1 | /*
|
---|
2 | * Copyright 1999-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
|
---|
11 |
|
---|
12 | /*
|
---|
13 | * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
|
---|
14 | * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
|
---|
15 | * proof for the original OAEP scheme, which EME-OAEP is based on. A new
|
---|
16 | * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
|
---|
17 | * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
|
---|
18 | * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
|
---|
19 | * for the underlying permutation: "partial-one-wayness" instead of
|
---|
20 | * one-wayness. For the RSA function, this is an equivalent notion.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * RSA low level APIs are deprecated for public use, but still ok for
|
---|
25 | * internal use.
|
---|
26 | */
|
---|
27 | #include "internal/deprecated.h"
|
---|
28 |
|
---|
29 | #include "internal/constant_time.h"
|
---|
30 |
|
---|
31 | #include <stdio.h>
|
---|
32 | #include "internal/cryptlib.h"
|
---|
33 | #include <openssl/bn.h>
|
---|
34 | #include <openssl/evp.h>
|
---|
35 | #include <openssl/rand.h>
|
---|
36 | #include <openssl/sha.h>
|
---|
37 | #include "rsa_local.h"
|
---|
38 |
|
---|
39 | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
|
---|
40 | const unsigned char *from, int flen,
|
---|
41 | const unsigned char *param, int plen)
|
---|
42 | {
|
---|
43 | return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
|
---|
44 | param, plen, NULL, NULL);
|
---|
45 | }
|
---|
46 |
|
---|
47 | /*
|
---|
48 | * Perform the padding as per NIST 800-56B 7.2.2.3
|
---|
49 | * from (K) is the key material.
|
---|
50 | * param (A) is the additional input.
|
---|
51 | * Step numbers are included here but not in the constant time inverse below
|
---|
52 | * to avoid complicating an already difficult enough function.
|
---|
53 | */
|
---|
54 | int ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(OSSL_LIB_CTX *libctx,
|
---|
55 | unsigned char *to, int tlen,
|
---|
56 | const unsigned char *from, int flen,
|
---|
57 | const unsigned char *param,
|
---|
58 | int plen, const EVP_MD *md,
|
---|
59 | const EVP_MD *mgf1md)
|
---|
60 | {
|
---|
61 | int rv = 0;
|
---|
62 | int i, emlen = tlen - 1;
|
---|
63 | unsigned char *db, *seed;
|
---|
64 | unsigned char *dbmask = NULL;
|
---|
65 | unsigned char seedmask[EVP_MAX_MD_SIZE];
|
---|
66 | int mdlen, dbmask_len = 0;
|
---|
67 |
|
---|
68 | if (md == NULL) {
|
---|
69 | #ifndef FIPS_MODULE
|
---|
70 | md = EVP_sha1();
|
---|
71 | #else
|
---|
72 | ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
|
---|
73 | return 0;
|
---|
74 | #endif
|
---|
75 | }
|
---|
76 | if (mgf1md == NULL)
|
---|
77 | mgf1md = md;
|
---|
78 |
|
---|
79 | mdlen = EVP_MD_get_size(md);
|
---|
80 | if (mdlen <= 0) {
|
---|
81 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
|
---|
82 | return 0;
|
---|
83 | }
|
---|
84 |
|
---|
85 | /* step 2b: check KLen > nLen - 2 HLen - 2 */
|
---|
86 | if (flen > emlen - 2 * mdlen - 1) {
|
---|
87 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
---|
88 | return 0;
|
---|
89 | }
|
---|
90 |
|
---|
91 | if (emlen < 2 * mdlen + 1) {
|
---|
92 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
---|
93 | return 0;
|
---|
94 | }
|
---|
95 |
|
---|
96 | /* step 3i: EM = 00000000 || maskedMGF || maskedDB */
|
---|
97 | to[0] = 0;
|
---|
98 | seed = to + 1;
|
---|
99 | db = to + mdlen + 1;
|
---|
100 |
|
---|
101 | /* step 3a: hash the additional input */
|
---|
102 | if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
|
---|
103 | goto err;
|
---|
104 | /* step 3b: zero bytes array of length nLen - KLen - 2 HLen -2 */
|
---|
105 | memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
|
---|
106 | /* step 3c: DB = HA || PS || 00000001 || K */
|
---|
107 | db[emlen - flen - mdlen - 1] = 0x01;
|
---|
108 | memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
|
---|
109 | /* step 3d: generate random byte string */
|
---|
110 | if (RAND_bytes_ex(libctx, seed, mdlen, 0) <= 0)
|
---|
111 | goto err;
|
---|
112 |
|
---|
113 | dbmask_len = emlen - mdlen;
|
---|
114 | dbmask = OPENSSL_malloc(dbmask_len);
|
---|
115 | if (dbmask == NULL) {
|
---|
116 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
|
---|
117 | goto err;
|
---|
118 | }
|
---|
119 |
|
---|
120 | /* step 3e: dbMask = MGF(mgfSeed, nLen - HLen - 1) */
|
---|
121 | if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
|
---|
122 | goto err;
|
---|
123 | /* step 3f: maskedDB = DB XOR dbMask */
|
---|
124 | for (i = 0; i < dbmask_len; i++)
|
---|
125 | db[i] ^= dbmask[i];
|
---|
126 |
|
---|
127 | /* step 3g: mgfSeed = MGF(maskedDB, HLen) */
|
---|
128 | if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
|
---|
129 | goto err;
|
---|
130 | /* stepo 3h: maskedMGFSeed = mgfSeed XOR mgfSeedMask */
|
---|
131 | for (i = 0; i < mdlen; i++)
|
---|
132 | seed[i] ^= seedmask[i];
|
---|
133 | rv = 1;
|
---|
134 |
|
---|
135 | err:
|
---|
136 | OPENSSL_cleanse(seedmask, sizeof(seedmask));
|
---|
137 | OPENSSL_clear_free(dbmask, dbmask_len);
|
---|
138 | return rv;
|
---|
139 | }
|
---|
140 |
|
---|
141 | int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
|
---|
142 | const unsigned char *from, int flen,
|
---|
143 | const unsigned char *param, int plen,
|
---|
144 | const EVP_MD *md, const EVP_MD *mgf1md)
|
---|
145 | {
|
---|
146 | return ossl_rsa_padding_add_PKCS1_OAEP_mgf1_ex(NULL, to, tlen, from, flen,
|
---|
147 | param, plen, md, mgf1md);
|
---|
148 | }
|
---|
149 |
|
---|
150 | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
|
---|
151 | const unsigned char *from, int flen, int num,
|
---|
152 | const unsigned char *param, int plen)
|
---|
153 | {
|
---|
154 | return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
|
---|
155 | param, plen, NULL, NULL);
|
---|
156 | }
|
---|
157 |
|
---|
158 | int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
|
---|
159 | const unsigned char *from, int flen,
|
---|
160 | int num, const unsigned char *param,
|
---|
161 | int plen, const EVP_MD *md,
|
---|
162 | const EVP_MD *mgf1md)
|
---|
163 | {
|
---|
164 | int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
|
---|
165 | unsigned int good = 0, found_one_byte, mask;
|
---|
166 | const unsigned char *maskedseed, *maskeddb;
|
---|
167 | /*
|
---|
168 | * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
|
---|
169 | * Y || maskedSeed || maskedDB
|
---|
170 | */
|
---|
171 | unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
|
---|
172 | phash[EVP_MAX_MD_SIZE];
|
---|
173 | int mdlen;
|
---|
174 |
|
---|
175 | if (md == NULL) {
|
---|
176 | #ifndef FIPS_MODULE
|
---|
177 | md = EVP_sha1();
|
---|
178 | #else
|
---|
179 | ERR_raise(ERR_LIB_RSA, ERR_R_PASSED_NULL_PARAMETER);
|
---|
180 | return -1;
|
---|
181 | #endif
|
---|
182 | }
|
---|
183 |
|
---|
184 | if (mgf1md == NULL)
|
---|
185 | mgf1md = md;
|
---|
186 |
|
---|
187 | mdlen = EVP_MD_get_size(md);
|
---|
188 |
|
---|
189 | if (tlen <= 0 || flen <= 0)
|
---|
190 | return -1;
|
---|
191 | /*
|
---|
192 | * |num| is the length of the modulus; |flen| is the length of the
|
---|
193 | * encoded message. Therefore, for any |from| that was obtained by
|
---|
194 | * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
|
---|
195 | * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
|
---|
196 | * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
|
---|
197 | * This does not leak any side-channel information.
|
---|
198 | */
|
---|
199 | if (num < flen || num < 2 * mdlen + 2) {
|
---|
200 | ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
|
---|
201 | return -1;
|
---|
202 | }
|
---|
203 |
|
---|
204 | dblen = num - mdlen - 1;
|
---|
205 | db = OPENSSL_malloc(dblen);
|
---|
206 | if (db == NULL) {
|
---|
207 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
|
---|
208 | goto cleanup;
|
---|
209 | }
|
---|
210 |
|
---|
211 | em = OPENSSL_malloc(num);
|
---|
212 | if (em == NULL) {
|
---|
213 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
|
---|
214 | goto cleanup;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /*
|
---|
218 | * Caller is encouraged to pass zero-padded message created with
|
---|
219 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
|
---|
220 | * bounds, it's impossible to have an invariant memory access pattern
|
---|
221 | * in case |from| was not zero-padded in advance.
|
---|
222 | */
|
---|
223 | for (from += flen, em += num, i = 0; i < num; i++) {
|
---|
224 | mask = ~constant_time_is_zero(flen);
|
---|
225 | flen -= 1 & mask;
|
---|
226 | from -= 1 & mask;
|
---|
227 | *--em = *from & mask;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /*
|
---|
231 | * The first byte must be zero, however we must not leak if this is
|
---|
232 | * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA
|
---|
233 | * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
|
---|
234 | */
|
---|
235 | good = constant_time_is_zero(em[0]);
|
---|
236 |
|
---|
237 | maskedseed = em + 1;
|
---|
238 | maskeddb = em + 1 + mdlen;
|
---|
239 |
|
---|
240 | if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
|
---|
241 | goto cleanup;
|
---|
242 | for (i = 0; i < mdlen; i++)
|
---|
243 | seed[i] ^= maskedseed[i];
|
---|
244 |
|
---|
245 | if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
|
---|
246 | goto cleanup;
|
---|
247 | for (i = 0; i < dblen; i++)
|
---|
248 | db[i] ^= maskeddb[i];
|
---|
249 |
|
---|
250 | if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
|
---|
251 | goto cleanup;
|
---|
252 |
|
---|
253 | good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));
|
---|
254 |
|
---|
255 | found_one_byte = 0;
|
---|
256 | for (i = mdlen; i < dblen; i++) {
|
---|
257 | /*
|
---|
258 | * Padding consists of a number of 0-bytes, followed by a 1.
|
---|
259 | */
|
---|
260 | unsigned int equals1 = constant_time_eq(db[i], 1);
|
---|
261 | unsigned int equals0 = constant_time_is_zero(db[i]);
|
---|
262 | one_index = constant_time_select_int(~found_one_byte & equals1,
|
---|
263 | i, one_index);
|
---|
264 | found_one_byte |= equals1;
|
---|
265 | good &= (found_one_byte | equals0);
|
---|
266 | }
|
---|
267 |
|
---|
268 | good &= found_one_byte;
|
---|
269 |
|
---|
270 | /*
|
---|
271 | * At this point |good| is zero unless the plaintext was valid,
|
---|
272 | * so plaintext-awareness ensures timing side-channels are no longer a
|
---|
273 | * concern.
|
---|
274 | */
|
---|
275 | msg_index = one_index + 1;
|
---|
276 | mlen = dblen - msg_index;
|
---|
277 |
|
---|
278 | /*
|
---|
279 | * For good measure, do this check in constant time as well.
|
---|
280 | */
|
---|
281 | good &= constant_time_ge(tlen, mlen);
|
---|
282 |
|
---|
283 | /*
|
---|
284 | * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
|
---|
285 | * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
|
---|
286 | * Otherwise leave |to| unchanged.
|
---|
287 | * Copy the memory back in a way that does not reveal the size of
|
---|
288 | * the data being copied via a timing side channel. This requires copying
|
---|
289 | * parts of the buffer multiple times based on the bits set in the real
|
---|
290 | * length. Clear bits do a non-copy with identical access pattern.
|
---|
291 | * The loop below has overall complexity of O(N*log(N)).
|
---|
292 | */
|
---|
293 | tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
|
---|
294 | dblen - mdlen - 1, tlen);
|
---|
295 | for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
|
---|
296 | mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
|
---|
297 | for (i = mdlen + 1; i < dblen - msg_index; i++)
|
---|
298 | db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
|
---|
299 | }
|
---|
300 | for (i = 0; i < tlen; i++) {
|
---|
301 | mask = good & constant_time_lt(i, mlen);
|
---|
302 | to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
|
---|
303 | }
|
---|
304 |
|
---|
305 | #ifndef FIPS_MODULE
|
---|
306 | /*
|
---|
307 | * To avoid chosen ciphertext attacks, the error message should not
|
---|
308 | * reveal which kind of decoding error happened.
|
---|
309 | *
|
---|
310 | * This trick doesn't work in the FIPS provider because libcrypto manages
|
---|
311 | * the error stack. Instead we opt not to put an error on the stack at all
|
---|
312 | * in case of padding failure in the FIPS provider.
|
---|
313 | */
|
---|
314 | ERR_raise(ERR_LIB_RSA, RSA_R_OAEP_DECODING_ERROR);
|
---|
315 | err_clear_last_constant_time(1 & good);
|
---|
316 | #endif
|
---|
317 | cleanup:
|
---|
318 | OPENSSL_cleanse(seed, sizeof(seed));
|
---|
319 | OPENSSL_clear_free(db, dblen);
|
---|
320 | OPENSSL_clear_free(em, num);
|
---|
321 |
|
---|
322 | return constant_time_select_int(good, mlen, -1);
|
---|
323 | }
|
---|
324 |
|
---|
325 | /*
|
---|
326 | * Mask Generation Function corresponding to section 7.2.2.2 of NIST SP 800-56B.
|
---|
327 | * The variables are named differently to NIST:
|
---|
328 | * mask (T) and len (maskLen)are the returned mask.
|
---|
329 | * seed (mgfSeed).
|
---|
330 | * The range checking steps inm the process are performed outside.
|
---|
331 | */
|
---|
332 | int PKCS1_MGF1(unsigned char *mask, long len,
|
---|
333 | const unsigned char *seed, long seedlen, const EVP_MD *dgst)
|
---|
334 | {
|
---|
335 | long i, outlen = 0;
|
---|
336 | unsigned char cnt[4];
|
---|
337 | EVP_MD_CTX *c = EVP_MD_CTX_new();
|
---|
338 | unsigned char md[EVP_MAX_MD_SIZE];
|
---|
339 | int mdlen;
|
---|
340 | int rv = -1;
|
---|
341 |
|
---|
342 | if (c == NULL)
|
---|
343 | goto err;
|
---|
344 | mdlen = EVP_MD_get_size(dgst);
|
---|
345 | if (mdlen < 0)
|
---|
346 | goto err;
|
---|
347 | /* step 4 */
|
---|
348 | for (i = 0; outlen < len; i++) {
|
---|
349 | /* step 4a: D = I2BS(counter, 4) */
|
---|
350 | cnt[0] = (unsigned char)((i >> 24) & 255);
|
---|
351 | cnt[1] = (unsigned char)((i >> 16) & 255);
|
---|
352 | cnt[2] = (unsigned char)((i >> 8)) & 255;
|
---|
353 | cnt[3] = (unsigned char)(i & 255);
|
---|
354 | /* step 4b: T =T || hash(mgfSeed || D) */
|
---|
355 | if (!EVP_DigestInit_ex(c, dgst, NULL)
|
---|
356 | || !EVP_DigestUpdate(c, seed, seedlen)
|
---|
357 | || !EVP_DigestUpdate(c, cnt, 4))
|
---|
358 | goto err;
|
---|
359 | if (outlen + mdlen <= len) {
|
---|
360 | if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
|
---|
361 | goto err;
|
---|
362 | outlen += mdlen;
|
---|
363 | } else {
|
---|
364 | if (!EVP_DigestFinal_ex(c, md, NULL))
|
---|
365 | goto err;
|
---|
366 | memcpy(mask + outlen, md, len - outlen);
|
---|
367 | outlen = len;
|
---|
368 | }
|
---|
369 | }
|
---|
370 | rv = 0;
|
---|
371 | err:
|
---|
372 | OPENSSL_cleanse(md, sizeof(md));
|
---|
373 | EVP_MD_CTX_free(c);
|
---|
374 | return rv;
|
---|
375 | }
|
---|