 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
2870 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
2871 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
2872 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
2873 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
2874 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
2875 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
2876 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
2877 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
2878}
2879
2880/* User level utility function to check a chain is suitable */
2881int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
2882{
2883 return tls1_check_chain(s, x, pk, chain, -1);
2884}
2885
2886EVP_PKEY *ssl_get_auto_dh(SSL *s)
2887{
2888 EVP_PKEY *dhp = NULL;
2889 BIGNUM *p;
2890 int dh_secbits = 80, sec_level_bits;
2891 EVP_PKEY_CTX *pctx = NULL;
2892 OSSL_PARAM_BLD *tmpl = NULL;
2893 OSSL_PARAM *params = NULL;
2894
2895 if (s->cert->dh_tmp_auto != 2) {
2896 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
2897 if (s->s3.tmp.new_cipher->strength_bits == 256)
2898 dh_secbits = 128;
2899 else
2900 dh_secbits = 80;
2901 } else {
2902 if (s->s3.tmp.cert == NULL)
2903 return NULL;
2904 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
2905 }
2906 }
2907
2908 /* Do not pick a prime that is too weak for the current security level */
2909 sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL);
2910 if (dh_secbits < sec_level_bits)
2911 dh_secbits = sec_level_bits;
2912
2913 if (dh_secbits >= 192)
2914 p = BN_get_rfc3526_prime_8192(NULL);
2915 else if (dh_secbits >= 152)
2916 p = BN_get_rfc3526_prime_4096(NULL);
2917 else if (dh_secbits >= 128)
2918 p = BN_get_rfc3526_prime_3072(NULL);
2919 else if (dh_secbits >= 112)
2920 p = BN_get_rfc3526_prime_2048(NULL);
2921 else
2922 p = BN_get_rfc2409_prime_1024(NULL);
2923 if (p == NULL)
2924 goto err;
2925
2926 pctx = EVP_PKEY_CTX_new_from_name(s->ctx->libctx, "DH", s->ctx->propq);
2927 if (pctx == NULL
2928 || EVP_PKEY_fromdata_init(pctx) != 1)
2929 goto err;
2930
2931 tmpl = OSSL_PARAM_BLD_new();
2932 if (tmpl == NULL
2933 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
2934 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
2935 goto err;
2936
2937 params = OSSL_PARAM_BLD_to_param(tmpl);
2938 if (params == NULL
2939 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
2940 goto err;
2941
2942err:
2943 OSSL_PARAM_free(params);
2944 OSSL_PARAM_BLD_free(tmpl);
2945 EVP_PKEY_CTX_free(pctx);
2946 BN_free(p);
2947 return dhp;
2948}
2949
2950static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2951{
2952 int secbits = -1;
2953 EVP_PKEY *pkey = X509_get0_pubkey(x);
2954 if (pkey) {
2955 /*
2956 * If no parameters this will return -1 and fail using the default
2957 * security callback for any non-zero security level. This will
2958 * reject keys which omit parameters but this only affects DSA and
2959 * omission of parameters is never (?) done in practice.
2960 */
2961 secbits = EVP_PKEY_get_security_bits(pkey);
2962 }
2963 if (s)
2964 return ssl_security(s, op, secbits, 0, x);
2965 else
2966 return ssl_ctx_security(ctx, op, secbits, 0, x);
2967}
2968
2969static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
2970{
2971 /* Lookup signature algorithm digest */
2972 int secbits, nid, pknid;
2973 /* Don't check signature if self signed */
2974 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
2975 return 1;
2976 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
2977 secbits = -1;
2978 /* If digest NID not defined use signature NID */
2979 if (nid == NID_undef)
2980 nid = pknid;
2981 if (s)
2982 return ssl_security(s, op, secbits, nid, x);
2983 else
2984 return ssl_ctx_security(ctx, op, secbits, nid, x);
2985}
2986
2987int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
2988{
2989 if (vfy)
2990 vfy = SSL_SECOP_PEER;
2991 if (is_ee) {
2992 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
2993 return SSL_R_EE_KEY_TOO_SMALL;
2994 } else {
2995 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
2996 return SSL_R_CA_KEY_TOO_SMALL;
2997 }
2998 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
2999 return SSL_R_CA_MD_TOO_WEAK;
3000 return 1;
3001}
3002
3003/*
3004 * Check security of a chain, if |sk| includes the end entity certificate then
3005 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3006 * one to the peer. Return values: 1 if ok otherwise error code to use
3007 */
3008
3009int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
3010{
3011 int rv, start_idx, i;
3012 if (x == NULL) {
3013 x = sk_X509_value(sk, 0);
3014 start_idx = 1;
3015 } else
3016 start_idx = 0;
3017
3018 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3019 if (rv != 1)
3020 return rv;
3021
3022 for (i = start_idx; i < sk_X509_num(sk); i++) {
3023 x = sk_X509_value(sk, i);
3024 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3025 if (rv != 1)
3026 return rv;
3027 }
3028 return 1;
3029}
3030
3031/*
3032 * For TLS 1.2 servers check if we have a certificate which can be used
3033 * with the signature algorithm "lu" and return index of certificate.
3034 */
3035
3036static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu)
3037{
3038 int sig_idx = lu->sig_idx;
3039 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx);
3040
3041 /* If not recognised or not supported by cipher mask it is not suitable */
3042 if (clu == NULL
3043 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3044 || (clu->nid == EVP_PKEY_RSA_PSS
3045 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3046 return -1;
3047
3048 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3049}
3050
3051/*
3052 * Checks the given cert against signature_algorithm_cert restrictions sent by
3053 * the peer (if any) as well as whether the hash from the sigalg is usable with
3054 * the key.
3055 * Returns true if the cert is usable and false otherwise.
3056 */
3057static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3058 EVP_PKEY *pkey)
3059{
3060 const SIGALG_LOOKUP *lu;
3061 int mdnid, pknid, supported;
3062 size_t i;
3063 const char *mdname = NULL;
3064
3065 /*
3066 * If the given EVP_PKEY cannot support signing with this digest,
3067 * the answer is simply 'no'.
3068 */
3069 if (sig->hash != NID_undef)
3070 mdname = OBJ_nid2sn(sig->hash);
3071 supported = EVP_PKEY_digestsign_supports_digest(pkey, s->ctx->libctx,
3072 mdname,
3073 s->ctx->propq);
3074 if (supported <= 0)
3075 return 0;
3076
3077 /*
3078 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3079 * on the sigalg with which the certificate was signed (by its issuer).
3080 */
3081 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3082 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3083 return 0;
3084 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3085 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3086 if (lu == NULL)
3087 continue;
3088
3089 /*
3090 * This does not differentiate between the
3091 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3092 * have a chain here that lets us look at the key OID in the
3093 * signing certificate.
3094 */
3095 if (mdnid == lu->hash && pknid == lu->sig)
3096 return 1;
3097 }
3098 return 0;
3099 }
3100
3101 /*
3102 * Without signat_algorithms_cert, any certificate for which we have
3103 * a viable public key is permitted.
3104 */
3105 return 1;
3106}
3107
3108/*
3109 * Returns true if |s| has a usable certificate configured for use
3110 * with signature scheme |sig|.
3111 * "Usable" includes a check for presence as well as applying
3112 * the signature_algorithm_cert restrictions sent by the peer (if any).
3113 * Returns false if no usable certificate is found.
3114 */
3115static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx)
3116{
3117 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3118 if (idx == -1)
3119 idx = sig->sig_idx;
3120 if (!ssl_has_cert(s, idx))
3121 return 0;
3122
3123 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3124 s->cert->pkeys[idx].privatekey);
3125}
3126
3127/*
3128 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3129 * specified signature scheme |sig|, or false otherwise.
3130 */
3131static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x,
3132 EVP_PKEY *pkey)
3133{
3134 size_t idx;
3135
3136 if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
3137 return 0;
3138
3139 /* Check the key is consistent with the sig alg */
3140 if ((int)idx != sig->sig_idx)
3141 return 0;
3142
3143 return check_cert_usable(s, sig, x, pkey);
3144}
3145
3146/*
3147 * Find a signature scheme that works with the supplied certificate |x| and key
3148 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3149 * available certs/keys to find one that works.
3150 */
3151static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey)
3152{
3153 const SIGALG_LOOKUP *lu = NULL;
3154 size_t i;
3155 int curve = -1;
3156 EVP_PKEY *tmppkey;
3157
3158 /* Look for a shared sigalgs matching possible certificates */
3159 for (i = 0; i < s->shared_sigalgslen; i++) {
3160 lu = s->shared_sigalgs[i];
3161
3162 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3163 if (lu->hash == NID_sha1
3164 || lu->hash == NID_sha224
3165 || lu->sig == EVP_PKEY_DSA
3166 || lu->sig == EVP_PKEY_RSA)
3167 continue;
3168 /* Check that we have a cert, and signature_algorithms_cert */
3169 if (!tls1_lookup_md(s->ctx, lu, NULL))
3170 continue;
3171 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3172 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3173 continue;
3174
3175 tmppkey = (pkey != NULL) ? pkey
3176 : s->cert->pkeys[lu->sig_idx].privatekey;
3177
3178 if (lu->sig == EVP_PKEY_EC) {
3179 if (curve == -1)
3180 curve = ssl_get_EC_curve_nid(tmppkey);
3181 if (lu->curve != NID_undef && curve != lu->curve)
3182 continue;
3183 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3184 /* validate that key is large enough for the signature algorithm */
3185 if (!rsa_pss_check_min_key_size(s->ctx, tmppkey, lu))
3186 continue;
3187 }
3188 break;
3189 }
3190
3191 if (i == s->shared_sigalgslen)
3192 return NULL;
3193
3194 return lu;
3195}
3196
3197/*
3198 * Choose an appropriate signature algorithm based on available certificates
3199 * Sets chosen certificate and signature algorithm.
3200 *
3201 * For servers if we fail to find a required certificate it is a fatal error,
3202 * an appropriate error code is set and a TLS alert is sent.
3203 *
3204 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3205 * a fatal error: we will either try another certificate or not present one
3206 * to the server. In this case no error is set.
3207 */
3208int tls_choose_sigalg(SSL *s, int fatalerrs)
3209{
3210 const SIGALG_LOOKUP *lu = NULL;
3211 int sig_idx = -1;
3212
3213 s->s3.tmp.cert = NULL;
3214 s->s3.tmp.sigalg = NULL;
3215
3216 if (SSL_IS_TLS13(s)) {
3217 lu = find_sig_alg(s, NULL, NULL);
3218 if (lu == NULL) {
3219 if (!fatalerrs)
3220 return 1;
3221 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3222 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3223 return 0;
3224 }
3225 } else {
3226 /* If ciphersuite doesn't require a cert nothing to do */
3227 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3228 return 1;
3229 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3230 return 1;
3231
3232 if (SSL_USE_SIGALGS(s)) {
3233 size_t i;
3234 if (s->s3.tmp.peer_sigalgs != NULL) {
3235 int curve = -1;
3236
3237 /* For Suite B need to match signature algorithm to curve */
3238 if (tls1_suiteb(s))
3239 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3240 .privatekey);
3241
3242 /*
3243 * Find highest preference signature algorithm matching
3244 * cert type
3245 */
3246 for (i = 0; i < s->shared_sigalgslen; i++) {
3247 lu = s->shared_sigalgs[i];
3248
3249 if (s->server) {
3250 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3251 continue;
3252 } else {
3253 int cc_idx = s->cert->key - s->cert->pkeys;
3254
3255 sig_idx = lu->sig_idx;
3256 if (cc_idx != sig_idx)
3257 continue;
3258 }
3259 /* Check that we have a cert, and sig_algs_cert */
3260 if (!has_usable_cert(s, lu, sig_idx))
3261 continue;
3262 if (lu->sig == EVP_PKEY_RSA_PSS) {
3263 /* validate that key is large enough for the signature algorithm */
3264 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3265
3266 if (!rsa_pss_check_min_key_size(s->ctx, pkey, lu))
3267 continue;
3268 }
3269 if (curve == -1 || lu->curve == curve)
3270 break;
3271 }
3272#ifndef OPENSSL_NO_GOST
3273 /*
3274 * Some Windows-based implementations do not send GOST algorithms indication
3275 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3276 * we have to assume GOST support.
3277 */
3278 if (i == s->shared_sigalgslen && s->s3.tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) {
3279 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3280 if (!fatalerrs)
3281 return 1;
3282 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3283 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3284 return 0;
3285 } else {
3286 i = 0;
3287 sig_idx = lu->sig_idx;
3288 }
3289 }
3290#endif
3291 if (i == s->shared_sigalgslen) {
3292 if (!fatalerrs)
3293 return 1;
3294 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3295 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3296 return 0;
3297 }
3298 } else {
3299 /*
3300 * If we have no sigalg use defaults
3301 */
3302 const uint16_t *sent_sigs;
3303 size_t sent_sigslen;
3304
3305 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3306 if (!fatalerrs)
3307 return 1;
3308 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3309 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3310 return 0;
3311 }
3312
3313 /* Check signature matches a type we sent */
3314 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3315 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3316 if (lu->sigalg == *sent_sigs
3317 && has_usable_cert(s, lu, lu->sig_idx))
3318 break;
3319 }
3320 if (i == sent_sigslen) {
3321 if (!fatalerrs)
3322 return 1;
3323 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3324 SSL_R_WRONG_SIGNATURE_TYPE);
3325 return 0;
3326 }
3327 }
3328 } else {
3329 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3330 if (!fatalerrs)
3331 return 1;
3332 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3333 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3334 return 0;
3335 }
3336 }
3337 }
3338 if (sig_idx == -1)
3339 sig_idx = lu->sig_idx;
3340 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3341 s->cert->key = s->s3.tmp.cert;
3342 s->s3.tmp.sigalg = lu;
3343 return 1;
3344}
3345
3346int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3347{
3348 if (mode != TLSEXT_max_fragment_length_DISABLED
3349 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3350 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3351 return 0;
3352 }
3353
3354 ctx->ext.max_fragment_len_mode = mode;
3355 return 1;
3356}
3357
3358int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3359{
3360 if (mode != TLSEXT_max_fragment_length_DISABLED
3361 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3362 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3363 return 0;
3364 }
3365
3366 ssl->ext.max_fragment_len_mode = mode;
3367 return 1;
3368}
3369
3370uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3371{
3372 return session->ext.max_fragment_len_mode;
3373}
3374
3375/*
3376 * Helper functions for HMAC access with legacy support included.
3377 */
3378SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3379{
3380 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3381 EVP_MAC *mac = NULL;
3382
3383 if (ret == NULL)
3384 return NULL;
3385#ifndef OPENSSL_NO_DEPRECATED_3_0
3386 if (ctx->ext.ticket_key_evp_cb == NULL
3387 && ctx->ext.ticket_key_cb != NULL) {
3388 if (!ssl_hmac_old_new(ret))
3389 goto err;
3390 return ret;
3391 }
3392#endif
3393 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3394 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3395 goto err;
3396 EVP_MAC_free(mac);
3397 return ret;
3398 err:
3399 EVP_MAC_CTX_free(ret->ctx);
3400 EVP_MAC_free(mac);
3401 OPENSSL_free(ret);
3402 return NULL;
3403}
3404
3405void ssl_hmac_free(SSL_HMAC *ctx)
3406{
3407 if (ctx != NULL) {
3408 EVP_MAC_CTX_free(ctx->ctx);
3409#ifndef OPENSSL_NO_DEPRECATED_3_0
3410 ssl_hmac_old_free(ctx);
3411#endif
3412 OPENSSL_free(ctx);
3413 }
3414}
3415
3416EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3417{
3418 return ctx->ctx;
3419}
3420
3421int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3422{
3423 OSSL_PARAM params[2], *p = params;
3424
3425 if (ctx->ctx != NULL) {
3426 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3427 *p = OSSL_PARAM_construct_end();
3428 if (EVP_MAC_init(ctx->ctx, key, len, params))
3429 return 1;
3430 }
3431#ifndef OPENSSL_NO_DEPRECATED_3_0
3432 if (ctx->old_ctx != NULL)
3433 return ssl_hmac_old_init(ctx, key, len, md);
3434#endif
3435 return 0;
3436}
3437
3438int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3439{
3440 if (ctx->ctx != NULL)
3441 return EVP_MAC_update(ctx->ctx, data, len);
3442#ifndef OPENSSL_NO_DEPRECATED_3_0
3443 if (ctx->old_ctx != NULL)
3444 return ssl_hmac_old_update(ctx, data, len);
3445#endif
3446 return 0;
3447}
3448
3449int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
3450 size_t max_size)
3451{
3452 if (ctx->ctx != NULL)
3453 return EVP_MAC_final(ctx->ctx, md, len, max_size);
3454#ifndef OPENSSL_NO_DEPRECATED_3_0
3455 if (ctx->old_ctx != NULL)
3456 return ssl_hmac_old_final(ctx, md, len);
3457#endif
3458 return 0;
3459}
3460
3461size_t ssl_hmac_size(const SSL_HMAC *ctx)
3462{
3463 if (ctx->ctx != NULL)
3464 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
3465#ifndef OPENSSL_NO_DEPRECATED_3_0
3466 if (ctx->old_ctx != NULL)
3467 return ssl_hmac_old_size(ctx);
3468#endif
3469 return 0;
3470}
3471
3472int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
3473{
3474 char gname[OSSL_MAX_NAME_SIZE];
3475
3476 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
3477 return OBJ_txt2nid(gname);
3478
3479 return NID_undef;
3480}
3481
3482__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
3483 const unsigned char *enckey,
3484 size_t enckeylen)
3485{
3486 if (EVP_PKEY_is_a(pkey, "DH")) {
3487 int bits = EVP_PKEY_get_bits(pkey);
3488
3489 if (bits <= 0 || enckeylen != (size_t)bits / 8)
3490 /* the encoded key must be padded to the length of the p */
3491 return 0;
3492 } else if (EVP_PKEY_is_a(pkey, "EC")) {
3493 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
3494 || enckey[0] != 0x04)
3495 return 0;
3496 }
3497
3498 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
3499}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette