/* $Id: threads_iprt.c 101211 2023-09-21 06:43:35Z vboxsync $ */ /** @file * Crypto threading and atomic functions built upon IPRT. */ /* * Copyright (C) 2016-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ #include #include "internal/cryptlib.h" #if defined(OPENSSL_THREADS) # include # include # include # include # include # include /* Use read/write sections. */ /*# define USE_RW_CRITSECT */ /** @todo test the code */ # ifndef USE_RW_CRITSECT /* * Of course it's wrong to use a critical section to implement a read/write * lock. But as the OpenSSL interface is too simple (there is only read_lock()/ * write_lock() and only unspecified unlock() and the Windows implementatio * (threads_win.c) uses {Enter,Leave}CriticalSection we do that here as well. */ # endif CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void) { # ifdef USE_RW_CRITSECT PRTCRITSECTRW const pCritSect = (PRTCRITSECTRW)OPENSSL_zalloc(sizeof(*pCritSect)); # else PRTCRITSECT const pCritSect = (PRTCRITSECT)OPENSSL_zalloc(sizeof(*pCritSect)); # endif if (pCritSect) { # ifdef USE_RW_CRITSECT int const rc = RTCritSectRwInitEx(pCritSect, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL); # else int const rc = RTCritSectInitEx(pCritSect, 0, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL); # endif if (RT_SUCCESS(rc)) return (CRYPTO_RWLOCK *)pCritSect; OPENSSL_free(pCritSect); } return NULL; } int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock) { # ifdef USE_RW_CRITSECT PRTCRITSECTRW const pCritSect = (PRTCRITSECTRW)lock; int rc; /* writers cannot acquire read locks the way CRYPTO_THREAD_unlock works right now. It's also looks incompatible with pthread_rwlock_rdlock, so this should never trigger. */ Assert(!RTCritSectRwIsWriteOwner(pCritSect)); rc = RTCritSectRwEnterShared(pCritSect); # else int const rc = RTCritSectEnter((PRTCRITSECT)lock); # endif AssertRCReturn(rc, 0); return 1; } int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock) { # ifdef USE_RW_CRITSECT int const rc = RTCritSectRwEnterExcl((PRTCRITSECTRW)lock); # else int const rc = RTCritSectEnter((PRTCRITSECT)lock); # endif AssertRCReturn(rc, 0); return 1; } int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock) { # ifdef USE_RW_CRITSECT PRTCRITSECTRW const pCritSect = (PRTCRITSECTRW)lock; if (RTCritSectRwIsWriteOwner(pCritSect)) { int const rc1 = RTCritSectRwLeaveExcl(pCritSect); AssertRCReturn(rc1, 0); } else { int const rc2 = RTCritSectRwLeaveShared(pCritSect); AssertRCReturn(rc2, 0); } # else int const rc = RTCritSectLeave((PRTCRITSECT)lock); AssertRCReturn(rc, 0); # endif return 1; } void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock) { if (lock) { # ifdef USE_RW_CRITSECT PRTCRITSECTRW const pCritSect = (PRTCRITSECTRW)lock; int const rc = RTCritSectRwDelete(pCritSect); # else PRTCRITSECT const pCritSect = (PRTCRITSECT)lock; int const rc = RTCritSectDelete(pCritSect); # endif AssertRC(rc); OPENSSL_free(pCritSect); } } int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *)) { int rc = RTTlsAllocEx(key, (PFNRTTLSDTOR)cleanup); /* ASSUMES default calling convention is __cdecl, or close enough to it. */ AssertRCReturn(rc, 0); return 1; } void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key) { return RTTlsGet(*key); } int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val) { int rc = RTTlsSet(*key, val); AssertRCReturn(rc, 0); return 1; } int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key) { int rc = RTTlsFree(*key); AssertRCReturn(rc, 0); return 1; } CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void) { return RTThreadSelf(); } int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b) { return (a == b); } /** @callback_method_impl{FNRTONCE, * Wrapper that calls the @a init function given CRYPTO_THREAD_run_once().} */ static int32_t cryptoThreadRunOnceWrapper(void *pvUser) { void (*pfnInit)(void) = (void (*)(void))pvUser; pfnInit(); return VINF_SUCCESS; } int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void)) { int rc = RTOnce(once, cryptoThreadRunOnceWrapper, (void *)(uintptr_t)init); AssertRCReturn(rc, 0); return 1; } int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock) { *ret = ASMAtomicAddS32((int32_t volatile*)val, amount) + amount; return 1; } int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret, CRYPTO_RWLOCK *lock) { uint64_t u64RetOld = ASMAtomicUoReadU64(val); uint64_t u64New; do u64New = u64RetOld | op; while (!ASMAtomicCmpXchgExU64(val, u64New, u64RetOld, &u64RetOld)); *ret = u64RetOld; return 1; } int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock) { *ret = ASMAtomicReadU64((uint64_t volatile *)val); return 1; } #endif /* defined(OPENSSL_THREADS) */ int openssl_init_fork_handlers(void) { return 0; } int openssl_get_fork_id(void) { return (int)RTProcSelf(); }