VirtualBox

source: vbox/trunk/src/libs/openssl-3.1.3/crypto/sha/asm/sha512-armv8.pl@ 101211

Last change on this file since 101211 was 101211, checked in by vboxsync, 17 months ago

openssl-3.1.3: Applied and adjusted our OpenSSL changes to 3.1.2. bugref:10527

File size: 23.9 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <[email protected]> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23# SHA256-hw SHA256(*) SHA512
24# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
25# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
26# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
27# Denver 2.01 10.5 (+26%) 6.70 (+8%)
28# X-Gene 20.0 (+100%) 12.8 (+300%(***))
29# Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
30# Kryo 1.92 17.4 (+30%) 11.2 (+8%)
31# ThunderX2 2.54 13.2 (+40%) 8.40 (+18%)
32#
33# (*) Software SHA256 results are of lesser relevance, presented
34# mostly for informational purposes.
35# (**) The result is a trade-off: it's possible to improve it by
36# 10% (or by 1 cycle per round), but at the cost of 20% loss
37# on Cortex-A53 (or by 4 cycles per round).
38# (***) Super-impressive coefficients over gcc-generated code are
39# indication of some compiler "pathology", most notably code
40# generated with -mgeneral-regs-only is significantly faster
41# and the gap is only 40-90%.
42#
43# October 2016.
44#
45# Originally it was reckoned that it makes no sense to implement NEON
46# version of SHA256 for 64-bit processors. This is because performance
47# improvement on most wide-spread Cortex-A5x processors was observed
48# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
49# observed that 32-bit NEON SHA256 performs significantly better than
50# 64-bit scalar version on *some* of the more recent processors. As
51# result 64-bit NEON version of SHA256 was added to provide best
52# all-round performance. For example it executes ~30% faster on X-Gene
53# and Mongoose. [For reference, NEON version of SHA512 is bound to
54# deliver much less improvement, likely *negative* on Cortex-A5x.
55# Which is why NEON support is limited to SHA256.]
56
57# $output is the last argument if it looks like a file (it has an extension)
58# $flavour is the first argument if it doesn't look like a file
59$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
60$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
61
62if ($flavour && $flavour ne "void") {
63 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
65 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
66 die "can't locate arm-xlate.pl";
67
68 open OUT,"| \"$^X\" $xlate $flavour \"$output\""
69 or die "can't call $xlate: $!";
70 *STDOUT=*OUT;
71} else {
72 $output and open STDOUT,">$output";
73}
74
75if ($output =~ /512/) {
76 $BITS=512;
77 $SZ=8;
78 @Sigma0=(28,34,39);
79 @Sigma1=(14,18,41);
80 @sigma0=(1, 8, 7);
81 @sigma1=(19,61, 6);
82 $rounds=80;
83 $reg_t="x";
84} else {
85 $BITS=256;
86 $SZ=4;
87 @Sigma0=( 2,13,22);
88 @Sigma1=( 6,11,25);
89 @sigma0=( 7,18, 3);
90 @sigma1=(17,19,10);
91 $rounds=64;
92 $reg_t="w";
93}
94
95$func="sha${BITS}_block_data_order";
96
97($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
98
99@X=map("$reg_t$_",(3..15,0..2));
100@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
101($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
102
103sub BODY_00_xx {
104my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
105my $j=($i+1)&15;
106my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
107 $T0=@X[$i+3] if ($i<11);
108
109$code.=<<___ if ($i<16);
110#ifndef __AARCH64EB__
111 rev @X[$i],@X[$i] // $i
112#endif
113___
114$code.=<<___ if ($i<13 && ($i&1));
115 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
116___
117$code.=<<___ if ($i==13);
118 ldp @X[14],@X[15],[$inp]
119___
120$code.=<<___ if ($i>=14);
121 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
122___
123$code.=<<___ if ($i>0 && $i<16);
124 add $a,$a,$t1 // h+=Sigma0(a)
125___
126$code.=<<___ if ($i>=11);
127 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
128___
129# While ARMv8 specifies merged rotate-n-logical operation such as
130# 'eor x,y,z,ror#n', it was found to negatively affect performance
131# on Apple A7. The reason seems to be that it requires even 'y' to
132# be available earlier. This means that such merged instruction is
133# not necessarily best choice on critical path... On the other hand
134# Cortex-A5x handles merged instructions much better than disjoint
135# rotate and logical... See (**) footnote above.
136$code.=<<___ if ($i<15);
137 ror $t0,$e,#$Sigma1[0]
138 add $h,$h,$t2 // h+=K[i]
139 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
140 and $t1,$f,$e
141 bic $t2,$g,$e
142 add $h,$h,@X[$i&15] // h+=X[i]
143 orr $t1,$t1,$t2 // Ch(e,f,g)
144 eor $t2,$a,$b // a^b, b^c in next round
145 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
146 ror $T0,$a,#$Sigma0[0]
147 add $h,$h,$t1 // h+=Ch(e,f,g)
148 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
149 add $h,$h,$t0 // h+=Sigma1(e)
150 and $t3,$t3,$t2 // (b^c)&=(a^b)
151 add $d,$d,$h // d+=h
152 eor $t3,$t3,$b // Maj(a,b,c)
153 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
154 add $h,$h,$t3 // h+=Maj(a,b,c)
155 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
156 //add $h,$h,$t1 // h+=Sigma0(a)
157___
158$code.=<<___ if ($i>=15);
159 ror $t0,$e,#$Sigma1[0]
160 add $h,$h,$t2 // h+=K[i]
161 ror $T1,@X[($j+1)&15],#$sigma0[0]
162 and $t1,$f,$e
163 ror $T2,@X[($j+14)&15],#$sigma1[0]
164 bic $t2,$g,$e
165 ror $T0,$a,#$Sigma0[0]
166 add $h,$h,@X[$i&15] // h+=X[i]
167 eor $t0,$t0,$e,ror#$Sigma1[1]
168 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
169 orr $t1,$t1,$t2 // Ch(e,f,g)
170 eor $t2,$a,$b // a^b, b^c in next round
171 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
172 eor $T0,$T0,$a,ror#$Sigma0[1]
173 add $h,$h,$t1 // h+=Ch(e,f,g)
174 and $t3,$t3,$t2 // (b^c)&=(a^b)
175 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
176 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
177 add $h,$h,$t0 // h+=Sigma1(e)
178 eor $t3,$t3,$b // Maj(a,b,c)
179 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
180 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
181 add @X[$j],@X[$j],@X[($j+9)&15]
182 add $d,$d,$h // d+=h
183 add $h,$h,$t3 // h+=Maj(a,b,c)
184 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
185 add @X[$j],@X[$j],$T1
186 add $h,$h,$t1 // h+=Sigma0(a)
187 add @X[$j],@X[$j],$T2
188___
189 ($t2,$t3)=($t3,$t2);
190}
191
192$code.=<<___;
193#include "arm_arch.h"
194#ifndef __KERNEL__
195.extern OPENSSL_armcap_P
196.hidden OPENSSL_armcap_P
197#endif
198
199.text
200
201.globl $func
202.type $func,%function
203.align 6
204$func:
205 AARCH64_VALID_CALL_TARGET
206#ifndef __KERNEL__
207 adrp x16,OPENSSL_armcap_P
208 ldr w16,[x16,#:lo12:OPENSSL_armcap_P]
209___
210$code.=<<___ if ($SZ==4);
211 tst w16,#ARMV8_SHA256
212 b.ne .Lv8_entry
213 tst w16,#ARMV7_NEON
214 b.ne .Lneon_entry
215___
216$code.=<<___ if ($SZ==8);
217 tst w16,#ARMV8_SHA512
218 b.ne .Lv8_entry
219___
220$code.=<<___;
221#endif
222 AARCH64_SIGN_LINK_REGISTER
223 stp x29,x30,[sp,#-128]!
224 add x29,sp,#0
225
226 stp x19,x20,[sp,#16]
227 stp x21,x22,[sp,#32]
228 stp x23,x24,[sp,#48]
229 stp x25,x26,[sp,#64]
230 stp x27,x28,[sp,#80]
231 sub sp,sp,#4*$SZ
232
233 ldp $A,$B,[$ctx] // load context
234 ldp $C,$D,[$ctx,#2*$SZ]
235 ldp $E,$F,[$ctx,#4*$SZ]
236 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
237 ldp $G,$H,[$ctx,#6*$SZ]
238 adr $Ktbl,.LK$BITS
239 stp $ctx,$num,[x29,#96]
240
241.Loop:
242 ldp @X[0],@X[1],[$inp],#2*$SZ
243 ldr $t2,[$Ktbl],#$SZ // *K++
244 eor $t3,$B,$C // magic seed
245 str $inp,[x29,#112]
246___
247for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
248$code.=".Loop_16_xx:\n";
249for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
250$code.=<<___;
251 cbnz $t2,.Loop_16_xx
252
253 ldp $ctx,$num,[x29,#96]
254 ldr $inp,[x29,#112]
255 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
256
257 ldp @X[0],@X[1],[$ctx]
258 ldp @X[2],@X[3],[$ctx,#2*$SZ]
259 add $inp,$inp,#14*$SZ // advance input pointer
260 ldp @X[4],@X[5],[$ctx,#4*$SZ]
261 add $A,$A,@X[0]
262 ldp @X[6],@X[7],[$ctx,#6*$SZ]
263 add $B,$B,@X[1]
264 add $C,$C,@X[2]
265 add $D,$D,@X[3]
266 stp $A,$B,[$ctx]
267 add $E,$E,@X[4]
268 add $F,$F,@X[5]
269 stp $C,$D,[$ctx,#2*$SZ]
270 add $G,$G,@X[6]
271 add $H,$H,@X[7]
272 cmp $inp,$num
273 stp $E,$F,[$ctx,#4*$SZ]
274 stp $G,$H,[$ctx,#6*$SZ]
275 b.ne .Loop
276
277 ldp x19,x20,[x29,#16]
278 add sp,sp,#4*$SZ
279 ldp x21,x22,[x29,#32]
280 ldp x23,x24,[x29,#48]
281 ldp x25,x26,[x29,#64]
282 ldp x27,x28,[x29,#80]
283 ldp x29,x30,[sp],#128
284 AARCH64_VALIDATE_LINK_REGISTER
285 ret
286.size $func,.-$func
287
288.align 6
289.type .LK$BITS,%object
290.LK$BITS:
291___
292$code.=<<___ if ($SZ==8);
293 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
294 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
295 .quad 0x3956c25bf348b538,0x59f111f1b605d019
296 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
297 .quad 0xd807aa98a3030242,0x12835b0145706fbe
298 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
299 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
300 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
301 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
302 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
303 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
304 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
305 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
306 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
307 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
308 .quad 0x06ca6351e003826f,0x142929670a0e6e70
309 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
310 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
311 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
312 .quad 0x81c2c92e47edaee6,0x92722c851482353b
313 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
314 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
315 .quad 0xd192e819d6ef5218,0xd69906245565a910
316 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
317 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
318 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
319 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
320 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
321 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
322 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
323 .quad 0x90befffa23631e28,0xa4506cebde82bde9
324 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
325 .quad 0xca273eceea26619c,0xd186b8c721c0c207
326 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
327 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
328 .quad 0x113f9804bef90dae,0x1b710b35131c471b
329 .quad 0x28db77f523047d84,0x32caab7b40c72493
330 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
331 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
332 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
333 .quad 0 // terminator
334___
335$code.=<<___ if ($SZ==4);
336 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
337 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
338 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
339 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
340 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
341 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
342 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
343 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
344 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
345 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
346 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
347 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
348 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
349 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
350 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
351 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
352 .long 0 //terminator
353___
354$code.=<<___;
355.size .LK$BITS,.-.LK$BITS
356.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
357.align 2
358___
359
360if ($SZ==4) {
361my $Ktbl="x3";
362
363my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
364my @MSG=map("v$_.16b",(4..7));
365my ($W0,$W1)=("v16.4s","v17.4s");
366my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
367
368$code.=<<___;
369#ifndef __KERNEL__
370.type sha256_block_armv8,%function
371.align 6
372sha256_block_armv8:
373.Lv8_entry:
374 // Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later.
375 stp x29,x30,[sp,#-16]!
376 add x29,sp,#0
377
378 ld1.32 {$ABCD,$EFGH},[$ctx]
379 adr $Ktbl,.LK256
380
381.Loop_hw:
382 ld1 {@MSG[0]-@MSG[3]},[$inp],#64
383 sub $num,$num,#1
384 ld1.32 {$W0},[$Ktbl],#16
385 rev32 @MSG[0],@MSG[0]
386 rev32 @MSG[1],@MSG[1]
387 rev32 @MSG[2],@MSG[2]
388 rev32 @MSG[3],@MSG[3]
389 orr $ABCD_SAVE,$ABCD,$ABCD // offload
390 orr $EFGH_SAVE,$EFGH,$EFGH
391___
392for($i=0;$i<12;$i++) {
393$code.=<<___;
394 ld1.32 {$W1},[$Ktbl],#16
395 add.i32 $W0,$W0,@MSG[0]
396 sha256su0 @MSG[0],@MSG[1]
397 orr $abcd,$ABCD,$ABCD
398 sha256h $ABCD,$EFGH,$W0
399 sha256h2 $EFGH,$abcd,$W0
400 sha256su1 @MSG[0],@MSG[2],@MSG[3]
401___
402 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
403}
404$code.=<<___;
405 ld1.32 {$W1},[$Ktbl],#16
406 add.i32 $W0,$W0,@MSG[0]
407 orr $abcd,$ABCD,$ABCD
408 sha256h $ABCD,$EFGH,$W0
409 sha256h2 $EFGH,$abcd,$W0
410
411 ld1.32 {$W0},[$Ktbl],#16
412 add.i32 $W1,$W1,@MSG[1]
413 orr $abcd,$ABCD,$ABCD
414 sha256h $ABCD,$EFGH,$W1
415 sha256h2 $EFGH,$abcd,$W1
416
417 ld1.32 {$W1},[$Ktbl]
418 add.i32 $W0,$W0,@MSG[2]
419 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
420 orr $abcd,$ABCD,$ABCD
421 sha256h $ABCD,$EFGH,$W0
422 sha256h2 $EFGH,$abcd,$W0
423
424 add.i32 $W1,$W1,@MSG[3]
425 orr $abcd,$ABCD,$ABCD
426 sha256h $ABCD,$EFGH,$W1
427 sha256h2 $EFGH,$abcd,$W1
428
429 add.i32 $ABCD,$ABCD,$ABCD_SAVE
430 add.i32 $EFGH,$EFGH,$EFGH_SAVE
431
432 cbnz $num,.Loop_hw
433
434 st1.32 {$ABCD,$EFGH},[$ctx]
435
436 ldr x29,[sp],#16
437 ret
438.size sha256_block_armv8,.-sha256_block_armv8
439#endif
440___
441}
442
443if ($SZ==4) { ######################################### NEON stuff #
444# You'll surely note a lot of similarities with sha256-armv4 module,
445# and of course it's not a coincidence. sha256-armv4 was used as
446# initial template, but was adapted for ARMv8 instruction set and
447# extensively re-tuned for all-round performance.
448
449my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
450my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
451my $Ktbl="x16";
452my $Xfer="x17";
453my @X = map("q$_",(0..3));
454my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
455my $j=0;
456
457sub AUTOLOAD() # thunk [simplified] x86-style perlasm
458{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
459 my $arg = pop;
460 $arg = "#$arg" if ($arg*1 eq $arg);
461 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
462}
463
464sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
465sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
466sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
467
468sub Xupdate()
469{ use integer;
470 my $body = shift;
471 my @insns = (&$body,&$body,&$body,&$body);
472 my ($a,$b,$c,$d,$e,$f,$g,$h);
473
474 &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
475 eval(shift(@insns));
476 eval(shift(@insns));
477 eval(shift(@insns));
478 &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
479 eval(shift(@insns));
480 eval(shift(@insns));
481 &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
482 eval(shift(@insns));
483 eval(shift(@insns));
484 &ushr_32 ($T2,$T0,$sigma0[0]);
485 eval(shift(@insns));
486 &ushr_32 ($T1,$T0,$sigma0[2]);
487 eval(shift(@insns));
488 &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
489 eval(shift(@insns));
490 &sli_32 ($T2,$T0,32-$sigma0[0]);
491 eval(shift(@insns));
492 eval(shift(@insns));
493 &ushr_32 ($T3,$T0,$sigma0[1]);
494 eval(shift(@insns));
495 eval(shift(@insns));
496 &eor_8 ($T1,$T1,$T2);
497 eval(shift(@insns));
498 eval(shift(@insns));
499 &sli_32 ($T3,$T0,32-$sigma0[1]);
500 eval(shift(@insns));
501 eval(shift(@insns));
502 &ushr_32 ($T4,$T7,$sigma1[0]);
503 eval(shift(@insns));
504 eval(shift(@insns));
505 &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
506 eval(shift(@insns));
507 eval(shift(@insns));
508 &sli_32 ($T4,$T7,32-$sigma1[0]);
509 eval(shift(@insns));
510 eval(shift(@insns));
511 &ushr_32 ($T5,$T7,$sigma1[2]);
512 eval(shift(@insns));
513 eval(shift(@insns));
514 &ushr_32 ($T3,$T7,$sigma1[1]);
515 eval(shift(@insns));
516 eval(shift(@insns));
517 &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
518 eval(shift(@insns));
519 eval(shift(@insns));
520 &sli_u32 ($T3,$T7,32-$sigma1[1]);
521 eval(shift(@insns));
522 eval(shift(@insns));
523 &eor_8 ($T5,$T5,$T4);
524 eval(shift(@insns));
525 eval(shift(@insns));
526 eval(shift(@insns));
527 &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
528 eval(shift(@insns));
529 eval(shift(@insns));
530 eval(shift(@insns));
531 &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
532 eval(shift(@insns));
533 eval(shift(@insns));
534 eval(shift(@insns));
535 &ushr_32 ($T6,@X[0],$sigma1[0]);
536 eval(shift(@insns));
537 &ushr_32 ($T7,@X[0],$sigma1[2]);
538 eval(shift(@insns));
539 eval(shift(@insns));
540 &sli_32 ($T6,@X[0],32-$sigma1[0]);
541 eval(shift(@insns));
542 &ushr_32 ($T5,@X[0],$sigma1[1]);
543 eval(shift(@insns));
544 eval(shift(@insns));
545 &eor_8 ($T7,$T7,$T6);
546 eval(shift(@insns));
547 eval(shift(@insns));
548 &sli_32 ($T5,@X[0],32-$sigma1[1]);
549 eval(shift(@insns));
550 eval(shift(@insns));
551 &ld1_32 ("{$T0}","[$Ktbl], #16");
552 eval(shift(@insns));
553 &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
554 eval(shift(@insns));
555 eval(shift(@insns));
556 &eor_8 ($T5,$T5,$T5);
557 eval(shift(@insns));
558 eval(shift(@insns));
559 &mov (&Dhi($T5), &Dlo($T7));
560 eval(shift(@insns));
561 eval(shift(@insns));
562 eval(shift(@insns));
563 &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 &add_32 ($T0,$T0,@X[0]);
568 while($#insns>=1) { eval(shift(@insns)); }
569 &st1_32 ("{$T0}","[$Xfer], #16");
570 eval(shift(@insns));
571
572 push(@X,shift(@X)); # "rotate" X[]
573}
574
575sub Xpreload()
576{ use integer;
577 my $body = shift;
578 my @insns = (&$body,&$body,&$body,&$body);
579 my ($a,$b,$c,$d,$e,$f,$g,$h);
580
581 eval(shift(@insns));
582 eval(shift(@insns));
583 &ld1_8 ("{@X[0]}","[$inp],#16");
584 eval(shift(@insns));
585 eval(shift(@insns));
586 &ld1_32 ("{$T0}","[$Ktbl],#16");
587 eval(shift(@insns));
588 eval(shift(@insns));
589 eval(shift(@insns));
590 eval(shift(@insns));
591 &rev32 (@X[0],@X[0]);
592 eval(shift(@insns));
593 eval(shift(@insns));
594 eval(shift(@insns));
595 eval(shift(@insns));
596 &add_32 ($T0,$T0,@X[0]);
597 foreach (@insns) { eval; } # remaining instructions
598 &st1_32 ("{$T0}","[$Xfer], #16");
599
600 push(@X,shift(@X)); # "rotate" X[]
601}
602
603sub body_00_15 () {
604 (
605 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
606 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
607 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
608 '&and ($t1,$f,$e)',
609 '&bic ($t4,$g,$e)',
610 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
611 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
612 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
613 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
614 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
615 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
616 '&ror ($t0,$t0,"#$Sigma1[0]")',
617 '&eor ($t2,$a,$b)', # a^b, b^c in next round
618 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
619 '&add ($h,$h,$t0)', # h+=Sigma1(e)
620 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
621 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
622 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
623 '&ror ($t4,$t4,"#$Sigma0[0]")',
624 '&add ($d,$d,$h)', # d+=h
625 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
626 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
627 )
628}
629
630$code.=<<___;
631#ifdef __KERNEL__
632.globl sha256_block_neon
633#endif
634.type sha256_block_neon,%function
635.align 4
636sha256_block_neon:
637 AARCH64_VALID_CALL_TARGET
638.Lneon_entry:
639 // Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later
640 stp x29, x30, [sp, #-16]!
641 mov x29, sp
642 sub sp,sp,#16*4
643
644 adr $Ktbl,.LK256
645 add $num,$inp,$num,lsl#6 // len to point at the end of inp
646
647 ld1.8 {@X[0]},[$inp], #16
648 ld1.8 {@X[1]},[$inp], #16
649 ld1.8 {@X[2]},[$inp], #16
650 ld1.8 {@X[3]},[$inp], #16
651 ld1.32 {$T0},[$Ktbl], #16
652 ld1.32 {$T1},[$Ktbl], #16
653 ld1.32 {$T2},[$Ktbl], #16
654 ld1.32 {$T3},[$Ktbl], #16
655 rev32 @X[0],@X[0] // yes, even on
656 rev32 @X[1],@X[1] // big-endian
657 rev32 @X[2],@X[2]
658 rev32 @X[3],@X[3]
659 mov $Xfer,sp
660 add.32 $T0,$T0,@X[0]
661 add.32 $T1,$T1,@X[1]
662 add.32 $T2,$T2,@X[2]
663 st1.32 {$T0-$T1},[$Xfer], #32
664 add.32 $T3,$T3,@X[3]
665 st1.32 {$T2-$T3},[$Xfer]
666 sub $Xfer,$Xfer,#32
667
668 ldp $A,$B,[$ctx]
669 ldp $C,$D,[$ctx,#8]
670 ldp $E,$F,[$ctx,#16]
671 ldp $G,$H,[$ctx,#24]
672 ldr $t1,[sp,#0]
673 mov $t2,wzr
674 eor $t3,$B,$C
675 mov $t4,wzr
676 b .L_00_48
677
678.align 4
679.L_00_48:
680___
681 &Xupdate(\&body_00_15);
682 &Xupdate(\&body_00_15);
683 &Xupdate(\&body_00_15);
684 &Xupdate(\&body_00_15);
685$code.=<<___;
686 cmp $t1,#0 // check for K256 terminator
687 ldr $t1,[sp,#0]
688 sub $Xfer,$Xfer,#64
689 bne .L_00_48
690
691 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
692 cmp $inp,$num
693 mov $Xfer, #64
694 csel $Xfer, $Xfer, xzr, eq
695 sub $inp,$inp,$Xfer // avoid SEGV
696 mov $Xfer,sp
697___
698 &Xpreload(\&body_00_15);
699 &Xpreload(\&body_00_15);
700 &Xpreload(\&body_00_15);
701 &Xpreload(\&body_00_15);
702$code.=<<___;
703 add $A,$A,$t4 // h+=Sigma0(a) from the past
704 ldp $t0,$t1,[$ctx,#0]
705 add $A,$A,$t2 // h+=Maj(a,b,c) from the past
706 ldp $t2,$t3,[$ctx,#8]
707 add $A,$A,$t0 // accumulate
708 add $B,$B,$t1
709 ldp $t0,$t1,[$ctx,#16]
710 add $C,$C,$t2
711 add $D,$D,$t3
712 ldp $t2,$t3,[$ctx,#24]
713 add $E,$E,$t0
714 add $F,$F,$t1
715 ldr $t1,[sp,#0]
716 stp $A,$B,[$ctx,#0]
717 add $G,$G,$t2
718 mov $t2,wzr
719 stp $C,$D,[$ctx,#8]
720 add $H,$H,$t3
721 stp $E,$F,[$ctx,#16]
722 eor $t3,$B,$C
723 stp $G,$H,[$ctx,#24]
724 mov $t4,wzr
725 mov $Xfer,sp
726 b.ne .L_00_48
727
728 ldr x29,[x29]
729 add sp,sp,#16*4+16
730 ret
731.size sha256_block_neon,.-sha256_block_neon
732___
733}
734
735if ($SZ==8) {
736my $Ktbl="x3";
737
738my @H = map("v$_.16b",(0..4));
739my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
740my @MSG=map("v$_.16b",(16..23));
741my ($W0,$W1)=("v24.2d","v25.2d");
742my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
743
744$code.=<<___;
745#ifndef __KERNEL__
746.type sha512_block_armv8,%function
747.align 6
748sha512_block_armv8:
749.Lv8_entry:
750 // Armv8.3-A PAuth: even though x30 is pushed to stack it is not popped later
751 stp x29,x30,[sp,#-16]!
752 add x29,sp,#0
753
754 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input
755 ld1 {@MSG[4]-@MSG[7]},[$inp],#64
756
757 ld1.64 {@H[0]-@H[3]},[$ctx] // load context
758 adr $Ktbl,.LK512
759
760 rev64 @MSG[0],@MSG[0]
761 rev64 @MSG[1],@MSG[1]
762 rev64 @MSG[2],@MSG[2]
763 rev64 @MSG[3],@MSG[3]
764 rev64 @MSG[4],@MSG[4]
765 rev64 @MSG[5],@MSG[5]
766 rev64 @MSG[6],@MSG[6]
767 rev64 @MSG[7],@MSG[7]
768 b .Loop_hw
769
770.align 4
771.Loop_hw:
772 ld1.64 {$W0},[$Ktbl],#16
773 subs $num,$num,#1
774 sub x4,$inp,#128
775 orr $AB,@H[0],@H[0] // offload
776 orr $CD,@H[1],@H[1]
777 orr $EF,@H[2],@H[2]
778 orr $GH,@H[3],@H[3]
779 csel $inp,$inp,x4,ne // conditional rewind
780___
781for($i=0;$i<32;$i++) {
782$code.=<<___;
783 add.i64 $W0,$W0,@MSG[0]
784 ld1.64 {$W1},[$Ktbl],#16
785 ext $W0,$W0,$W0,#8
786 ext $fg,@H[2],@H[3],#8
787 ext $de,@H[1],@H[2],#8
788 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
789 sha512su0 @MSG[0],@MSG[1]
790 ext $m9_10,@MSG[4],@MSG[5],#8
791 sha512h @H[3],$fg,$de
792 sha512su1 @MSG[0],@MSG[7],$m9_10
793 add.i64 @H[4],@H[1],@H[3] // "D + T1"
794 sha512h2 @H[3],$H[1],@H[0]
795___
796 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
797 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
798}
799for(;$i<40;$i++) {
800$code.=<<___ if ($i<39);
801 ld1.64 {$W1},[$Ktbl],#16
802___
803$code.=<<___ if ($i==39);
804 sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind
805___
806$code.=<<___;
807 add.i64 $W0,$W0,@MSG[0]
808 ld1 {@MSG[0]},[$inp],#16 // load next input
809 ext $W0,$W0,$W0,#8
810 ext $fg,@H[2],@H[3],#8
811 ext $de,@H[1],@H[2],#8
812 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
813 sha512h @H[3],$fg,$de
814 rev64 @MSG[0],@MSG[0]
815 add.i64 @H[4],@H[1],@H[3] // "D + T1"
816 sha512h2 @H[3],$H[1],@H[0]
817___
818 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
819 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
820}
821$code.=<<___;
822 add.i64 @H[0],@H[0],$AB // accumulate
823 add.i64 @H[1],@H[1],$CD
824 add.i64 @H[2],@H[2],$EF
825 add.i64 @H[3],@H[3],$GH
826
827 cbnz $num,.Loop_hw
828
829 st1.64 {@H[0]-@H[3]},[$ctx] // store context
830
831 ldr x29,[sp],#16
832 ret
833.size sha512_block_armv8,.-sha512_block_armv8
834#endif
835___
836}
837
838{ my %opcode = (
839 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
840 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
841
842 sub unsha256 {
843 my ($mnemonic,$arg)=@_;
844
845 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
846 &&
847 sprintf ".inst\t0x%08x\t//%s %s",
848 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
849 $mnemonic,$arg;
850 }
851}
852
853{ my %opcode = (
854 "sha512h" => 0xce608000, "sha512h2" => 0xce608400,
855 "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 );
856
857 sub unsha512 {
858 my ($mnemonic,$arg)=@_;
859
860 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
861 &&
862 sprintf ".inst\t0x%08x\t//%s %s",
863 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
864 $mnemonic,$arg;
865 }
866}
867
868open SELF,$0;
869while(<SELF>) {
870 next if (/^#!/);
871 last if (!s/^#/\/\// and !/^$/);
872 print;
873}
874close SELF;
875
876foreach(split("\n",$code)) {
877
878 s/\`([^\`]*)\`/eval($1)/ge;
879
880 s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or
881 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
882
883 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
884
885 s/\.[ui]?8(\s)/$1/;
886 s/\.\w?64\b// and s/\.16b/\.2d/g or
887 s/\.\w?32\b// and s/\.16b/\.4s/g;
888 m/\bext\b/ and s/\.2d/\.16b/g or
889 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
890
891 print $_,"\n";
892}
893
894close STDOUT or die "error closing STDOUT: $!";
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette