1 | /*
|
---|
2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #ifndef _GNU_SOURCE
|
---|
11 | # define _GNU_SOURCE
|
---|
12 | #endif
|
---|
13 | #include "internal/e_os.h"
|
---|
14 | #include <stdio.h>
|
---|
15 | #include "internal/cryptlib.h"
|
---|
16 | #include <openssl/rand.h>
|
---|
17 | #include <openssl/crypto.h>
|
---|
18 | #include "crypto/rand_pool.h"
|
---|
19 | #include "crypto/rand.h"
|
---|
20 | #include "internal/dso.h"
|
---|
21 | #include "internal/nelem.h"
|
---|
22 | #include "prov/seeding.h"
|
---|
23 |
|
---|
24 | #ifdef __linux
|
---|
25 | # include <sys/syscall.h>
|
---|
26 | # ifdef DEVRANDOM_WAIT
|
---|
27 | # include <sys/shm.h>
|
---|
28 | # include <sys/utsname.h>
|
---|
29 | # endif
|
---|
30 | #endif
|
---|
31 | #if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
|
---|
32 | # include <sys/types.h>
|
---|
33 | # include <sys/sysctl.h>
|
---|
34 | # include <sys/param.h>
|
---|
35 | #endif
|
---|
36 | #if defined(__OpenBSD__)
|
---|
37 | # include <sys/param.h>
|
---|
38 | #endif
|
---|
39 | #if defined(__DragonFly__)
|
---|
40 | # include <sys/param.h>
|
---|
41 | # include <sys/random.h>
|
---|
42 | #endif
|
---|
43 |
|
---|
44 | #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
|
---|
45 | || defined(__DJGPP__)
|
---|
46 | # include <sys/types.h>
|
---|
47 | # include <sys/stat.h>
|
---|
48 | # include <fcntl.h>
|
---|
49 | # include <unistd.h>
|
---|
50 | # include <sys/time.h>
|
---|
51 |
|
---|
52 | static uint64_t get_time_stamp(void);
|
---|
53 |
|
---|
54 | /* Macro to convert two thirty two bit values into a sixty four bit one */
|
---|
55 | # define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
|
---|
56 |
|
---|
57 | /*
|
---|
58 | * Check for the existence and support of POSIX timers. The standard
|
---|
59 | * says that the _POSIX_TIMERS macro will have a positive value if they
|
---|
60 | * are available.
|
---|
61 | *
|
---|
62 | * However, we want an additional constraint: that the timer support does
|
---|
63 | * not require an extra library dependency. Early versions of glibc
|
---|
64 | * require -lrt to be specified on the link line to access the timers,
|
---|
65 | * so this needs to be checked for.
|
---|
66 | *
|
---|
67 | * It is worse because some libraries define __GLIBC__ but don't
|
---|
68 | * support the version testing macro (e.g. uClibc). This means
|
---|
69 | * an extra check is needed.
|
---|
70 | *
|
---|
71 | * The final condition is:
|
---|
72 | * "have posix timers and either not glibc or glibc without -lrt"
|
---|
73 | *
|
---|
74 | * The nested #if sequences are required to avoid using a parameterised
|
---|
75 | * macro that might be undefined.
|
---|
76 | */
|
---|
77 | # undef OSSL_POSIX_TIMER_OKAY
|
---|
78 | /* On some systems, _POSIX_TIMERS is defined but empty.
|
---|
79 | * Subtracting by 0 when comparing avoids an error in this case. */
|
---|
80 | # if defined(_POSIX_TIMERS) && _POSIX_TIMERS -0 > 0
|
---|
81 | # if defined(__GLIBC__)
|
---|
82 | # if defined(__GLIBC_PREREQ)
|
---|
83 | # if __GLIBC_PREREQ(2, 17)
|
---|
84 | # define OSSL_POSIX_TIMER_OKAY
|
---|
85 | # endif
|
---|
86 | # endif
|
---|
87 | # else
|
---|
88 | # define OSSL_POSIX_TIMER_OKAY
|
---|
89 | # endif
|
---|
90 | # endif
|
---|
91 | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
|
---|
92 | || defined(__DJGPP__) */
|
---|
93 |
|
---|
94 | #if defined(OPENSSL_RAND_SEED_NONE)
|
---|
95 | /* none means none. this simplifies the following logic */
|
---|
96 | # undef OPENSSL_RAND_SEED_OS
|
---|
97 | # undef OPENSSL_RAND_SEED_GETRANDOM
|
---|
98 | # undef OPENSSL_RAND_SEED_LIBRANDOM
|
---|
99 | # undef OPENSSL_RAND_SEED_DEVRANDOM
|
---|
100 | # undef OPENSSL_RAND_SEED_RDTSC
|
---|
101 | # undef OPENSSL_RAND_SEED_RDCPU
|
---|
102 | # undef OPENSSL_RAND_SEED_EGD
|
---|
103 | #endif
|
---|
104 |
|
---|
105 | #if defined(OPENSSL_SYS_UEFI) && !defined(OPENSSL_RAND_SEED_NONE)
|
---|
106 | # error "UEFI only supports seeding NONE"
|
---|
107 | #endif
|
---|
108 |
|
---|
109 | #if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|
---|
110 | || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|
---|
111 | || defined(OPENSSL_SYS_UEFI))
|
---|
112 |
|
---|
113 | # if defined(OPENSSL_SYS_VOS)
|
---|
114 |
|
---|
115 | # ifndef OPENSSL_RAND_SEED_OS
|
---|
116 | # error "Unsupported seeding method configured; must be os"
|
---|
117 | # endif
|
---|
118 |
|
---|
119 | # if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
|
---|
120 | # error "Unsupported HP-PA and IA32 at the same time."
|
---|
121 | # endif
|
---|
122 | # if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
|
---|
123 | # error "Must have one of HP-PA or IA32"
|
---|
124 | # endif
|
---|
125 |
|
---|
126 | /*
|
---|
127 | * The following algorithm repeatedly samples the real-time clock (RTC) to
|
---|
128 | * generate a sequence of unpredictable data. The algorithm relies upon the
|
---|
129 | * uneven execution speed of the code (due to factors such as cache misses,
|
---|
130 | * interrupts, bus activity, and scheduling) and upon the rather large
|
---|
131 | * relative difference between the speed of the clock and the rate at which
|
---|
132 | * it can be read. If it is ported to an environment where execution speed
|
---|
133 | * is more constant or where the RTC ticks at a much slower rate, or the
|
---|
134 | * clock can be read with fewer instructions, it is likely that the results
|
---|
135 | * would be far more predictable. This should only be used for legacy
|
---|
136 | * platforms.
|
---|
137 | *
|
---|
138 | * As a precaution, we assume only 2 bits of entropy per byte.
|
---|
139 | */
|
---|
140 | size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
|
---|
141 | {
|
---|
142 | short int code;
|
---|
143 | int i, k;
|
---|
144 | size_t bytes_needed;
|
---|
145 | struct timespec ts;
|
---|
146 | unsigned char v;
|
---|
147 | # ifdef OPENSSL_SYS_VOS_HPPA
|
---|
148 | long duration;
|
---|
149 | extern void s$sleep(long *_duration, short int *_code);
|
---|
150 | # else
|
---|
151 | long long duration;
|
---|
152 | extern void s$sleep2(long long *_duration, short int *_code);
|
---|
153 | # endif
|
---|
154 |
|
---|
155 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
|
---|
156 |
|
---|
157 | for (i = 0; i < bytes_needed; i++) {
|
---|
158 | /*
|
---|
159 | * burn some cpu; hope for interrupts, cache collisions, bus
|
---|
160 | * interference, etc.
|
---|
161 | */
|
---|
162 | for (k = 0; k < 99; k++)
|
---|
163 | ts.tv_nsec = random();
|
---|
164 |
|
---|
165 | # ifdef OPENSSL_SYS_VOS_HPPA
|
---|
166 | /* sleep for 1/1024 of a second (976 us). */
|
---|
167 | duration = 1;
|
---|
168 | s$sleep(&duration, &code);
|
---|
169 | # else
|
---|
170 | /* sleep for 1/65536 of a second (15 us). */
|
---|
171 | duration = 1;
|
---|
172 | s$sleep2(&duration, &code);
|
---|
173 | # endif
|
---|
174 |
|
---|
175 | /* Get wall clock time, take 8 bits. */
|
---|
176 | clock_gettime(CLOCK_REALTIME, &ts);
|
---|
177 | v = (unsigned char)(ts.tv_nsec & 0xFF);
|
---|
178 | ossl_rand_pool_add(pool, arg, &v, sizeof(v) , 2);
|
---|
179 | }
|
---|
180 | return ossl_rand_pool_entropy_available(pool);
|
---|
181 | }
|
---|
182 |
|
---|
183 | void ossl_rand_pool_cleanup(void)
|
---|
184 | {
|
---|
185 | }
|
---|
186 |
|
---|
187 | void ossl_rand_pool_keep_random_devices_open(int keep)
|
---|
188 | {
|
---|
189 | }
|
---|
190 |
|
---|
191 | # else
|
---|
192 |
|
---|
193 | # if defined(OPENSSL_RAND_SEED_EGD) && \
|
---|
194 | (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
|
---|
195 | # error "Seeding uses EGD but EGD is turned off or no device given"
|
---|
196 | # endif
|
---|
197 |
|
---|
198 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
|
---|
199 | # error "Seeding uses urandom but DEVRANDOM is not configured"
|
---|
200 | # endif
|
---|
201 |
|
---|
202 | # if defined(OPENSSL_RAND_SEED_OS)
|
---|
203 | # if !defined(DEVRANDOM)
|
---|
204 | # error "OS seeding requires DEVRANDOM to be configured"
|
---|
205 | # endif
|
---|
206 | # define OPENSSL_RAND_SEED_GETRANDOM
|
---|
207 | # define OPENSSL_RAND_SEED_DEVRANDOM
|
---|
208 | # endif
|
---|
209 |
|
---|
210 | # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
---|
211 | # error "librandom not (yet) supported"
|
---|
212 | # endif
|
---|
213 |
|
---|
214 | # if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
---|
215 | /*
|
---|
216 | * sysctl_random(): Use sysctl() to read a random number from the kernel
|
---|
217 | * Returns the number of bytes returned in buf on success, -1 on failure.
|
---|
218 | */
|
---|
219 | static ssize_t sysctl_random(char *buf, size_t buflen)
|
---|
220 | {
|
---|
221 | int mib[2];
|
---|
222 | size_t done = 0;
|
---|
223 | size_t len;
|
---|
224 |
|
---|
225 | /*
|
---|
226 | * Note: sign conversion between size_t and ssize_t is safe even
|
---|
227 | * without a range check, see comment in syscall_random()
|
---|
228 | */
|
---|
229 |
|
---|
230 | /*
|
---|
231 | * On FreeBSD old implementations returned longs, newer versions support
|
---|
232 | * variable sizes up to 256 byte. The code below would not work properly
|
---|
233 | * when the sysctl returns long and we want to request something not a
|
---|
234 | * multiple of longs, which should never be the case.
|
---|
235 | */
|
---|
236 | #if defined(__FreeBSD__)
|
---|
237 | if (!ossl_assert(buflen % sizeof(long) == 0)) {
|
---|
238 | errno = EINVAL;
|
---|
239 | return -1;
|
---|
240 | }
|
---|
241 | #endif
|
---|
242 |
|
---|
243 | /*
|
---|
244 | * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
|
---|
245 | * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
|
---|
246 | * it returns a variable number of bytes with the current version supporting
|
---|
247 | * up to 256 bytes.
|
---|
248 | * Just return an error on older NetBSD versions.
|
---|
249 | */
|
---|
250 | #if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
|
---|
251 | errno = ENOSYS;
|
---|
252 | return -1;
|
---|
253 | #endif
|
---|
254 |
|
---|
255 | mib[0] = CTL_KERN;
|
---|
256 | mib[1] = KERN_ARND;
|
---|
257 |
|
---|
258 | do {
|
---|
259 | len = buflen > 256 ? 256 : buflen;
|
---|
260 | if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
|
---|
261 | return done > 0 ? done : -1;
|
---|
262 | done += len;
|
---|
263 | buf += len;
|
---|
264 | buflen -= len;
|
---|
265 | } while (buflen > 0);
|
---|
266 |
|
---|
267 | return done;
|
---|
268 | }
|
---|
269 | # endif
|
---|
270 |
|
---|
271 | # if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
272 |
|
---|
273 | # if defined(__linux) && !defined(__NR_getrandom)
|
---|
274 | # if defined(__arm__)
|
---|
275 | # define __NR_getrandom (__NR_SYSCALL_BASE+384)
|
---|
276 | # elif defined(__i386__)
|
---|
277 | # define __NR_getrandom 355
|
---|
278 | # elif defined(__x86_64__)
|
---|
279 | # if defined(__ILP32__)
|
---|
280 | # define __NR_getrandom (__X32_SYSCALL_BIT + 318)
|
---|
281 | # else
|
---|
282 | # define __NR_getrandom 318
|
---|
283 | # endif
|
---|
284 | # elif defined(__xtensa__)
|
---|
285 | # define __NR_getrandom 338
|
---|
286 | # elif defined(__s390__) || defined(__s390x__)
|
---|
287 | # define __NR_getrandom 349
|
---|
288 | # elif defined(__bfin__)
|
---|
289 | # define __NR_getrandom 389
|
---|
290 | # elif defined(__powerpc__)
|
---|
291 | # define __NR_getrandom 359
|
---|
292 | # elif defined(__mips__) || defined(__mips64)
|
---|
293 | # if _MIPS_SIM == _MIPS_SIM_ABI32
|
---|
294 | # define __NR_getrandom (__NR_Linux + 353)
|
---|
295 | # elif _MIPS_SIM == _MIPS_SIM_ABI64
|
---|
296 | # define __NR_getrandom (__NR_Linux + 313)
|
---|
297 | # elif _MIPS_SIM == _MIPS_SIM_NABI32
|
---|
298 | # define __NR_getrandom (__NR_Linux + 317)
|
---|
299 | # endif
|
---|
300 | # elif defined(__hppa__)
|
---|
301 | # define __NR_getrandom (__NR_Linux + 339)
|
---|
302 | # elif defined(__sparc__)
|
---|
303 | # define __NR_getrandom 347
|
---|
304 | # elif defined(__ia64__)
|
---|
305 | # define __NR_getrandom 1339
|
---|
306 | # elif defined(__alpha__)
|
---|
307 | # define __NR_getrandom 511
|
---|
308 | # elif defined(__sh__)
|
---|
309 | # if defined(__SH5__)
|
---|
310 | # define __NR_getrandom 373
|
---|
311 | # else
|
---|
312 | # define __NR_getrandom 384
|
---|
313 | # endif
|
---|
314 | # elif defined(__avr32__)
|
---|
315 | # define __NR_getrandom 317
|
---|
316 | # elif defined(__microblaze__)
|
---|
317 | # define __NR_getrandom 385
|
---|
318 | # elif defined(__m68k__)
|
---|
319 | # define __NR_getrandom 352
|
---|
320 | # elif defined(__cris__)
|
---|
321 | # define __NR_getrandom 356
|
---|
322 | # elif defined(__aarch64__)
|
---|
323 | # define __NR_getrandom 278
|
---|
324 | # else /* generic */
|
---|
325 | # define __NR_getrandom 278
|
---|
326 | # endif
|
---|
327 | # endif
|
---|
328 |
|
---|
329 | /*
|
---|
330 | * syscall_random(): Try to get random data using a system call
|
---|
331 | * returns the number of bytes returned in buf, or < 0 on error.
|
---|
332 | */
|
---|
333 | static ssize_t syscall_random(void *buf, size_t buflen)
|
---|
334 | {
|
---|
335 | /*
|
---|
336 | * Note: 'buflen' equals the size of the buffer which is used by the
|
---|
337 | * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
|
---|
338 | *
|
---|
339 | * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
|
---|
340 | *
|
---|
341 | * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
|
---|
342 | * between size_t and ssize_t is safe even without a range check.
|
---|
343 | */
|
---|
344 |
|
---|
345 | /*
|
---|
346 | * Do runtime detection to find getentropy().
|
---|
347 | *
|
---|
348 | * Known OSs that should support this:
|
---|
349 | * - Darwin since 16 (OSX 10.12, IOS 10.0).
|
---|
350 | * - Solaris since 11.3
|
---|
351 | * - OpenBSD since 5.6
|
---|
352 | * - Linux since 3.17 with glibc 2.25
|
---|
353 | * - FreeBSD since 12.0 (1200061)
|
---|
354 | *
|
---|
355 | * Note: Sometimes getentropy() can be provided but not implemented
|
---|
356 | * internally. So we need to check errno for ENOSYS
|
---|
357 | */
|
---|
358 | # if !defined(__DragonFly__) && !defined(__NetBSD__)
|
---|
359 | # if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
|
---|
360 | extern int getentropy(void *buffer, size_t length) __attribute__((weak));
|
---|
361 |
|
---|
362 | if (getentropy != NULL) {
|
---|
363 | if (getentropy(buf, buflen) == 0)
|
---|
364 | return (ssize_t)buflen;
|
---|
365 | if (errno != ENOSYS)
|
---|
366 | return -1;
|
---|
367 | }
|
---|
368 | # elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
|
---|
369 |
|
---|
370 | if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
|
---|
371 | return (ssize_t)buflen;
|
---|
372 |
|
---|
373 | return -1;
|
---|
374 | # else
|
---|
375 | union {
|
---|
376 | void *p;
|
---|
377 | int (*f)(void *buffer, size_t length);
|
---|
378 | } p_getentropy;
|
---|
379 |
|
---|
380 | /*
|
---|
381 | * We could cache the result of the lookup, but we normally don't
|
---|
382 | * call this function often.
|
---|
383 | */
|
---|
384 | ERR_set_mark();
|
---|
385 | p_getentropy.p = DSO_global_lookup("getentropy");
|
---|
386 | ERR_pop_to_mark();
|
---|
387 | if (p_getentropy.p != NULL)
|
---|
388 | return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
|
---|
389 | # endif
|
---|
390 | # endif /* !__DragonFly__ */
|
---|
391 |
|
---|
392 | /* Linux supports this since version 3.17 */
|
---|
393 | # if defined(__linux) && defined(__NR_getrandom)
|
---|
394 | return syscall(__NR_getrandom, buf, buflen, 0);
|
---|
395 | # elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
|
---|
396 | return sysctl_random(buf, buflen);
|
---|
397 | # elif (defined(__DragonFly__) && __DragonFly_version >= 500700) \
|
---|
398 | || (defined(__NetBSD__) && __NetBSD_Version >= 1000000000)
|
---|
399 | return getrandom(buf, buflen, 0);
|
---|
400 | # else
|
---|
401 | errno = ENOSYS;
|
---|
402 | return -1;
|
---|
403 | # endif
|
---|
404 | }
|
---|
405 | # endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
|
---|
406 |
|
---|
407 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
---|
408 | static const char *random_device_paths[] = { DEVRANDOM };
|
---|
409 | static struct random_device {
|
---|
410 | int fd;
|
---|
411 | dev_t dev;
|
---|
412 | ino_t ino;
|
---|
413 | mode_t mode;
|
---|
414 | dev_t rdev;
|
---|
415 | } random_devices[OSSL_NELEM(random_device_paths)];
|
---|
416 | static int keep_random_devices_open = 1;
|
---|
417 |
|
---|
418 | # if defined(__linux) && defined(DEVRANDOM_WAIT) \
|
---|
419 | && defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
420 | static void *shm_addr;
|
---|
421 |
|
---|
422 | static void cleanup_shm(void)
|
---|
423 | {
|
---|
424 | shmdt(shm_addr);
|
---|
425 | }
|
---|
426 |
|
---|
427 | /*
|
---|
428 | * Ensure that the system randomness source has been adequately seeded.
|
---|
429 | * This is done by having the first start of libcrypto, wait until the device
|
---|
430 | * /dev/random becomes able to supply a byte of entropy. Subsequent starts
|
---|
431 | * of the library and later reseedings do not need to do this.
|
---|
432 | */
|
---|
433 | static int wait_random_seeded(void)
|
---|
434 | {
|
---|
435 | static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
|
---|
436 | static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
|
---|
437 | int kernel[2];
|
---|
438 | int shm_id, fd, r;
|
---|
439 | char c, *p;
|
---|
440 | struct utsname un;
|
---|
441 | fd_set fds;
|
---|
442 |
|
---|
443 | if (!seeded) {
|
---|
444 | /* See if anything has created the global seeded indication */
|
---|
445 | if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
|
---|
446 | /*
|
---|
447 | * Check the kernel's version and fail if it is too recent.
|
---|
448 | *
|
---|
449 | * Linux kernels from 4.8 onwards do not guarantee that
|
---|
450 | * /dev/urandom is properly seeded when /dev/random becomes
|
---|
451 | * readable. However, such kernels support the getentropy(2)
|
---|
452 | * system call and this should always succeed which renders
|
---|
453 | * this alternative but essentially identical source moot.
|
---|
454 | */
|
---|
455 | if (uname(&un) == 0) {
|
---|
456 | kernel[0] = atoi(un.release);
|
---|
457 | p = strchr(un.release, '.');
|
---|
458 | kernel[1] = p == NULL ? 0 : atoi(p + 1);
|
---|
459 | if (kernel[0] > kernel_version[0]
|
---|
460 | || (kernel[0] == kernel_version[0]
|
---|
461 | && kernel[1] >= kernel_version[1])) {
|
---|
462 | return 0;
|
---|
463 | }
|
---|
464 | }
|
---|
465 | /* Open /dev/random and wait for it to be readable */
|
---|
466 | if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
|
---|
467 | if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
|
---|
468 | FD_ZERO(&fds);
|
---|
469 | FD_SET(fd, &fds);
|
---|
470 | while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
|
---|
471 | && errno == EINTR);
|
---|
472 | } else {
|
---|
473 | while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
|
---|
474 | }
|
---|
475 | close(fd);
|
---|
476 | if (r == 1) {
|
---|
477 | seeded = 1;
|
---|
478 | /* Create the shared memory indicator */
|
---|
479 | shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
|
---|
480 | IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
|
---|
481 | }
|
---|
482 | }
|
---|
483 | }
|
---|
484 | if (shm_id != -1) {
|
---|
485 | seeded = 1;
|
---|
486 | /*
|
---|
487 | * Map the shared memory to prevent its premature destruction.
|
---|
488 | * If this call fails, it isn't a big problem.
|
---|
489 | */
|
---|
490 | shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
|
---|
491 | if (shm_addr != (void *)-1)
|
---|
492 | OPENSSL_atexit(&cleanup_shm);
|
---|
493 | }
|
---|
494 | }
|
---|
495 | return seeded;
|
---|
496 | }
|
---|
497 | # else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
|
---|
498 | static int wait_random_seeded(void)
|
---|
499 | {
|
---|
500 | return 1;
|
---|
501 | }
|
---|
502 | # endif
|
---|
503 |
|
---|
504 | /*
|
---|
505 | * Verify that the file descriptor associated with the random source is
|
---|
506 | * still valid. The rationale for doing this is the fact that it is not
|
---|
507 | * uncommon for daemons to close all open file handles when daemonizing.
|
---|
508 | * So the handle might have been closed or even reused for opening
|
---|
509 | * another file.
|
---|
510 | */
|
---|
511 | static int check_random_device(struct random_device * rd)
|
---|
512 | {
|
---|
513 | struct stat st;
|
---|
514 |
|
---|
515 | return rd->fd != -1
|
---|
516 | && fstat(rd->fd, &st) != -1
|
---|
517 | && rd->dev == st.st_dev
|
---|
518 | && rd->ino == st.st_ino
|
---|
519 | && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
|
---|
520 | && rd->rdev == st.st_rdev;
|
---|
521 | }
|
---|
522 |
|
---|
523 | /*
|
---|
524 | * Open a random device if required and return its file descriptor or -1 on error
|
---|
525 | */
|
---|
526 | static int get_random_device(size_t n)
|
---|
527 | {
|
---|
528 | struct stat st;
|
---|
529 | struct random_device * rd = &random_devices[n];
|
---|
530 |
|
---|
531 | /* reuse existing file descriptor if it is (still) valid */
|
---|
532 | if (check_random_device(rd))
|
---|
533 | return rd->fd;
|
---|
534 |
|
---|
535 | /* open the random device ... */
|
---|
536 | if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
|
---|
537 | return rd->fd;
|
---|
538 |
|
---|
539 | /* ... and cache its relevant stat(2) data */
|
---|
540 | if (fstat(rd->fd, &st) != -1) {
|
---|
541 | rd->dev = st.st_dev;
|
---|
542 | rd->ino = st.st_ino;
|
---|
543 | rd->mode = st.st_mode;
|
---|
544 | rd->rdev = st.st_rdev;
|
---|
545 | } else {
|
---|
546 | close(rd->fd);
|
---|
547 | rd->fd = -1;
|
---|
548 | }
|
---|
549 |
|
---|
550 | return rd->fd;
|
---|
551 | }
|
---|
552 |
|
---|
553 | /*
|
---|
554 | * Close a random device making sure it is a random device
|
---|
555 | */
|
---|
556 | static void close_random_device(size_t n)
|
---|
557 | {
|
---|
558 | struct random_device * rd = &random_devices[n];
|
---|
559 |
|
---|
560 | if (check_random_device(rd))
|
---|
561 | close(rd->fd);
|
---|
562 | rd->fd = -1;
|
---|
563 | }
|
---|
564 |
|
---|
565 | int ossl_rand_pool_init(void)
|
---|
566 | {
|
---|
567 | size_t i;
|
---|
568 |
|
---|
569 | for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
---|
570 | random_devices[i].fd = -1;
|
---|
571 |
|
---|
572 | return 1;
|
---|
573 | }
|
---|
574 |
|
---|
575 | void ossl_rand_pool_cleanup(void)
|
---|
576 | {
|
---|
577 | size_t i;
|
---|
578 |
|
---|
579 | for (i = 0; i < OSSL_NELEM(random_devices); i++)
|
---|
580 | close_random_device(i);
|
---|
581 | }
|
---|
582 |
|
---|
583 | void ossl_rand_pool_keep_random_devices_open(int keep)
|
---|
584 | {
|
---|
585 | if (!keep)
|
---|
586 | ossl_rand_pool_cleanup();
|
---|
587 |
|
---|
588 | keep_random_devices_open = keep;
|
---|
589 | }
|
---|
590 |
|
---|
591 | # else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
---|
592 |
|
---|
593 | int ossl_rand_pool_init(void)
|
---|
594 | {
|
---|
595 | return 1;
|
---|
596 | }
|
---|
597 |
|
---|
598 | void ossl_rand_pool_cleanup(void)
|
---|
599 | {
|
---|
600 | }
|
---|
601 |
|
---|
602 | void ossl_rand_pool_keep_random_devices_open(int keep)
|
---|
603 | {
|
---|
604 | }
|
---|
605 |
|
---|
606 | # endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
|
---|
607 |
|
---|
608 | /*
|
---|
609 | * Try the various seeding methods in turn, exit when successful.
|
---|
610 | *
|
---|
611 | * If more than one entropy source is available, is it
|
---|
612 | * preferable to stop as soon as enough entropy has been collected
|
---|
613 | * (as favored by @rsalz) or should one rather be defensive and add
|
---|
614 | * more entropy than requested and/or from different sources?
|
---|
615 | *
|
---|
616 | * Currently, the user can select multiple entropy sources in the
|
---|
617 | * configure step, yet in practice only the first available source
|
---|
618 | * will be used. A more flexible solution has been requested, but
|
---|
619 | * currently it is not clear how this can be achieved without
|
---|
620 | * overengineering the problem. There are many parameters which
|
---|
621 | * could be taken into account when selecting the order and amount
|
---|
622 | * of input from the different entropy sources (trust, quality,
|
---|
623 | * possibility of blocking).
|
---|
624 | */
|
---|
625 | size_t ossl_pool_acquire_entropy(RAND_POOL *pool)
|
---|
626 | {
|
---|
627 | # if defined(OPENSSL_RAND_SEED_NONE)
|
---|
628 | return ossl_rand_pool_entropy_available(pool);
|
---|
629 | # else
|
---|
630 | size_t entropy_available = 0;
|
---|
631 |
|
---|
632 | (void)entropy_available; /* avoid compiler warning */
|
---|
633 |
|
---|
634 | # if defined(OPENSSL_RAND_SEED_GETRANDOM)
|
---|
635 | {
|
---|
636 | size_t bytes_needed;
|
---|
637 | unsigned char *buffer;
|
---|
638 | ssize_t bytes;
|
---|
639 | /* Maximum allowed number of consecutive unsuccessful attempts */
|
---|
640 | int attempts = 3;
|
---|
641 |
|
---|
642 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
643 | while (bytes_needed != 0 && attempts-- > 0) {
|
---|
644 | buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
|
---|
645 | bytes = syscall_random(buffer, bytes_needed);
|
---|
646 | if (bytes > 0) {
|
---|
647 | ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
648 | bytes_needed -= bytes;
|
---|
649 | attempts = 3; /* reset counter after successful attempt */
|
---|
650 | } else if (bytes < 0 && errno != EINTR) {
|
---|
651 | break;
|
---|
652 | }
|
---|
653 | }
|
---|
654 | }
|
---|
655 | entropy_available = ossl_rand_pool_entropy_available(pool);
|
---|
656 | if (entropy_available > 0)
|
---|
657 | return entropy_available;
|
---|
658 | # endif
|
---|
659 |
|
---|
660 | # if defined(OPENSSL_RAND_SEED_LIBRANDOM)
|
---|
661 | {
|
---|
662 | /* Not yet implemented. */
|
---|
663 | }
|
---|
664 | # endif
|
---|
665 |
|
---|
666 | # if defined(OPENSSL_RAND_SEED_DEVRANDOM)
|
---|
667 | if (wait_random_seeded()) {
|
---|
668 | size_t bytes_needed;
|
---|
669 | unsigned char *buffer;
|
---|
670 | size_t i;
|
---|
671 |
|
---|
672 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
673 | for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
|
---|
674 | i++) {
|
---|
675 | ssize_t bytes = 0;
|
---|
676 | /* Maximum number of consecutive unsuccessful attempts */
|
---|
677 | int attempts = 3;
|
---|
678 | const int fd = get_random_device(i);
|
---|
679 |
|
---|
680 | if (fd == -1)
|
---|
681 | continue;
|
---|
682 |
|
---|
683 | while (bytes_needed != 0 && attempts-- > 0) {
|
---|
684 | buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
|
---|
685 | bytes = read(fd, buffer, bytes_needed);
|
---|
686 |
|
---|
687 | if (bytes > 0) {
|
---|
688 | ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
689 | bytes_needed -= bytes;
|
---|
690 | attempts = 3; /* reset counter on successful attempt */
|
---|
691 | } else if (bytes < 0 && errno != EINTR) {
|
---|
692 | break;
|
---|
693 | }
|
---|
694 | }
|
---|
695 | if (bytes < 0 || !keep_random_devices_open)
|
---|
696 | close_random_device(i);
|
---|
697 |
|
---|
698 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
|
---|
699 | }
|
---|
700 | entropy_available = ossl_rand_pool_entropy_available(pool);
|
---|
701 | if (entropy_available > 0)
|
---|
702 | return entropy_available;
|
---|
703 | }
|
---|
704 | # endif
|
---|
705 |
|
---|
706 | # if defined(OPENSSL_RAND_SEED_RDTSC)
|
---|
707 | entropy_available = ossl_prov_acquire_entropy_from_tsc(pool);
|
---|
708 | if (entropy_available > 0)
|
---|
709 | return entropy_available;
|
---|
710 | # endif
|
---|
711 |
|
---|
712 | # if defined(OPENSSL_RAND_SEED_RDCPU)
|
---|
713 | entropy_available = ossl_prov_acquire_entropy_from_cpu(pool);
|
---|
714 | if (entropy_available > 0)
|
---|
715 | return entropy_available;
|
---|
716 | # endif
|
---|
717 |
|
---|
718 | # if defined(OPENSSL_RAND_SEED_EGD)
|
---|
719 | {
|
---|
720 | static const char *paths[] = { DEVRANDOM_EGD, NULL };
|
---|
721 | size_t bytes_needed;
|
---|
722 | unsigned char *buffer;
|
---|
723 | int i;
|
---|
724 |
|
---|
725 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
|
---|
726 | for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
|
---|
727 | size_t bytes = 0;
|
---|
728 | int num;
|
---|
729 |
|
---|
730 | buffer = ossl_rand_pool_add_begin(pool, bytes_needed);
|
---|
731 | num = RAND_query_egd_bytes(paths[i],
|
---|
732 | buffer, (int)bytes_needed);
|
---|
733 | if (num == (int)bytes_needed)
|
---|
734 | bytes = bytes_needed;
|
---|
735 |
|
---|
736 | ossl_rand_pool_add_end(pool, bytes, 8 * bytes);
|
---|
737 | bytes_needed = ossl_rand_pool_bytes_needed(pool, 1);
|
---|
738 | }
|
---|
739 | entropy_available = ossl_rand_pool_entropy_available(pool);
|
---|
740 | if (entropy_available > 0)
|
---|
741 | return entropy_available;
|
---|
742 | }
|
---|
743 | # endif
|
---|
744 |
|
---|
745 | return ossl_rand_pool_entropy_available(pool);
|
---|
746 | # endif
|
---|
747 | }
|
---|
748 | # endif
|
---|
749 | #endif
|
---|
750 |
|
---|
751 | #if (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS)) \
|
---|
752 | || defined(__DJGPP__)
|
---|
753 | int ossl_pool_add_nonce_data(RAND_POOL *pool)
|
---|
754 | {
|
---|
755 | struct {
|
---|
756 | pid_t pid;
|
---|
757 | CRYPTO_THREAD_ID tid;
|
---|
758 | uint64_t time;
|
---|
759 | } data;
|
---|
760 |
|
---|
761 | /* Erase the entire structure including any padding */
|
---|
762 | memset(&data, 0, sizeof(data));
|
---|
763 |
|
---|
764 | /*
|
---|
765 | * Add process id, thread id, and a high resolution timestamp to
|
---|
766 | * ensure that the nonce is unique with high probability for
|
---|
767 | * different process instances.
|
---|
768 | */
|
---|
769 | data.pid = getpid();
|
---|
770 | data.tid = CRYPTO_THREAD_get_current_id();
|
---|
771 | data.time = get_time_stamp();
|
---|
772 |
|
---|
773 | return ossl_rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
|
---|
774 | }
|
---|
775 |
|
---|
776 | /*
|
---|
777 | * Get the current time with the highest possible resolution
|
---|
778 | *
|
---|
779 | * The time stamp is added to the nonce, so it is optimized for not repeating.
|
---|
780 | * The current time is ideal for this purpose, provided the computer's clock
|
---|
781 | * is synchronized.
|
---|
782 | */
|
---|
783 | static uint64_t get_time_stamp(void)
|
---|
784 | {
|
---|
785 | # if defined(OSSL_POSIX_TIMER_OKAY)
|
---|
786 | {
|
---|
787 | struct timespec ts;
|
---|
788 |
|
---|
789 | if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
|
---|
790 | return TWO32TO64(ts.tv_sec, ts.tv_nsec);
|
---|
791 | }
|
---|
792 | # endif
|
---|
793 | # if defined(__unix__) \
|
---|
794 | || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
|
---|
795 | {
|
---|
796 | struct timeval tv;
|
---|
797 |
|
---|
798 | if (gettimeofday(&tv, NULL) == 0)
|
---|
799 | return TWO32TO64(tv.tv_sec, tv.tv_usec);
|
---|
800 | }
|
---|
801 | # endif
|
---|
802 | return time(NULL);
|
---|
803 | }
|
---|
804 |
|
---|
805 | #endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
|
---|
806 | || defined(__DJGPP__) */
|
---|