VirtualBox

source: vbox/trunk/src/libs/openssl-3.1.5/crypto/bn/bn_prime.c@ 104078

Last change on this file since 104078 was 104078, checked in by vboxsync, 11 months ago

openssl-3.1.5: Applied and adjusted our OpenSSL changes to 3.1.4. bugref:10638

File size: 17.6 KB
Line 
1/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include <time.h>
12#include "internal/cryptlib.h"
13#include "bn_local.h"
14
15/*
16 * The quick sieve algorithm approach to weeding out primes is Philip
17 * Zimmermann's, as implemented in PGP. I have had a read of his comments
18 * and implemented my own version.
19 */
20#include "bn_prime.h"
21
22static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
23 BN_CTX *ctx);
24static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
25 const BIGNUM *add, const BIGNUM *rem,
26 BN_CTX *ctx);
27static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
28 int do_trial_division, BN_GENCB *cb);
29
30#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
31
32#if BN_BITS2 == 64
33# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
34#else
35# define BN_DEF(lo, hi) lo, hi
36#endif
37
38/*
39 * See SP800 89 5.3.3 (Step f)
40 * The product of the set of primes ranging from 3 to 751
41 * Generated using process in test/bn_internal_test.c test_bn_small_factors().
42 * This includes 751 (which is not currently included in SP 800-89).
43 */
44static const BN_ULONG small_prime_factors[] = {
45 BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6),
46 BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3),
47 BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817),
48 BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2),
49 BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3),
50 BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28),
51 BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112),
52 BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460),
53 (BN_ULONG)0x000017b1
54};
55
56#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors)
57static const BIGNUM _bignum_small_prime_factors = {
58 (BN_ULONG *)small_prime_factors,
59 BN_SMALL_PRIME_FACTORS_TOP,
60 BN_SMALL_PRIME_FACTORS_TOP,
61 0,
62 BN_FLG_STATIC_DATA
63};
64
65const BIGNUM *ossl_bn_get0_small_factors(void)
66{
67 return &_bignum_small_prime_factors;
68}
69
70/*
71 * Calculate the number of trial divisions that gives the best speed in
72 * combination with Miller-Rabin prime test, based on the sized of the prime.
73 */
74static int calc_trial_divisions(int bits)
75{
76 if (bits <= 512)
77 return 64;
78 else if (bits <= 1024)
79 return 128;
80 else if (bits <= 2048)
81 return 384;
82 else if (bits <= 4096)
83 return 1024;
84 return NUMPRIMES;
85}
86
87/*
88 * Use a minimum of 64 rounds of Miller-Rabin, which should give a false
89 * positive rate of 2^-128. If the size of the prime is larger than 2048
90 * the user probably wants a higher security level than 128, so switch
91 * to 128 rounds giving a false positive rate of 2^-256.
92 * Returns the number of rounds.
93 */
94static int bn_mr_min_checks(int bits)
95{
96 if (bits > 2048)
97 return 128;
98 return 64;
99}
100
101int BN_GENCB_call(BN_GENCB *cb, int a, int b)
102{
103 /* No callback means continue */
104 if (!cb)
105 return 1;
106 switch (cb->ver) {
107 case 1:
108 /* Deprecated-style callbacks */
109 if (!cb->cb.cb_1)
110 return 1;
111 cb->cb.cb_1(a, b, cb->arg);
112 return 1;
113 case 2:
114 /* New-style callbacks */
115 return cb->cb.cb_2(a, b, cb);
116 default:
117 break;
118 }
119 /* Unrecognised callback type */
120 return 0;
121}
122
123int BN_generate_prime_ex2(BIGNUM *ret, int bits, int safe,
124 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb,
125 BN_CTX *ctx)
126{
127 BIGNUM *t;
128 int found = 0;
129 int i, j, c1 = 0;
130 prime_t *mods = NULL;
131 int checks = bn_mr_min_checks(bits);
132
133 if (bits < 2) {
134 /* There are no prime numbers this small. */
135 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
136 return 0;
137 } else if (add == NULL && safe && bits < 6 && bits != 3) {
138 /*
139 * The smallest safe prime (7) is three bits.
140 * But the following two safe primes with less than 6 bits (11, 23)
141 * are unreachable for BN_rand with BN_RAND_TOP_TWO.
142 */
143 ERR_raise(ERR_LIB_BN, BN_R_BITS_TOO_SMALL);
144 return 0;
145 }
146
147 mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
148 if (mods == NULL) {
149 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
150 return 0;
151 }
152
153 BN_CTX_start(ctx);
154 t = BN_CTX_get(ctx);
155 if (t == NULL)
156 goto err;
157 loop:
158 /* make a random number and set the top and bottom bits */
159 if (add == NULL) {
160 if (!probable_prime(ret, bits, safe, mods, ctx))
161 goto err;
162 } else {
163 if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
164 goto err;
165 }
166
167 if (!BN_GENCB_call(cb, 0, c1++))
168 /* aborted */
169 goto err;
170
171 if (!safe) {
172 i = bn_is_prime_int(ret, checks, ctx, 0, cb);
173 if (i == -1)
174 goto err;
175 if (i == 0)
176 goto loop;
177 } else {
178 /*
179 * for "safe prime" generation, check that (p-1)/2 is prime. Since a
180 * prime is odd, We just need to divide by 2
181 */
182 if (!BN_rshift1(t, ret))
183 goto err;
184
185 for (i = 0; i < checks; i++) {
186 j = bn_is_prime_int(ret, 1, ctx, 0, cb);
187 if (j == -1)
188 goto err;
189 if (j == 0)
190 goto loop;
191
192 j = bn_is_prime_int(t, 1, ctx, 0, cb);
193 if (j == -1)
194 goto err;
195 if (j == 0)
196 goto loop;
197
198 if (!BN_GENCB_call(cb, 2, c1 - 1))
199 goto err;
200 /* We have a safe prime test pass */
201 }
202 }
203 /* we have a prime :-) */
204 found = 1;
205 err:
206 OPENSSL_free(mods);
207 BN_CTX_end(ctx);
208 bn_check_top(ret);
209 return found;
210}
211
212#ifndef FIPS_MODULE
213int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
214 const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
215{
216 BN_CTX *ctx = BN_CTX_new();
217 int retval;
218
219 if (ctx == NULL)
220 return 0;
221
222 retval = BN_generate_prime_ex2(ret, bits, safe, add, rem, cb, ctx);
223
224 BN_CTX_free(ctx);
225 return retval;
226}
227#endif
228
229#ifndef OPENSSL_NO_DEPRECATED_3_0
230int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
231 BN_GENCB *cb)
232{
233 return ossl_bn_check_prime(a, checks, ctx_passed, 0, cb);
234}
235
236int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx,
237 int do_trial_division, BN_GENCB *cb)
238{
239 return ossl_bn_check_prime(w, checks, ctx, do_trial_division, cb);
240}
241#endif
242
243/* Wrapper around bn_is_prime_int that sets the minimum number of checks */
244int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
245 int do_trial_division, BN_GENCB *cb)
246{
247 int min_checks = bn_mr_min_checks(BN_num_bits(w));
248
249 if (checks < min_checks)
250 checks = min_checks;
251
252 return bn_is_prime_int(w, checks, ctx, do_trial_division, cb);
253}
254
255/*
256 * Use this only for key generation.
257 * It always uses trial division. The number of checks
258 * (MR rounds) passed in is used without being clamped to a minimum value.
259 */
260int ossl_bn_check_generated_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
261 BN_GENCB *cb)
262{
263 return bn_is_prime_int(w, checks, ctx, 1, cb);
264}
265
266int BN_check_prime(const BIGNUM *p, BN_CTX *ctx, BN_GENCB *cb)
267{
268 return ossl_bn_check_prime(p, 0, ctx, 1, cb);
269}
270
271/*
272 * Tests that |w| is probably prime
273 * See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test.
274 *
275 * Returns 0 when composite, 1 when probable prime, -1 on error.
276 */
277static int bn_is_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx,
278 int do_trial_division, BN_GENCB *cb)
279{
280 int i, status, ret = -1;
281#ifndef FIPS_MODULE
282 BN_CTX *ctxlocal = NULL;
283#else
284
285 if (ctx == NULL)
286 return -1;
287#endif
288
289 /* w must be bigger than 1 */
290 if (BN_cmp(w, BN_value_one()) <= 0)
291 return 0;
292
293 /* w must be odd */
294 if (BN_is_odd(w)) {
295 /* Take care of the really small prime 3 */
296 if (BN_is_word(w, 3))
297 return 1;
298 } else {
299 /* 2 is the only even prime */
300 return BN_is_word(w, 2);
301 }
302
303 /* first look for small factors */
304 if (do_trial_division) {
305 int trial_divisions = calc_trial_divisions(BN_num_bits(w));
306
307 for (i = 1; i < trial_divisions; i++) {
308 BN_ULONG mod = BN_mod_word(w, primes[i]);
309 if (mod == (BN_ULONG)-1)
310 return -1;
311 if (mod == 0)
312 return BN_is_word(w, primes[i]);
313 }
314 if (!BN_GENCB_call(cb, 1, -1))
315 return -1;
316 }
317#ifndef FIPS_MODULE
318 if (ctx == NULL && (ctxlocal = ctx = BN_CTX_new()) == NULL)
319 goto err;
320#endif
321
322 if (!ossl_bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status)) {
323 ret = -1;
324 goto err;
325 }
326 ret = (status == BN_PRIMETEST_PROBABLY_PRIME);
327err:
328#ifndef FIPS_MODULE
329 BN_CTX_free(ctxlocal);
330#endif
331 return ret;
332}
333
334/*
335 * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test.
336 * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero).
337 * The Step numbers listed in the code refer to the enhanced case.
338 *
339 * if enhanced is set, then status returns one of the following:
340 * BN_PRIMETEST_PROBABLY_PRIME
341 * BN_PRIMETEST_COMPOSITE_WITH_FACTOR
342 * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME
343 * if enhanced is zero, then status returns either
344 * BN_PRIMETEST_PROBABLY_PRIME or
345 * BN_PRIMETEST_COMPOSITE
346 *
347 * returns 0 if there was an error, otherwise it returns 1.
348 */
349int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
350 BN_GENCB *cb, int enhanced, int *status)
351{
352 int i, j, a, ret = 0;
353 BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
354 BN_MONT_CTX *mont = NULL;
355
356 /* w must be odd */
357 if (!BN_is_odd(w))
358 return 0;
359
360 BN_CTX_start(ctx);
361 g = BN_CTX_get(ctx);
362 w1 = BN_CTX_get(ctx);
363 w3 = BN_CTX_get(ctx);
364 x = BN_CTX_get(ctx);
365 m = BN_CTX_get(ctx);
366 z = BN_CTX_get(ctx);
367 b = BN_CTX_get(ctx);
368
369 if (!(b != NULL
370 /* w1 := w - 1 */
371 && BN_copy(w1, w)
372 && BN_sub_word(w1, 1)
373 /* w3 := w - 3 */
374 && BN_copy(w3, w)
375 && BN_sub_word(w3, 3)))
376 goto err;
377
378 /* check w is larger than 3, otherwise the random b will be too small */
379 if (BN_is_zero(w3) || BN_is_negative(w3))
380 goto err;
381
382 /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
383 a = 1;
384 while (!BN_is_bit_set(w1, a))
385 a++;
386 /* (Step 2) m = (w-1) / 2^a */
387 if (!BN_rshift(m, w1, a))
388 goto err;
389
390 /* Montgomery setup for computations mod a */
391 mont = BN_MONT_CTX_new();
392 if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
393 goto err;
394
395 if (iterations == 0)
396 iterations = bn_mr_min_checks(BN_num_bits(w));
397
398 /* (Step 4) */
399 for (i = 0; i < iterations; ++i) {
400 /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
401 if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
402 || !BN_add_word(b, 2)) /* 1 < b < w-1 */
403 goto err;
404
405 if (enhanced) {
406 /* (Step 4.3) */
407 if (!BN_gcd(g, b, w, ctx))
408 goto err;
409 /* (Step 4.4) */
410 if (!BN_is_one(g)) {
411 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
412 ret = 1;
413 goto err;
414 }
415 }
416 /* (Step 4.5) z = b^m mod w */
417 if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
418 goto err;
419 /* (Step 4.6) if (z = 1 or z = w-1) */
420 if (BN_is_one(z) || BN_cmp(z, w1) == 0)
421 goto outer_loop;
422 /* (Step 4.7) for j = 1 to a-1 */
423 for (j = 1; j < a ; ++j) {
424 /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
425 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
426 goto err;
427 /* (Step 4.7.3) */
428 if (BN_cmp(z, w1) == 0)
429 goto outer_loop;
430 /* (Step 4.7.4) */
431 if (BN_is_one(z))
432 goto composite;
433 }
434 /* At this point z = b^((w-1)/2) mod w */
435 /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
436 if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
437 goto err;
438 /* (Step 4.10) */
439 if (BN_is_one(z))
440 goto composite;
441 /* (Step 4.11) x = b^(w-1) mod w */
442 if (!BN_copy(x, z))
443 goto err;
444composite:
445 if (enhanced) {
446 /* (Step 4.1.2) g = GCD(x-1, w) */
447 if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
448 goto err;
449 /* (Steps 4.1.3 - 4.1.4) */
450 if (BN_is_one(g))
451 *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
452 else
453 *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
454 } else {
455 *status = BN_PRIMETEST_COMPOSITE;
456 }
457 ret = 1;
458 goto err;
459outer_loop: ;
460 /* (Step 4.1.5) */
461 if (!BN_GENCB_call(cb, 1, i))
462 goto err;
463 }
464 /* (Step 5) */
465 *status = BN_PRIMETEST_PROBABLY_PRIME;
466 ret = 1;
467err:
468 BN_clear(g);
469 BN_clear(w1);
470 BN_clear(w3);
471 BN_clear(x);
472 BN_clear(m);
473 BN_clear(z);
474 BN_clear(b);
475 BN_CTX_end(ctx);
476 BN_MONT_CTX_free(mont);
477 return ret;
478}
479
480/*
481 * Generate a random number of |bits| bits that is probably prime by sieving.
482 * If |safe| != 0, it generates a safe prime.
483 * |mods| is a preallocated array that gets reused when called again.
484 *
485 * The probably prime is saved in |rnd|.
486 *
487 * Returns 1 on success and 0 on error.
488 */
489static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods,
490 BN_CTX *ctx)
491{
492 int i;
493 BN_ULONG delta;
494 int trial_divisions = calc_trial_divisions(bits);
495 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
496
497 again:
498 if (!BN_priv_rand_ex(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD, 0,
499 ctx))
500 return 0;
501 if (safe && !BN_set_bit(rnd, 1))
502 return 0;
503 /* we now have a random number 'rnd' to test. */
504 for (i = 1; i < trial_divisions; i++) {
505 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
506 if (mod == (BN_ULONG)-1)
507 return 0;
508 mods[i] = (prime_t) mod;
509 }
510 delta = 0;
511 loop:
512 for (i = 1; i < trial_divisions; i++) {
513 /*
514 * check that rnd is a prime and also that
515 * gcd(rnd-1,primes) == 1 (except for 2)
516 * do the second check only if we are interested in safe primes
517 * in the case that the candidate prime is a single word then
518 * we check only the primes up to sqrt(rnd)
519 */
520 if (bits <= 31 && delta <= 0x7fffffff
521 && square(primes[i]) > BN_get_word(rnd) + delta)
522 break;
523 if (safe ? (mods[i] + delta) % primes[i] <= 1
524 : (mods[i] + delta) % primes[i] == 0) {
525 delta += safe ? 4 : 2;
526 if (delta > maxdelta)
527 goto again;
528 goto loop;
529 }
530 }
531 if (!BN_add_word(rnd, delta))
532 return 0;
533 if (BN_num_bits(rnd) != bits)
534 goto again;
535 bn_check_top(rnd);
536 return 1;
537}
538
539/*
540 * Generate a random number |rnd| of |bits| bits that is probably prime
541 * and satisfies |rnd| % |add| == |rem| by sieving.
542 * If |safe| != 0, it generates a safe prime.
543 * |mods| is a preallocated array that gets reused when called again.
544 *
545 * Returns 1 on success and 0 on error.
546 */
547static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
548 const BIGNUM *add, const BIGNUM *rem,
549 BN_CTX *ctx)
550{
551 int i, ret = 0;
552 BIGNUM *t1;
553 BN_ULONG delta;
554 int trial_divisions = calc_trial_divisions(bits);
555 BN_ULONG maxdelta = BN_MASK2 - primes[trial_divisions - 1];
556
557 BN_CTX_start(ctx);
558 if ((t1 = BN_CTX_get(ctx)) == NULL)
559 goto err;
560
561 if (maxdelta > BN_MASK2 - BN_get_word(add))
562 maxdelta = BN_MASK2 - BN_get_word(add);
563
564 again:
565 if (!BN_rand_ex(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, 0, ctx))
566 goto err;
567
568 /* we need ((rnd-rem) % add) == 0 */
569
570 if (!BN_mod(t1, rnd, add, ctx))
571 goto err;
572 if (!BN_sub(rnd, rnd, t1))
573 goto err;
574 if (rem == NULL) {
575 if (!BN_add_word(rnd, safe ? 3u : 1u))
576 goto err;
577 } else {
578 if (!BN_add(rnd, rnd, rem))
579 goto err;
580 }
581
582 if (BN_num_bits(rnd) < bits
583 || BN_get_word(rnd) < (safe ? 5u : 3u)) {
584 if (!BN_add(rnd, rnd, add))
585 goto err;
586 }
587
588 /* we now have a random number 'rnd' to test. */
589 for (i = 1; i < trial_divisions; i++) {
590 BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
591 if (mod == (BN_ULONG)-1)
592 goto err;
593 mods[i] = (prime_t) mod;
594 }
595 delta = 0;
596 loop:
597 for (i = 1; i < trial_divisions; i++) {
598 /* check that rnd is a prime */
599 if (bits <= 31 && delta <= 0x7fffffff
600 && square(primes[i]) > BN_get_word(rnd) + delta)
601 break;
602 /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
603 if (safe ? (mods[i] + delta) % primes[i] <= 1
604 : (mods[i] + delta) % primes[i] == 0) {
605 delta += BN_get_word(add);
606 if (delta > maxdelta)
607 goto again;
608 goto loop;
609 }
610 }
611 if (!BN_add_word(rnd, delta))
612 goto err;
613 ret = 1;
614
615 err:
616 BN_CTX_end(ctx);
617 bn_check_top(rnd);
618 return ret;
619}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette