1 | =pod
|
---|
2 |
|
---|
3 | =head1 NAME
|
---|
4 |
|
---|
5 | pem_password_cb,
|
---|
6 | PEM_read_bio_PrivateKey_ex, PEM_read_bio_PrivateKey,
|
---|
7 | PEM_read_PrivateKey_ex, PEM_read_PrivateKey,
|
---|
8 | PEM_write_bio_PrivateKey_ex, PEM_write_bio_PrivateKey,
|
---|
9 | PEM_write_bio_PrivateKey_traditional,
|
---|
10 | PEM_write_PrivateKey_ex, PEM_write_PrivateKey,
|
---|
11 | PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
|
---|
12 | PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
|
---|
13 | PEM_read_bio_PUBKEY_ex, PEM_read_bio_PUBKEY,
|
---|
14 | PEM_read_PUBKEY_ex, PEM_read_PUBKEY,
|
---|
15 | PEM_write_bio_PUBKEY_ex, PEM_write_bio_PUBKEY,
|
---|
16 | PEM_write_PUBKEY_ex, PEM_write_PUBKEY,
|
---|
17 | PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
|
---|
18 | PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
|
---|
19 | PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
|
---|
20 | PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
|
---|
21 | PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
|
---|
22 | PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
|
---|
23 | PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
|
---|
24 | PEM_write_DSA_PUBKEY, PEM_read_bio_Parameters_ex, PEM_read_bio_Parameters,
|
---|
25 | PEM_write_bio_Parameters, PEM_read_bio_DSAparams, PEM_read_DSAparams,
|
---|
26 | PEM_write_bio_DSAparams, PEM_write_DSAparams, PEM_read_bio_DHparams,
|
---|
27 | PEM_read_DHparams, PEM_write_bio_DHparams, PEM_write_DHparams,
|
---|
28 | PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
|
---|
29 | PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX,
|
---|
30 | PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
|
---|
31 | PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
|
---|
32 | PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
|
---|
33 | PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
|
---|
34 | PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
|
---|
35 |
|
---|
36 | =head1 SYNOPSIS
|
---|
37 |
|
---|
38 | #include <openssl/pem.h>
|
---|
39 |
|
---|
40 | typedef int pem_password_cb(char *buf, int size, int rwflag, void *u);
|
---|
41 |
|
---|
42 | EVP_PKEY *PEM_read_bio_PrivateKey_ex(BIO *bp, EVP_PKEY **x,
|
---|
43 | pem_password_cb *cb, void *u,
|
---|
44 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
45 | EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
|
---|
46 | pem_password_cb *cb, void *u);
|
---|
47 | EVP_PKEY *PEM_read_PrivateKey_ex(FILE *fp, EVP_PKEY **x, pem_password_cb *cb,
|
---|
48 | void *u, OSSL_LIB_CTX *libctx,
|
---|
49 | const char *propq);
|
---|
50 | EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
|
---|
51 | pem_password_cb *cb, void *u);
|
---|
52 | int PEM_write_bio_PrivateKey_ex(BIO *bp, const EVP_PKEY *x,
|
---|
53 | const EVP_CIPHER *enc,
|
---|
54 | unsigned char *kstr, int klen,
|
---|
55 | pem_password_cb *cb, void *u,
|
---|
56 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
57 | int PEM_write_bio_PrivateKey(BIO *bp, const EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
58 | unsigned char *kstr, int klen,
|
---|
59 | pem_password_cb *cb, void *u);
|
---|
60 | int PEM_write_bio_PrivateKey_traditional(BIO *bp, EVP_PKEY *x,
|
---|
61 | const EVP_CIPHER *enc,
|
---|
62 | unsigned char *kstr, int klen,
|
---|
63 | pem_password_cb *cb, void *u);
|
---|
64 | int PEM_write_PrivateKey_ex(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
65 | unsigned char *kstr, int klen,
|
---|
66 | pem_password_cb *cb, void *u,
|
---|
67 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
68 | int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
69 | unsigned char *kstr, int klen,
|
---|
70 | pem_password_cb *cb, void *u);
|
---|
71 | int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
72 | char *kstr, int klen,
|
---|
73 | pem_password_cb *cb, void *u);
|
---|
74 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
---|
75 | char *kstr, int klen,
|
---|
76 | pem_password_cb *cb, void *u);
|
---|
77 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, const EVP_PKEY *x, int nid,
|
---|
78 | char *kstr, int klen,
|
---|
79 | pem_password_cb *cb, void *u);
|
---|
80 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, const EVP_PKEY *x, int nid,
|
---|
81 | char *kstr, int klen,
|
---|
82 | pem_password_cb *cb, void *u);
|
---|
83 |
|
---|
84 | EVP_PKEY *PEM_read_bio_PUBKEY_ex(BIO *bp, EVP_PKEY **x,
|
---|
85 | pem_password_cb *cb, void *u,
|
---|
86 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
87 | EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
|
---|
88 | pem_password_cb *cb, void *u);
|
---|
89 | EVP_PKEY *PEM_read_PUBKEY_ex(FILE *fp, EVP_PKEY **x,
|
---|
90 | pem_password_cb *cb, void *u,
|
---|
91 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
92 | EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
|
---|
93 | pem_password_cb *cb, void *u);
|
---|
94 | int PEM_write_bio_PUBKEY_ex(BIO *bp, EVP_PKEY *x,
|
---|
95 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
96 | int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
|
---|
97 | int PEM_write_PUBKEY_ex(FILE *fp, EVP_PKEY *x,
|
---|
98 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
99 | int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
|
---|
100 |
|
---|
101 | EVP_PKEY *PEM_read_bio_Parameters_ex(BIO *bp, EVP_PKEY **x,
|
---|
102 | OSSL_LIB_CTX *libctx, const char *propq);
|
---|
103 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x);
|
---|
104 | int PEM_write_bio_Parameters(BIO *bp, const EVP_PKEY *x);
|
---|
105 |
|
---|
106 | X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
---|
107 | X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
---|
108 | int PEM_write_bio_X509(BIO *bp, X509 *x);
|
---|
109 | int PEM_write_X509(FILE *fp, X509 *x);
|
---|
110 |
|
---|
111 | X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
---|
112 | X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
---|
113 | int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
|
---|
114 | int PEM_write_X509_AUX(FILE *fp, X509 *x);
|
---|
115 |
|
---|
116 | X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
|
---|
117 | pem_password_cb *cb, void *u);
|
---|
118 | X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
|
---|
119 | pem_password_cb *cb, void *u);
|
---|
120 | int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
|
---|
121 | int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
|
---|
122 | int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
|
---|
123 | int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
|
---|
124 |
|
---|
125 | X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
|
---|
126 | pem_password_cb *cb, void *u);
|
---|
127 | X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
|
---|
128 | pem_password_cb *cb, void *u);
|
---|
129 | int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
|
---|
130 | int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
|
---|
131 |
|
---|
132 | PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
|
---|
133 | PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
|
---|
134 | int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
|
---|
135 | int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
|
---|
136 |
|
---|
137 | The following functions have been deprecated since OpenSSL 3.0, and can be
|
---|
138 | hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
|
---|
139 | see L<openssl_user_macros(7)>:
|
---|
140 |
|
---|
141 | RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
|
---|
142 | pem_password_cb *cb, void *u);
|
---|
143 | RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
|
---|
144 | pem_password_cb *cb, void *u);
|
---|
145 | int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
|
---|
146 | unsigned char *kstr, int klen,
|
---|
147 | pem_password_cb *cb, void *u);
|
---|
148 | int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
|
---|
149 | unsigned char *kstr, int klen,
|
---|
150 | pem_password_cb *cb, void *u);
|
---|
151 |
|
---|
152 | RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
|
---|
153 | pem_password_cb *cb, void *u);
|
---|
154 | RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
|
---|
155 | pem_password_cb *cb, void *u);
|
---|
156 | int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
|
---|
157 | int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
|
---|
158 |
|
---|
159 | RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
|
---|
160 | pem_password_cb *cb, void *u);
|
---|
161 | RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
|
---|
162 | pem_password_cb *cb, void *u);
|
---|
163 | int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
|
---|
164 | int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
|
---|
165 |
|
---|
166 | DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
|
---|
167 | pem_password_cb *cb, void *u);
|
---|
168 | DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
|
---|
169 | pem_password_cb *cb, void *u);
|
---|
170 | int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
|
---|
171 | unsigned char *kstr, int klen,
|
---|
172 | pem_password_cb *cb, void *u);
|
---|
173 | int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
|
---|
174 | unsigned char *kstr, int klen,
|
---|
175 | pem_password_cb *cb, void *u);
|
---|
176 |
|
---|
177 | DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
|
---|
178 | pem_password_cb *cb, void *u);
|
---|
179 | DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
|
---|
180 | pem_password_cb *cb, void *u);
|
---|
181 | int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
|
---|
182 | int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
|
---|
183 | DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
|
---|
184 | DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
|
---|
185 | int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
|
---|
186 | int PEM_write_DSAparams(FILE *fp, DSA *x);
|
---|
187 |
|
---|
188 | DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
|
---|
189 | DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
|
---|
190 | int PEM_write_bio_DHparams(BIO *bp, DH *x);
|
---|
191 | int PEM_write_DHparams(FILE *fp, DH *x);
|
---|
192 |
|
---|
193 | =head1 DESCRIPTION
|
---|
194 |
|
---|
195 | All of the functions described on this page that have a I<TYPE> of B<DH>, B<DSA>
|
---|
196 | and B<RSA> are deprecated. Applications should use L<OSSL_ENCODER_to_bio(3)> and
|
---|
197 | L<OSSL_DECODER_from_bio(3)> instead.
|
---|
198 |
|
---|
199 | The PEM functions read or write structures in PEM format. In
|
---|
200 | this sense PEM format is simply base64 encoded data surrounded
|
---|
201 | by header lines.
|
---|
202 |
|
---|
203 | For more details about the meaning of arguments see the
|
---|
204 | B<PEM FUNCTION ARGUMENTS> section.
|
---|
205 |
|
---|
206 | Each operation has four functions associated with it. For
|
---|
207 | brevity the term "B<I<TYPE>> functions" will be used below to collectively
|
---|
208 | refer to the B<PEM_read_bio_I<TYPE>>(), B<PEM_read_I<TYPE>>(),
|
---|
209 | B<PEM_write_bio_I<TYPE>>(), and B<PEM_write_I<TYPE>>() functions.
|
---|
210 |
|
---|
211 | Some operations have additional variants that take a library context I<libctx>
|
---|
212 | and a property query string I<propq>. The B<X509>, B<X509_REQ> and B<X509_CRL>
|
---|
213 | objects may have an associated library context or property query string but
|
---|
214 | there are no variants of these functions that take a library context or property
|
---|
215 | query string parameter. In this case it is possible to set the appropriate
|
---|
216 | library context or property query string by creating an empty B<X509>,
|
---|
217 | B<X509_REQ> or B<X509_CRL> object using L<X509_new_ex(3)>, L<X509_REQ_new_ex(3)>
|
---|
218 | or L<X509_CRL_new_ex(3)> respectively. Then pass the empty object as a parameter
|
---|
219 | to the relevant PEM function. See the L</EXAMPLES> section below.
|
---|
220 |
|
---|
221 | The B<PrivateKey> functions read or write a private key in PEM format using
|
---|
222 | an EVP_PKEY structure. The write routines use PKCS#8 private key format and are
|
---|
223 | equivalent to PEM_write_bio_PKCS8PrivateKey(). The read functions transparently
|
---|
224 | handle traditional and PKCS#8 format encrypted and unencrypted keys.
|
---|
225 |
|
---|
226 | PEM_write_bio_PrivateKey_traditional() writes out a private key in the
|
---|
227 | "traditional" format with a simple private key marker and should only
|
---|
228 | be used for compatibility with legacy programs.
|
---|
229 |
|
---|
230 | PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private
|
---|
231 | key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format using
|
---|
232 | PKCS#5 v2.0 password based encryption algorithms. The I<cipher> argument
|
---|
233 | specifies the encryption algorithm to use: unlike some other PEM routines the
|
---|
234 | encryption is applied at the PKCS#8 level and not in the PEM headers. If
|
---|
235 | I<cipher> is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
|
---|
236 | structure is used instead.
|
---|
237 |
|
---|
238 | PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
|
---|
239 | also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo however
|
---|
240 | it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm
|
---|
241 | to use is specified in the I<nid> parameter and should be the NID of the
|
---|
242 | corresponding OBJECT IDENTIFIER (see NOTES section).
|
---|
243 |
|
---|
244 | The B<PUBKEY> functions process a public key using an EVP_PKEY
|
---|
245 | structure. The public key is encoded as a SubjectPublicKeyInfo
|
---|
246 | structure.
|
---|
247 |
|
---|
248 | The B<RSAPrivateKey> functions process an RSA private key using an
|
---|
249 | RSA structure. The write routines uses traditional format. The read
|
---|
250 | routines handles the same formats as the B<PrivateKey>
|
---|
251 | functions but an error occurs if the private key is not RSA.
|
---|
252 |
|
---|
253 | The B<RSAPublicKey> functions process an RSA public key using an
|
---|
254 | RSA structure. The public key is encoded using a PKCS#1 RSAPublicKey
|
---|
255 | structure.
|
---|
256 |
|
---|
257 | The B<RSA_PUBKEY> functions also process an RSA public key using
|
---|
258 | an RSA structure. However, the public key is encoded using a
|
---|
259 | SubjectPublicKeyInfo structure and an error occurs if the public
|
---|
260 | key is not RSA.
|
---|
261 |
|
---|
262 | The B<DSAPrivateKey> functions process a DSA private key using a
|
---|
263 | DSA structure. The write routines uses traditional format. The read
|
---|
264 | routines handles the same formats as the B<PrivateKey>
|
---|
265 | functions but an error occurs if the private key is not DSA.
|
---|
266 |
|
---|
267 | The B<DSA_PUBKEY> functions process a DSA public key using
|
---|
268 | a DSA structure. The public key is encoded using a
|
---|
269 | SubjectPublicKeyInfo structure and an error occurs if the public
|
---|
270 | key is not DSA.
|
---|
271 |
|
---|
272 | The B<Parameters> functions read or write key parameters in PEM format using
|
---|
273 | an EVP_PKEY structure. The encoding depends on the type of key; for DSA key
|
---|
274 | parameters, it will be a Dss-Parms structure as defined in RFC2459, and for DH
|
---|
275 | key parameters, it will be a PKCS#3 DHparameter structure. I<These functions
|
---|
276 | only exist for the B<BIO> type>.
|
---|
277 |
|
---|
278 | The B<DSAparams> functions process DSA parameters using a DSA
|
---|
279 | structure. The parameters are encoded using a Dss-Parms structure
|
---|
280 | as defined in RFC2459.
|
---|
281 |
|
---|
282 | The B<DHparams> functions process DH parameters using a DH
|
---|
283 | structure. The parameters are encoded using a PKCS#3 DHparameter
|
---|
284 | structure.
|
---|
285 |
|
---|
286 | The B<X509> functions process an X509 certificate using an X509
|
---|
287 | structure. They will also process a trusted X509 certificate but
|
---|
288 | any trust settings are discarded.
|
---|
289 |
|
---|
290 | The B<X509_AUX> functions process a trusted X509 certificate using
|
---|
291 | an X509 structure.
|
---|
292 |
|
---|
293 | The B<X509_REQ> and B<X509_REQ_NEW> functions process a PKCS#10
|
---|
294 | certificate request using an X509_REQ structure. The B<X509_REQ>
|
---|
295 | write functions use B<CERTIFICATE REQUEST> in the header whereas
|
---|
296 | the B<X509_REQ_NEW> functions use B<NEW CERTIFICATE REQUEST>
|
---|
297 | (as required by some CAs). The B<X509_REQ> read functions will
|
---|
298 | handle either form so there are no B<X509_REQ_NEW> read functions.
|
---|
299 |
|
---|
300 | The B<X509_CRL> functions process an X509 CRL using an X509_CRL
|
---|
301 | structure.
|
---|
302 |
|
---|
303 | The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
|
---|
304 | structure.
|
---|
305 |
|
---|
306 | =head1 PEM FUNCTION ARGUMENTS
|
---|
307 |
|
---|
308 | The PEM functions have many common arguments.
|
---|
309 |
|
---|
310 | The I<bp> BIO parameter (if present) specifies the BIO to read from
|
---|
311 | or write to.
|
---|
312 |
|
---|
313 | The I<fp> FILE parameter (if present) specifies the FILE pointer to
|
---|
314 | read from or write to.
|
---|
315 |
|
---|
316 | The PEM read functions all take an argument I<B<TYPE> **x> and return
|
---|
317 | a I<B<TYPE> *> pointer. Where I<B<TYPE>> is whatever structure the function
|
---|
318 | uses. If I<x> is NULL then the parameter is ignored. If I<x> is not
|
---|
319 | NULL but I<*x> is NULL then the structure returned will be written
|
---|
320 | to I<*x>. If neither I<x> nor I<*x> is NULL then an attempt is made
|
---|
321 | to reuse the structure at I<*x> (but see BUGS and EXAMPLES sections).
|
---|
322 | Irrespective of the value of I<x> a pointer to the structure is always
|
---|
323 | returned (or NULL if an error occurred).
|
---|
324 |
|
---|
325 | The PEM functions which write private keys take an I<enc> parameter
|
---|
326 | which specifies the encryption algorithm to use, encryption is done
|
---|
327 | at the PEM level. If this parameter is set to NULL then the private
|
---|
328 | key is written in unencrypted form.
|
---|
329 |
|
---|
330 | The I<cb> argument is the callback to use when querying for the pass
|
---|
331 | phrase used for encrypted PEM structures (normally only private keys).
|
---|
332 |
|
---|
333 | For the PEM write routines if the I<kstr> parameter is not NULL then
|
---|
334 | I<klen> bytes at I<kstr> are used as the passphrase and I<cb> is
|
---|
335 | ignored.
|
---|
336 |
|
---|
337 | If the I<cb> parameters is set to NULL and the I<u> parameter is not
|
---|
338 | NULL then the I<u> parameter is interpreted as a NUL terminated string
|
---|
339 | to use as the passphrase. If both I<cb> and I<u> are NULL then the
|
---|
340 | default callback routine is used which will typically prompt for the
|
---|
341 | passphrase on the current terminal with echoing turned off.
|
---|
342 |
|
---|
343 | The default passphrase callback is sometimes inappropriate (for example
|
---|
344 | in a GUI application) so an alternative can be supplied. The callback
|
---|
345 | routine has the following form:
|
---|
346 |
|
---|
347 | int cb(char *buf, int size, int rwflag, void *u);
|
---|
348 |
|
---|
349 | I<buf> is the buffer to write the passphrase to. I<size> is the maximum
|
---|
350 | length of the passphrase (i.e. the size of buf). I<rwflag> is a flag
|
---|
351 | which is set to 0 when reading and 1 when writing. A typical routine
|
---|
352 | will ask the user to verify the passphrase (for example by prompting
|
---|
353 | for it twice) if I<rwflag> is 1. The I<u> parameter has the same
|
---|
354 | value as the I<u> parameter passed to the PEM routine. It allows
|
---|
355 | arbitrary data to be passed to the callback by the application
|
---|
356 | (for example a window handle in a GUI application). The callback
|
---|
357 | I<must> return the number of characters in the passphrase or -1 if
|
---|
358 | an error occurred. The passphrase can be arbitrary data; in the case where it
|
---|
359 | is a string, it is not NUL terminated. See the L</EXAMPLES> section below.
|
---|
360 |
|
---|
361 | Some implementations may need to use cryptographic algorithms during their
|
---|
362 | operation. If this is the case and I<libctx> and I<propq> parameters have been
|
---|
363 | passed then any algorithm fetches will use that library context and property
|
---|
364 | query string. Otherwise the default library context and property query string
|
---|
365 | will be used.
|
---|
366 |
|
---|
367 | =head1 NOTES
|
---|
368 |
|
---|
369 | The PEM reading functions will skip any extraneous content or PEM data of
|
---|
370 | a different type than they expect. This allows for example having a certificate
|
---|
371 | (or multiple certificates) and a key in the PEM format in a single file.
|
---|
372 |
|
---|
373 | The old B<PrivateKey> write routines are retained for compatibility.
|
---|
374 | New applications should write private keys using the
|
---|
375 | PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
|
---|
376 | because they are more secure (they use an iteration count of 2048 whereas
|
---|
377 | the traditional routines use a count of 1) unless compatibility with older
|
---|
378 | versions of OpenSSL is important.
|
---|
379 |
|
---|
380 | The B<PrivateKey> read routines can be used in all applications because
|
---|
381 | they handle all formats transparently.
|
---|
382 |
|
---|
383 | A frequent cause of problems is attempting to use the PEM routines like
|
---|
384 | this:
|
---|
385 |
|
---|
386 | X509 *x;
|
---|
387 |
|
---|
388 | PEM_read_bio_X509(bp, &x, 0, NULL);
|
---|
389 |
|
---|
390 | this is a bug because an attempt will be made to reuse the data at I<x>
|
---|
391 | which is an uninitialised pointer.
|
---|
392 |
|
---|
393 | These functions make no assumption regarding the pass phrase received from the
|
---|
394 | password callback.
|
---|
395 | It will simply be treated as a byte sequence.
|
---|
396 |
|
---|
397 | =head1 PEM ENCRYPTION FORMAT
|
---|
398 |
|
---|
399 | These old B<PrivateKey> routines use a non standard technique for encryption.
|
---|
400 |
|
---|
401 | The private key (or other data) takes the following form:
|
---|
402 |
|
---|
403 | -----BEGIN RSA PRIVATE KEY-----
|
---|
404 | Proc-Type: 4,ENCRYPTED
|
---|
405 | DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89
|
---|
406 |
|
---|
407 | ...base64 encoded data...
|
---|
408 | -----END RSA PRIVATE KEY-----
|
---|
409 |
|
---|
410 | The line beginning with I<Proc-Type> contains the version and the
|
---|
411 | protection on the encapsulated data. The line beginning I<DEK-Info>
|
---|
412 | contains two comma separated values: the encryption algorithm name as
|
---|
413 | used by EVP_get_cipherbyname() and an initialization vector used by the
|
---|
414 | cipher encoded as a set of hexadecimal digits. After those two lines is
|
---|
415 | the base64-encoded encrypted data.
|
---|
416 |
|
---|
417 | The encryption key is derived using EVP_BytesToKey(). The cipher's
|
---|
418 | initialization vector is passed to EVP_BytesToKey() as the I<salt>
|
---|
419 | parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
|
---|
420 | (regardless of the size of the initialization vector). The user's
|
---|
421 | password is passed to EVP_BytesToKey() using the I<data> and I<datal>
|
---|
422 | parameters. Finally, the library uses an iteration count of 1 for
|
---|
423 | EVP_BytesToKey().
|
---|
424 |
|
---|
425 | The I<key> derived by EVP_BytesToKey() along with the original initialization
|
---|
426 | vector is then used to decrypt the encrypted data. The I<iv> produced by
|
---|
427 | EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
|
---|
428 | the function.
|
---|
429 |
|
---|
430 | The pseudo code to derive the key would look similar to:
|
---|
431 |
|
---|
432 | EVP_CIPHER* cipher = EVP_des_ede3_cbc();
|
---|
433 | EVP_MD* md = EVP_md5();
|
---|
434 |
|
---|
435 | unsigned int nkey = EVP_CIPHER_get_key_length(cipher);
|
---|
436 | unsigned int niv = EVP_CIPHER_get_iv_length(cipher);
|
---|
437 | unsigned char key[nkey];
|
---|
438 | unsigned char iv[niv];
|
---|
439 |
|
---|
440 | memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
|
---|
441 | rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
|
---|
442 | if (rc != nkey)
|
---|
443 | /* Error */
|
---|
444 |
|
---|
445 | /* On success, use key and iv to initialize the cipher */
|
---|
446 |
|
---|
447 | =head1 BUGS
|
---|
448 |
|
---|
449 | The PEM read routines in some versions of OpenSSL will not correctly reuse
|
---|
450 | an existing structure. Therefore, the following:
|
---|
451 |
|
---|
452 | PEM_read_bio_X509(bp, &x, 0, NULL);
|
---|
453 |
|
---|
454 | where I<x> already contains a valid certificate, may not work, whereas:
|
---|
455 |
|
---|
456 | X509_free(x);
|
---|
457 | x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
---|
458 |
|
---|
459 | is guaranteed to work. It is always acceptable for I<x> to contain a newly
|
---|
460 | allocated, empty B<X509> object (for example allocated via L<X509_new_ex(3)>).
|
---|
461 |
|
---|
462 | =head1 RETURN VALUES
|
---|
463 |
|
---|
464 | The read routines return either a pointer to the structure read or NULL
|
---|
465 | if an error occurred.
|
---|
466 |
|
---|
467 | The write routines return 1 for success or 0 for failure.
|
---|
468 |
|
---|
469 | =head1 EXAMPLES
|
---|
470 |
|
---|
471 | Although the PEM routines take several arguments in almost all applications
|
---|
472 | most of them are set to 0 or NULL.
|
---|
473 |
|
---|
474 | To read a certificate with a library context in PEM format from a BIO:
|
---|
475 |
|
---|
476 | X509 *x = X509_new_ex(libctx, NULL);
|
---|
477 |
|
---|
478 | if (x == NULL)
|
---|
479 | /* Error */
|
---|
480 |
|
---|
481 | if (PEM_read_bio_X509(bp, &x, 0, NULL) == NULL)
|
---|
482 | /* Error */
|
---|
483 |
|
---|
484 | Read a certificate in PEM format from a BIO:
|
---|
485 |
|
---|
486 | X509 *x;
|
---|
487 |
|
---|
488 | x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
---|
489 | if (x == NULL)
|
---|
490 | /* Error */
|
---|
491 |
|
---|
492 | Alternative method:
|
---|
493 |
|
---|
494 | X509 *x = NULL;
|
---|
495 |
|
---|
496 | if (!PEM_read_bio_X509(bp, &x, 0, NULL))
|
---|
497 | /* Error */
|
---|
498 |
|
---|
499 | Write a certificate to a BIO:
|
---|
500 |
|
---|
501 | if (!PEM_write_bio_X509(bp, x))
|
---|
502 | /* Error */
|
---|
503 |
|
---|
504 | Write a private key (using traditional format) to a BIO using
|
---|
505 | triple DES encryption, the pass phrase is prompted for:
|
---|
506 |
|
---|
507 | if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
|
---|
508 | /* Error */
|
---|
509 |
|
---|
510 | Write a private key (using PKCS#8 format) to a BIO using triple
|
---|
511 | DES encryption, using the pass phrase "hello":
|
---|
512 |
|
---|
513 | if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(),
|
---|
514 | NULL, 0, 0, "hello"))
|
---|
515 | /* Error */
|
---|
516 |
|
---|
517 | Read a private key from a BIO using a pass phrase callback:
|
---|
518 |
|
---|
519 | key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
|
---|
520 | if (key == NULL)
|
---|
521 | /* Error */
|
---|
522 |
|
---|
523 | Skeleton pass phrase callback:
|
---|
524 |
|
---|
525 | int pass_cb(char *buf, int size, int rwflag, void *u)
|
---|
526 | {
|
---|
527 |
|
---|
528 | /* We'd probably do something else if 'rwflag' is 1 */
|
---|
529 | printf("Enter pass phrase for \"%s\"\n", (char *)u);
|
---|
530 |
|
---|
531 | /* get pass phrase, length 'len' into 'tmp' */
|
---|
532 | char *tmp = "hello";
|
---|
533 | if (tmp == NULL) /* An error occurred */
|
---|
534 | return -1;
|
---|
535 |
|
---|
536 | size_t len = strlen(tmp);
|
---|
537 |
|
---|
538 | if (len > size)
|
---|
539 | len = size;
|
---|
540 | memcpy(buf, tmp, len);
|
---|
541 | return len;
|
---|
542 | }
|
---|
543 |
|
---|
544 | =head1 SEE ALSO
|
---|
545 |
|
---|
546 | L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>,
|
---|
547 | L<passphrase-encoding(7)>
|
---|
548 |
|
---|
549 | =head1 HISTORY
|
---|
550 |
|
---|
551 | The old Netscape certificate sequences were no longer documented
|
---|
552 | in OpenSSL 1.1.0; applications should use the PKCS7 standard instead
|
---|
553 | as they will be formally deprecated in a future releases.
|
---|
554 |
|
---|
555 | PEM_read_bio_PrivateKey_ex(), PEM_read_PrivateKey_ex(),
|
---|
556 | PEM_read_bio_PUBKEY_ex(), PEM_read_PUBKEY_ex() and
|
---|
557 | PEM_read_bio_Parameters_ex() were introduced in OpenSSL 3.0.
|
---|
558 |
|
---|
559 | The functions PEM_read_bio_RSAPrivateKey(), PEM_read_RSAPrivateKey(),
|
---|
560 | PEM_write_bio_RSAPrivateKey(), PEM_write_RSAPrivateKey(),
|
---|
561 | PEM_read_bio_RSAPublicKey(), PEM_read_RSAPublicKey(),
|
---|
562 | PEM_write_bio_RSAPublicKey(), PEM_write_RSAPublicKey(),
|
---|
563 | PEM_read_bio_RSA_PUBKEY(), PEM_read_RSA_PUBKEY(),
|
---|
564 | PEM_write_bio_RSA_PUBKEY(), PEM_write_RSA_PUBKEY(),
|
---|
565 | PEM_read_bio_DSAPrivateKey(), PEM_read_DSAPrivateKey(),
|
---|
566 | PEM_write_bio_DSAPrivateKey(), PEM_write_DSAPrivateKey(),
|
---|
567 | PEM_read_bio_DSA_PUBKEY(), PEM_read_DSA_PUBKEY(),
|
---|
568 | PEM_write_bio_DSA_PUBKEY(), PEM_write_DSA_PUBKEY();
|
---|
569 | PEM_read_bio_DSAparams(), PEM_read_DSAparams(),
|
---|
570 | PEM_write_bio_DSAparams(), PEM_write_DSAparams(),
|
---|
571 | PEM_read_bio_DHparams(), PEM_read_DHparams(),
|
---|
572 | PEM_write_bio_DHparams() and PEM_write_DHparams() were deprecated in 3.0.
|
---|
573 |
|
---|
574 |
|
---|
575 | =head1 COPYRIGHT
|
---|
576 |
|
---|
577 | Copyright 2001-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
578 |
|
---|
579 | Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
580 | this file except in compliance with the License. You can obtain a copy
|
---|
581 | in the file LICENSE in the source distribution or at
|
---|
582 | L<https://www.openssl.org/source/license.html>.
|
---|
583 |
|
---|
584 | =cut
|
---|