VirtualBox

source: vbox/trunk/src/libs/openssl-3.1.5/crypto/perlasm/x86_64-xlate.pl@ 104078

Last change on this file since 104078 was 104078, checked in by vboxsync, 8 months ago

openssl-3.1.5: Applied and adjusted our OpenSSL changes to 3.1.4. bugref:10638

  • Property svn:executable set to *
File size: 44.9 KB
Line 
1#! /usr/bin/env perl
2# Copyright 2005-2022 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
11#
12# Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
13# format is way easier to parse. Because it's simpler to "gear" from
14# Unix ABI to Windows one [see cross-reference "card" at the end of
15# file]. Because Linux targets were available first...
16#
17# In addition the script also "distills" code suitable for GNU
18# assembler, so that it can be compiled with more rigid assemblers,
19# such as Solaris /usr/ccs/bin/as.
20#
21# This translator is not designed to convert *arbitrary* assembler
22# code from AT&T format to MASM one. It's designed to convert just
23# enough to provide for dual-ABI OpenSSL modules development...
24# There *are* limitations and you might have to modify your assembler
25# code or this script to achieve the desired result...
26#
27# Currently recognized limitations:
28#
29# - can't use multiple ops per line;
30#
31# Dual-ABI styling rules.
32#
33# 1. Adhere to Unix register and stack layout [see cross-reference
34# ABI "card" at the end for explanation].
35# 2. Forget about "red zone," stick to more traditional blended
36# stack frame allocation. If volatile storage is actually required
37# that is. If not, just leave the stack as is.
38# 3. Functions tagged with ".type name,@function" get crafted with
39# unified Win64 prologue and epilogue automatically. If you want
40# to take care of ABI differences yourself, tag functions as
41# ".type name,@abi-omnipotent" instead.
42# 4. To optimize the Win64 prologue you can specify number of input
43# arguments as ".type name,@function,N." Keep in mind that if N is
44# larger than 6, then you *have to* write "abi-omnipotent" code,
45# because >6 cases can't be addressed with unified prologue.
46# 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
47# (sorry about latter).
48# 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
49# required to identify the spots, where to inject Win64 epilogue!
50# But on the pros, it's then prefixed with rep automatically:-)
51# 7. Stick to explicit ip-relative addressing. If you have to use
52# GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
53# Both are recognized and translated to proper Win64 addressing
54# modes.
55#
56# 8. In order to provide for structured exception handling unified
57# Win64 prologue copies %rsp value to %rax. For further details
58# see SEH paragraph at the end.
59# 9. .init segment is allowed to contain calls to functions only.
60# a. If function accepts more than 4 arguments *and* >4th argument
61# is declared as non 64-bit value, do clear its upper part.
62
63
64
65use strict;
66
67my $flavour = shift;
68my $output = shift;
69if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
70
71open STDOUT,">$output" || die "can't open $output: $!"
72 if (defined($output));
73
74my $gas=1; $gas=0 if ($output =~ /\.asm$/);
75my $elf=1; $elf=0 if (!$gas);
76my $win64=0;
77my $prefix="";
78my $decor=".L";
79
80my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005
81my $masm=0;
82my $PTR=" PTR";
83
84my $nasmref=2.03;
85my $nasm=0;
86
87# GNU as indicator, as opposed to $gas, which indicates acceptable
88# syntax
89my $gnuas=0;
90
91if ($flavour eq "mingw64") { $gas=1; $elf=0; $win64=1;
92 $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
93 $prefix =~ s|\R$||; # Better chomp
94 }
95elsif ($flavour eq "macosx") { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
96elsif ($flavour eq "masm") { $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
97elsif ($flavour eq "nasm") { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
98elsif (!$gas)
99{ if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i)
100 { $nasm = $1 + $2*0.01; $PTR=""; }
101 elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
102 { $masm = $1 + $2*2**-16 + $4*2**-32; }
103 die "no assembler found on %PATH%" if (!($nasm || $masm));
104 $win64=1;
105 $elf=0;
106 $decor="\$L\$";
107}
108# Find out if we're using GNU as
109=pod VBOX: Begin commenting out
110elsif (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
111 =~ /GNU assembler version ([2-9]\.[0-9]+)/)
112{
113 $gnuas=1;
114}
115elsif (`$ENV{CC} --version 2>/dev/null`
116 =~ /(clang .*|Intel.*oneAPI .*)/)
117{
118 $gnuas=1;
119}
120=cut
121else
122{
123 $gnuas=1;
124}
125
126my $cet_property;
127if ($flavour =~ /elf/) {
128 # Always generate .note.gnu.property section for ELF outputs to
129 # mark Intel CET support since all input files must be marked
130 # with Intel CET support in order for linker to mark output with
131 # Intel CET support.
132 my $p2align=3; $p2align=2 if ($flavour eq "elf32");
133 my $section='.note.gnu.property, #alloc';
134 $section='".note.gnu.property", "a"' if $gnuas;
135 $cet_property = <<_____;
136 .section $section
137 .p2align $p2align
138 .long 1f - 0f
139 .long 4f - 1f
140 .long 5
1410:
142 # "GNU" encoded with .byte, since .asciz isn't supported
143 # on Solaris.
144 .byte 0x47
145 .byte 0x4e
146 .byte 0x55
147 .byte 0
1481:
149 .p2align $p2align
150 .long 0xc0000002
151 .long 3f - 2f
1522:
153 .long 3
1543:
155 .p2align $p2align
1564:
157_____
158}
159
160my $current_segment;
161my $current_function;
162my %globals;
163
164{ package opcode; # pick up opcodes
165 sub re {
166 my ($class, $line) = @_;
167 my $self = {};
168 my $ret;
169
170 if ($$line =~ /^([a-z][a-z0-9]*)/i) {
171 bless $self,$class;
172 $self->{op} = $1;
173 $ret = $self;
174 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
175
176 undef $self->{sz};
177 if ($self->{op} =~ /^(movz)x?([bw]).*/) { # movz is pain...
178 $self->{op} = $1;
179 $self->{sz} = $2;
180 } elsif ($self->{op} =~ /call|jmp/) {
181 $self->{sz} = "";
182 } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
183 $self->{sz} = "";
184 } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
185 $self->{sz} = "";
186 } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
187 $self->{sz} = "";
188 } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
189 $self->{op} = $1;
190 $self->{sz} = $2;
191 }
192 }
193 $ret;
194 }
195 sub size {
196 my ($self, $sz) = @_;
197 $self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
198 $self->{sz};
199 }
200 sub out {
201 my $self = shift;
202 if ($gas) {
203 if ($self->{op} eq "movz") { # movz is pain...
204 sprintf "%s%s%s",$self->{op},$self->{sz},shift;
205 } elsif ($self->{op} =~ /^set/) {
206 "$self->{op}";
207 } elsif ($self->{op} eq "ret") {
208 my $epilogue = "";
209 if ($win64 && $current_function->{abi} eq "svr4") {
210 $epilogue = "movq 8(%rsp),%rdi\n\t" .
211 "movq 16(%rsp),%rsi\n\t";
212 }
213 $epilogue . ".byte 0xf3,0xc3";
214 } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
215 ".p2align\t3\n\t.quad";
216 } else {
217 "$self->{op}$self->{sz}";
218 }
219 } else {
220 $self->{op} =~ s/^movz/movzx/;
221 if ($self->{op} eq "ret") {
222 $self->{op} = "";
223 if ($win64 && $current_function->{abi} eq "svr4") {
224 $self->{op} = "mov rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
225 "mov rsi,QWORD$PTR\[16+rsp\]\n\t";
226 }
227 $self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
228 } elsif ($self->{op} =~ /^(pop|push)f/) {
229 $self->{op} .= $self->{sz};
230 } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
231 $self->{op} = "\tDQ";
232 }
233 $self->{op};
234 }
235 }
236 sub mnemonic {
237 my ($self, $op) = @_;
238 $self->{op}=$op if (defined($op));
239 $self->{op};
240 }
241}
242{ package const; # pick up constants, which start with $
243 sub re {
244 my ($class, $line) = @_;
245 my $self = {};
246 my $ret;
247
248 if ($$line =~ /^\$([^,]+)/) {
249 bless $self, $class;
250 $self->{value} = $1;
251 $ret = $self;
252 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
253 }
254 $ret;
255 }
256 sub out {
257 my $self = shift;
258
259 $self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
260 if ($gas) {
261 # Solaris /usr/ccs/bin/as can't handle multiplications
262 # in $self->{value}
263 my $value = $self->{value};
264 no warnings; # oct might complain about overflow, ignore here...
265 $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
266 if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
267 $self->{value} = $value;
268 }
269 sprintf "\$%s",$self->{value};
270 } else {
271 my $value = $self->{value};
272 $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
273 sprintf "%s",$value;
274 }
275 }
276}
277{ package ea; # pick up effective addresses: expr(%reg,%reg,scale)
278
279 my %szmap = ( b=>"BYTE$PTR", w=>"WORD$PTR",
280 l=>"DWORD$PTR", d=>"DWORD$PTR",
281 q=>"QWORD$PTR", o=>"OWORD$PTR",
282 x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
283 z=>"ZMMWORD$PTR" ) if (!$gas);
284
285 sub re {
286 my ($class, $line, $opcode) = @_;
287 my $self = {};
288 my $ret;
289
290 # optional * ----vvv--- appears in indirect jmp/call
291 if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
292 bless $self, $class;
293 $self->{asterisk} = $1;
294 $self->{label} = $2;
295 ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
296 $self->{scale} = 1 if (!defined($self->{scale}));
297 $self->{opmask} = $4;
298 $ret = $self;
299 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
300
301 if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
302 die if ($opcode->mnemonic() ne "mov");
303 $opcode->mnemonic("lea");
304 }
305 $self->{base} =~ s/^%//;
306 $self->{index} =~ s/^%// if (defined($self->{index}));
307 $self->{opcode} = $opcode;
308 }
309 $ret;
310 }
311 sub size {}
312 sub out {
313 my ($self, $sz) = @_;
314
315 $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
316 $self->{label} =~ s/\.L/$decor/g;
317
318 # Silently convert all EAs to 64-bit. This is required for
319 # elder GNU assembler and results in more compact code,
320 # *but* most importantly AES module depends on this feature!
321 $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
322 $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
323
324 # Solaris /usr/ccs/bin/as can't handle multiplications
325 # in $self->{label}...
326 use integer;
327 $self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
328 $self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
329
330 # Some assemblers insist on signed presentation of 32-bit
331 # offsets, but sign extension is a tricky business in perl...
332 if ((1<<31)<<1) {
333 $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
334 } else {
335 $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
336 }
337
338 # if base register is %rbp or %r13, see if it's possible to
339 # flip base and index registers [for better performance]
340 if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
341 $self->{base} =~ /(rbp|r13)/) {
342 $self->{base} = $self->{index}; $self->{index} = $1;
343 }
344
345 if ($gas) {
346 $self->{label} =~ s/^___imp_/__imp__/ if ($flavour eq "mingw64");
347
348 if (defined($self->{index})) {
349 sprintf "%s%s(%s,%%%s,%d)%s",
350 $self->{asterisk},$self->{label},
351 $self->{base}?"%$self->{base}":"",
352 $self->{index},$self->{scale},
353 $self->{opmask};
354 } else {
355 sprintf "%s%s(%%%s)%s", $self->{asterisk},$self->{label},
356 $self->{base},$self->{opmask};
357 }
358 } else {
359 $self->{label} =~ s/\./\$/g;
360 $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
361 $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
362
363 my $mnemonic = $self->{opcode}->mnemonic();
364 ($self->{asterisk}) && ($sz="q") ||
365 ($mnemonic =~ /^v?mov([qd])$/) && ($sz=$1) ||
366 ($mnemonic =~ /^v?pinsr([qdwb])$/) && ($sz=$1) ||
367 ($mnemonic =~ /^vpbroadcast([qdwb])$/) && ($sz=$1) ||
368 ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/) && ($sz="x");
369
370 $self->{opmask} =~ s/%(k[0-7])/$1/;
371
372 if (defined($self->{index})) {
373 sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
374 $self->{label}?"$self->{label}+":"",
375 $self->{index},$self->{scale},
376 $self->{base}?"+$self->{base}":"",
377 $self->{opmask};
378 } elsif ($self->{base} eq "rip") {
379 sprintf "%s[%s]",$szmap{$sz},$self->{label};
380 } else {
381 sprintf "%s[%s%s]%s", $szmap{$sz},
382 $self->{label}?"$self->{label}+":"",
383 $self->{base},$self->{opmask};
384 }
385 }
386 }
387}
388{ package register; # pick up registers, which start with %.
389 sub re {
390 my ($class, $line, $opcode) = @_;
391 my $self = {};
392 my $ret;
393
394 # optional * ----vvv--- appears in indirect jmp/call
395 if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
396 bless $self,$class;
397 $self->{asterisk} = $1;
398 $self->{value} = $2;
399 $self->{opmask} = $3;
400 $opcode->size($self->size());
401 $ret = $self;
402 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
403 }
404 $ret;
405 }
406 sub size {
407 my $self = shift;
408 my $ret;
409
410 if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; }
411 elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; }
412 elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; }
413 elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; }
414 elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
415 elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; }
416 elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; }
417 elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
418
419 $ret;
420 }
421 sub out {
422 my $self = shift;
423 if ($gas) { sprintf "%s%%%s%s", $self->{asterisk},
424 $self->{value},
425 $self->{opmask}; }
426 else { $self->{opmask} =~ s/%(k[0-7])/$1/;
427 $self->{value}.$self->{opmask}; }
428 }
429}
430{ package label; # pick up labels, which end with :
431 sub re {
432 my ($class, $line) = @_;
433 my $self = {};
434 my $ret;
435
436 if ($$line =~ /(^[\.\w]+)\:/) {
437 bless $self,$class;
438 $self->{value} = $1;
439 $ret = $self;
440 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
441
442 $self->{value} =~ s/^\.L/$decor/;
443 }
444 $ret;
445 }
446 sub out {
447 my $self = shift;
448
449 if ($gas) {
450 my $func = ($globals{$self->{value}} or $self->{value}) . ":";
451 if ($win64 && $current_function->{name} eq $self->{value}
452 && $current_function->{abi} eq "svr4") {
453 $func .= "\n";
454 $func .= " movq %rdi,8(%rsp)\n";
455 $func .= " movq %rsi,16(%rsp)\n";
456 $func .= " movq %rsp,%rax\n";
457 $func .= "${decor}SEH_begin_$current_function->{name}:\n";
458 my $narg = $current_function->{narg};
459 $narg=6 if (!defined($narg));
460 $func .= " movq %rcx,%rdi\n" if ($narg>0);
461 $func .= " movq %rdx,%rsi\n" if ($narg>1);
462 $func .= " movq %r8,%rdx\n" if ($narg>2);
463 $func .= " movq %r9,%rcx\n" if ($narg>3);
464 $func .= " movq 40(%rsp),%r8\n" if ($narg>4);
465 $func .= " movq 48(%rsp),%r9\n" if ($narg>5);
466 }
467 $func;
468 } elsif ($self->{value} ne "$current_function->{name}") {
469 # Make all labels in masm global.
470 $self->{value} .= ":" if ($masm);
471 $self->{value} . ":";
472 } elsif ($win64 && $current_function->{abi} eq "svr4") {
473 my $func = "$current_function->{name}" .
474 ($nasm ? ":" : "\tPROC $current_function->{scope}") .
475 "\n";
476 $func .= " mov QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
477 $func .= " mov QWORD$PTR\[16+rsp\],rsi\n";
478 $func .= " mov rax,rsp\n";
479 $func .= "${decor}SEH_begin_$current_function->{name}:";
480 $func .= ":" if ($masm);
481 $func .= "\n";
482 my $narg = $current_function->{narg};
483 $narg=6 if (!defined($narg));
484 $func .= " mov rdi,rcx\n" if ($narg>0);
485 $func .= " mov rsi,rdx\n" if ($narg>1);
486 $func .= " mov rdx,r8\n" if ($narg>2);
487 $func .= " mov rcx,r9\n" if ($narg>3);
488 $func .= " mov r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
489 $func .= " mov r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
490 $func .= "\n";
491 } else {
492 "$current_function->{name}".
493 ($nasm ? ":" : "\tPROC $current_function->{scope}");
494 }
495 }
496}
497{ package expr; # pick up expressions
498 sub re {
499 my ($class, $line, $opcode) = @_;
500 my $self = {};
501 my $ret;
502
503 if ($$line =~ /(^[^,]+)/) {
504 bless $self,$class;
505 $self->{value} = $1;
506 $ret = $self;
507 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
508
509 $self->{value} =~ s/\@PLT// if (!$elf);
510 $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
511 $self->{value} =~ s/\.L/$decor/g;
512 $self->{opcode} = $opcode;
513 }
514 $ret;
515 }
516 sub out {
517 my $self = shift;
518 if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
519 "NEAR ".$self->{value};
520 } else {
521 $self->{value};
522 }
523 }
524}
525{ package cfi_directive;
526 # CFI directives annotate instructions that are significant for
527 # stack unwinding procedure compliant with DWARF specification,
528 # see http://dwarfstd.org/. Besides naturally expected for this
529 # script platform-specific filtering function, this module adds
530 # three auxiliary synthetic directives not recognized by [GNU]
531 # assembler:
532 #
533 # - .cfi_push to annotate push instructions in prologue, which
534 # translates to .cfi_adjust_cfa_offset (if needed) and
535 # .cfi_offset;
536 # - .cfi_pop to annotate pop instructions in epilogue, which
537 # translates to .cfi_adjust_cfa_offset (if needed) and
538 # .cfi_restore;
539 # - [and most notably] .cfi_cfa_expression which encodes
540 # DW_CFA_def_cfa_expression and passes it to .cfi_escape as
541 # byte vector;
542 #
543 # CFA expressions were introduced in DWARF specification version
544 # 3 and describe how to deduce CFA, Canonical Frame Address. This
545 # becomes handy if your stack frame is variable and you can't
546 # spare register for [previous] frame pointer. Suggested directive
547 # syntax is made-up mix of DWARF operator suffixes [subset of]
548 # and references to registers with optional bias. Following example
549 # describes offloaded *original* stack pointer at specific offset
550 # from *current* stack pointer:
551 #
552 # .cfi_cfa_expression %rsp+40,deref,+8
553 #
554 # Final +8 has everything to do with the fact that CFA is defined
555 # as reference to top of caller's stack, and on x86_64 call to
556 # subroutine pushes 8-byte return address. In other words original
557 # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
558
559 # Below constants are taken from "DWARF Expressions" section of the
560 # DWARF specification, section is numbered 7.7 in versions 3 and 4.
561 my %DW_OP_simple = ( # no-arg operators, mapped directly
562 deref => 0x06, dup => 0x12,
563 drop => 0x13, over => 0x14,
564 pick => 0x15, swap => 0x16,
565 rot => 0x17, xderef => 0x18,
566
567 abs => 0x19, and => 0x1a,
568 div => 0x1b, minus => 0x1c,
569 mod => 0x1d, mul => 0x1e,
570 neg => 0x1f, not => 0x20,
571 or => 0x21, plus => 0x22,
572 shl => 0x24, shr => 0x25,
573 shra => 0x26, xor => 0x27,
574 );
575
576 my %DW_OP_complex = ( # used in specific subroutines
577 constu => 0x10, # uleb128
578 consts => 0x11, # sleb128
579 plus_uconst => 0x23, # uleb128
580 lit0 => 0x30, # add 0-31 to opcode
581 reg0 => 0x50, # add 0-31 to opcode
582 breg0 => 0x70, # add 0-31 to opcole, sleb128
583 regx => 0x90, # uleb28
584 fbreg => 0x91, # sleb128
585 bregx => 0x92, # uleb128, sleb128
586 piece => 0x93, # uleb128
587 );
588
589 # Following constants are defined in x86_64 ABI supplement, for
590 # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf,
591 # see section 3.7 "Stack Unwind Algorithm".
592 my %DW_reg_idx = (
593 "%rax"=>0, "%rdx"=>1, "%rcx"=>2, "%rbx"=>3,
594 "%rsi"=>4, "%rdi"=>5, "%rbp"=>6, "%rsp"=>7,
595 "%r8" =>8, "%r9" =>9, "%r10"=>10, "%r11"=>11,
596 "%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
597 );
598
599 my ($cfa_reg, $cfa_rsp);
600 my @cfa_stack;
601
602 # [us]leb128 format is variable-length integer representation base
603 # 2^128, with most significant bit of each byte being 0 denoting
604 # *last* most significant digit. See "Variable Length Data" in the
605 # DWARF specification, numbered 7.6 at least in versions 3 and 4.
606 sub sleb128 {
607 use integer; # get right shift extend sign
608
609 my $val = shift;
610 my $sign = ($val < 0) ? -1 : 0;
611 my @ret = ();
612
613 while(1) {
614 push @ret, $val&0x7f;
615
616 # see if remaining bits are same and equal to most
617 # significant bit of the current digit, if so, it's
618 # last digit...
619 last if (($val>>6) == $sign);
620
621 @ret[-1] |= 0x80;
622 $val >>= 7;
623 }
624
625 return @ret;
626 }
627 sub uleb128 {
628 my $val = shift;
629 my @ret = ();
630
631 while(1) {
632 push @ret, $val&0x7f;
633
634 # see if it's last significant digit...
635 last if (($val >>= 7) == 0);
636
637 @ret[-1] |= 0x80;
638 }
639
640 return @ret;
641 }
642 sub const {
643 my $val = shift;
644
645 if ($val >= 0 && $val < 32) {
646 return ($DW_OP_complex{lit0}+$val);
647 }
648 return ($DW_OP_complex{consts}, sleb128($val));
649 }
650 sub reg {
651 my $val = shift;
652
653 return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
654
655 my $reg = $DW_reg_idx{$1};
656 my $off = eval ("0 $2 $3");
657
658 return (($DW_OP_complex{breg0} + $reg), sleb128($off));
659 # Yes, we use DW_OP_bregX+0 to push register value and not
660 # DW_OP_regX, because latter would require even DW_OP_piece,
661 # which would be a waste under the circumstances. If you have
662 # to use DWP_OP_reg, use "regx:N"...
663 }
664 sub cfa_expression {
665 my $line = shift;
666 my @ret;
667
668 foreach my $token (split(/,\s*/,$line)) {
669 if ($token =~ /^%r/) {
670 push @ret,reg($token);
671 } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
672 push @ret,reg("$2+$1");
673 } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
674 my $i = 1*eval($2);
675 push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
676 } elsif (my $i = 1*eval($token) or $token eq "0") {
677 if ($token =~ /^\+/) {
678 push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
679 } else {
680 push @ret,const($i);
681 }
682 } else {
683 push @ret,$DW_OP_simple{$token};
684 }
685 }
686
687 # Finally we return DW_CFA_def_cfa_expression, 15, followed by
688 # length of the expression and of course the expression itself.
689 return (15,scalar(@ret),@ret);
690 }
691 sub re {
692 my ($class, $line) = @_;
693 my $self = {};
694 my $ret;
695
696 if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
697 bless $self,$class;
698 $ret = $self;
699 undef $self->{value};
700 my $dir = $1;
701
702 SWITCH: for ($dir) {
703 # What is $cfa_rsp? Effectively it's difference between %rsp
704 # value and current CFA, Canonical Frame Address, which is
705 # why it starts with -8. Recall that CFA is top of caller's
706 # stack...
707 /startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
708 /endproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", 0);
709 # .cfi_remember_state directives that are not
710 # matched with .cfi_restore_state are
711 # unnecessary.
712 die "unpaired .cfi_remember_state" if (@cfa_stack);
713 last;
714 };
715 /def_cfa_register/
716 && do { $cfa_reg = $$line; last; };
717 /def_cfa_offset/
718 && do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
719 last;
720 };
721 /adjust_cfa_offset/
722 && do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
723 last;
724 };
725 /def_cfa/ && do { if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
726 $cfa_reg = $1;
727 $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
728 }
729 last;
730 };
731 /push/ && do { $dir = undef;
732 $cfa_rsp -= 8;
733 if ($cfa_reg eq "%rsp") {
734 $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
735 }
736 $self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
737 last;
738 };
739 /pop/ && do { $dir = undef;
740 $cfa_rsp += 8;
741 if ($cfa_reg eq "%rsp") {
742 $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
743 }
744 $self->{value} .= ".cfi_restore\t$$line";
745 last;
746 };
747 /cfa_expression/
748 && do { $dir = undef;
749 $self->{value} = ".cfi_escape\t" .
750 join(",", map(sprintf("0x%02x", $_),
751 cfa_expression($$line)));
752 last;
753 };
754 /remember_state/
755 && do { push @cfa_stack, [$cfa_reg, $cfa_rsp];
756 last;
757 };
758 /restore_state/
759 && do { ($cfa_reg, $cfa_rsp) = @{pop @cfa_stack};
760 last;
761 };
762 }
763
764 $self->{value} = ".cfi_$dir\t$$line" if ($dir);
765
766 $$line = "";
767 }
768
769 return $ret;
770 }
771 sub out {
772 my $self = shift;
773 return ($elf ? $self->{value} : undef);
774 }
775}
776{ package directive; # pick up directives, which start with .
777 sub re {
778 my ($class, $line) = @_;
779 my $self = {};
780 my $ret;
781 my $dir;
782
783 # chain-call to cfi_directive
784 $ret = cfi_directive->re($line) and return $ret;
785
786 if ($$line =~ /^\s*(\.\w+)/) {
787 bless $self,$class;
788 $dir = $1;
789 $ret = $self;
790 undef $self->{value};
791 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
792
793 SWITCH: for ($dir) {
794 /\.global|\.globl|\.extern/
795 && do { $globals{$$line} = $prefix . $$line;
796 $$line = $globals{$$line} if ($prefix);
797 last;
798 };
799 /\.type/ && do { my ($sym,$type,$narg) = split(',',$$line);
800 if ($type eq "\@function") {
801 undef $current_function;
802 $current_function->{name} = $sym;
803 $current_function->{abi} = "svr4";
804 $current_function->{narg} = $narg;
805 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
806 } elsif ($type eq "\@abi-omnipotent") {
807 undef $current_function;
808 $current_function->{name} = $sym;
809 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
810 }
811 $$line =~ s/\@abi\-omnipotent/\@function/;
812 $$line =~ s/\@function.*/\@function/;
813 last;
814 };
815 /\.asciz/ && do { if ($$line =~ /^"(.*)"$/) {
816 $dir = ".byte";
817 $$line = join(",",unpack("C*",$1),0);
818 }
819 last;
820 };
821 /\.rva|\.long|\.quad|\.byte/
822 && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
823 $$line =~ s/\.L/$decor/g;
824 last;
825 };
826 }
827
828 if ($gas) {
829 $self->{value} = $dir . "\t" . $$line;
830
831 if ($dir =~ /\.extern/) {
832 $self->{value} = ""; # swallow extern
833 } elsif (!$elf && $dir =~ /\.type/) {
834 $self->{value} = "";
835 $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
836 (defined($globals{$1})?".scl 2;":".scl 3;") .
837 "\t.type 32;\t.endef"
838 if ($win64 && $$line =~ /([^,]+),\@function/);
839 } elsif (!$elf && $dir =~ /\.size/) {
840 $self->{value} = "";
841 if (defined($current_function)) {
842 $self->{value} .= "${decor}SEH_end_$current_function->{name}:"
843 if ($win64 && $current_function->{abi} eq "svr4");
844 undef $current_function;
845 }
846 } elsif (!$elf && $dir =~ /\.align/) {
847 $self->{value} = ".p2align\t" . (log($$line)/log(2));
848 } elsif ($dir eq ".section") {
849 $current_segment=$$line;
850 if (!$elf && $current_segment eq ".init") {
851 if ($flavour eq "macosx") { $self->{value} = ".mod_init_func"; }
852 elsif ($flavour eq "mingw64") { $self->{value} = ".section\t.ctors"; }
853 }
854 } elsif ($dir =~ /\.(text|data)/) {
855 $current_segment=".$1";
856 } elsif ($dir =~ /\.hidden/) {
857 if ($flavour eq "macosx") { $self->{value} = ".private_extern\t$prefix$$line"; }
858 elsif ($flavour eq "mingw64") { $self->{value} = ""; }
859 } elsif ($dir =~ /\.comm/) {
860 $self->{value} = "$dir\t$prefix$$line";
861 $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
862 }
863 $$line = "";
864 return $self;
865 }
866
867 # non-gas case or nasm/masm
868 SWITCH: for ($dir) {
869 /\.text/ && do { my $v=undef;
870 if ($nasm) {
871 $v="section .text code align=64\n";
872 } else {
873 $v="$current_segment\tENDS\n" if ($current_segment);
874 $current_segment = ".text\$";
875 $v.="$current_segment\tSEGMENT ";
876 $v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
877 $v.=" 'CODE'";
878 }
879 $self->{value} = $v;
880 last;
881 };
882 /\.data/ && do { my $v=undef;
883 if ($nasm) {
884 $v="section .data data align=8\n";
885 } else {
886 $v="$current_segment\tENDS\n" if ($current_segment);
887 $current_segment = "_DATA";
888 $v.="$current_segment\tSEGMENT";
889 }
890 $self->{value} = $v;
891 last;
892 };
893 /\.section/ && do { my $v=undef;
894 $$line =~ s/([^,]*).*/$1/;
895 $$line = ".CRT\$XCU" if ($$line eq ".init");
896 if ($nasm) {
897 $v="section $$line";
898 if ($$line=~/\.([px])data/) {
899 $v.=" rdata align=";
900 $v.=$1 eq "p"? 4 : 8;
901 } elsif ($$line=~/\.CRT\$/i) {
902 $v.=" rdata align=8";
903 }
904 } else {
905 $v="$current_segment\tENDS\n" if ($current_segment);
906 $v.="$$line\tSEGMENT";
907 if ($$line=~/\.([px])data/) {
908 $v.=" READONLY";
909 $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
910 } elsif ($$line=~/\.CRT\$/i) {
911 $v.=" READONLY ";
912 $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
913 }
914 }
915 $current_segment = $$line;
916 $self->{value} = $v;
917 last;
918 };
919 /\.extern/ && do { $self->{value} = "EXTERN\t".$$line;
920 $self->{value} .= ":NEAR" if ($masm);
921 last;
922 };
923 /\.globl|.global/
924 && do { $self->{value} = $masm?"PUBLIC":"global";
925 $self->{value} .= "\t".$$line;
926 last;
927 };
928 /\.size/ && do { if (defined($current_function)) {
929 undef $self->{value};
930 if ($current_function->{abi} eq "svr4") {
931 $self->{value}="${decor}SEH_end_$current_function->{name}:";
932 $self->{value}.=":\n" if($masm);
933 }
934 $self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
935 undef $current_function;
936 }
937 last;
938 };
939 /\.align/ && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
940 $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
941 last;
942 };
943 /\.(value|long|rva|quad)/
944 && do { my $sz = substr($1,0,1);
945 my @arr = split(/,\s*/,$$line);
946 my $last = pop(@arr);
947 my $conv = sub { my $var=shift;
948 $var=~s/^(0b[0-1]+)/oct($1)/eig;
949 $var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
950 if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
951 { $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
952 $var;
953 };
954
955 $sz =~ tr/bvlrq/BWDDQ/;
956 $self->{value} = "\tD$sz\t";
957 for (@arr) { $self->{value} .= &$conv($_).","; }
958 $self->{value} .= &$conv($last);
959 last;
960 };
961 /\.byte/ && do { my @str=split(/,\s*/,$$line);
962 map(s/(0b[0-1]+)/oct($1)/eig,@str);
963 map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
964 while ($#str>15) {
965 $self->{value}.="DB\t"
966 .join(",",@str[0..15])."\n";
967 foreach (0..15) { shift @str; }
968 }
969 $self->{value}.="DB\t"
970 .join(",",@str) if (@str);
971 last;
972 };
973 /\.comm/ && do { my @str=split(/,\s*/,$$line);
974 my $v=undef;
975 if ($nasm) {
976 $v.="common $prefix@str[0] @str[1]";
977 } else {
978 $v="$current_segment\tENDS\n" if ($current_segment);
979 $current_segment = "_DATA";
980 $v.="$current_segment\tSEGMENT\n";
981 $v.="COMM @str[0]:DWORD:".@str[1]/4;
982 }
983 $self->{value} = $v;
984 last;
985 };
986 }
987 $$line = "";
988 }
989
990 $ret;
991 }
992 sub out {
993 my $self = shift;
994 $self->{value};
995 }
996}
997
998# Upon initial x86_64 introduction SSE>2 extensions were not introduced
999# yet. In order not to be bothered by tracing exact assembler versions,
1000# but at the same time to provide a bare security minimum of AES-NI, we
1001# hard-code some instructions. Extensions past AES-NI on the other hand
1002# are traced by examining assembler version in individual perlasm
1003# modules...
1004
1005my %regrm = ( "%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
1006 "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7 );
1007
1008sub rex {
1009 my $opcode=shift;
1010 my ($dst,$src,$rex)=@_;
1011
1012 $rex|=0x04 if($dst>=8);
1013 $rex|=0x01 if($src>=8);
1014 push @$opcode,($rex|0x40) if ($rex);
1015}
1016
1017my $movq = sub { # elderly gas can't handle inter-register movq
1018 my $arg = shift;
1019 my @opcode=(0x66);
1020 if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
1021 my ($src,$dst)=($1,$2);
1022 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1023 rex(\@opcode,$src,$dst,0x8);
1024 push @opcode,0x0f,0x7e;
1025 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
1026 @opcode;
1027 } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
1028 my ($src,$dst)=($2,$1);
1029 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1030 rex(\@opcode,$src,$dst,0x8);
1031 push @opcode,0x0f,0x6e;
1032 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
1033 @opcode;
1034 } else {
1035 ();
1036 }
1037};
1038
1039my $pextrd = sub {
1040 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
1041 my @opcode=(0x66);
1042 my $imm=$1;
1043 my $src=$2;
1044 my $dst=$3;
1045 if ($dst =~ /%r([0-9]+)d/) { $dst = $1; }
1046 elsif ($dst =~ /%e/) { $dst = $regrm{$dst}; }
1047 rex(\@opcode,$src,$dst);
1048 push @opcode,0x0f,0x3a,0x16;
1049 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
1050 push @opcode,$imm;
1051 @opcode;
1052 } else {
1053 ();
1054 }
1055};
1056
1057my $pinsrd = sub {
1058 if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
1059 my @opcode=(0x66);
1060 my $imm=$1;
1061 my $src=$2;
1062 my $dst=$3;
1063 if ($src =~ /%r([0-9]+)/) { $src = $1; }
1064 elsif ($src =~ /%e/) { $src = $regrm{$src}; }
1065 rex(\@opcode,$dst,$src);
1066 push @opcode,0x0f,0x3a,0x22;
1067 push @opcode,0xc0|(($dst&7)<<3)|($src&7); # ModR/M
1068 push @opcode,$imm;
1069 @opcode;
1070 } else {
1071 ();
1072 }
1073};
1074
1075my $pshufb = sub {
1076 if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1077 my @opcode=(0x66);
1078 rex(\@opcode,$2,$1);
1079 push @opcode,0x0f,0x38,0x00;
1080 push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
1081 @opcode;
1082 } else {
1083 ();
1084 }
1085};
1086
1087my $palignr = sub {
1088 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1089 my @opcode=(0x66);
1090 rex(\@opcode,$3,$2);
1091 push @opcode,0x0f,0x3a,0x0f;
1092 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1093 push @opcode,$1;
1094 @opcode;
1095 } else {
1096 ();
1097 }
1098};
1099
1100my $pclmulqdq = sub {
1101 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1102 my @opcode=(0x66);
1103 rex(\@opcode,$3,$2);
1104 push @opcode,0x0f,0x3a,0x44;
1105 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1106 my $c=$1;
1107 push @opcode,$c=~/^0/?oct($c):$c;
1108 @opcode;
1109 } else {
1110 ();
1111 }
1112};
1113
1114my $rdrand = sub {
1115 if (shift =~ /%[er](\w+)/) {
1116 my @opcode=();
1117 my $dst=$1;
1118 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1119 rex(\@opcode,0,$dst,8);
1120 push @opcode,0x0f,0xc7,0xf0|($dst&7);
1121 @opcode;
1122 } else {
1123 ();
1124 }
1125};
1126
1127my $rdseed = sub {
1128 if (shift =~ /%[er](\w+)/) {
1129 my @opcode=();
1130 my $dst=$1;
1131 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1132 rex(\@opcode,0,$dst,8);
1133 push @opcode,0x0f,0xc7,0xf8|($dst&7);
1134 @opcode;
1135 } else {
1136 ();
1137 }
1138};
1139
1140# Not all AVX-capable assemblers recognize AMD XOP extension. Since we
1141# are using only two instructions hand-code them in order to be excused
1142# from chasing assembler versions...
1143
1144sub rxb {
1145 my $opcode=shift;
1146 my ($dst,$src1,$src2,$rxb)=@_;
1147
1148 $rxb|=0x7<<5;
1149 $rxb&=~(0x04<<5) if($dst>=8);
1150 $rxb&=~(0x01<<5) if($src1>=8);
1151 $rxb&=~(0x02<<5) if($src2>=8);
1152 push @$opcode,$rxb;
1153}
1154
1155my $vprotd = sub {
1156 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1157 my @opcode=(0x8f);
1158 rxb(\@opcode,$3,$2,-1,0x08);
1159 push @opcode,0x78,0xc2;
1160 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1161 my $c=$1;
1162 push @opcode,$c=~/^0/?oct($c):$c;
1163 @opcode;
1164 } else {
1165 ();
1166 }
1167};
1168
1169my $vprotq = sub {
1170 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1171 my @opcode=(0x8f);
1172 rxb(\@opcode,$3,$2,-1,0x08);
1173 push @opcode,0x78,0xc3;
1174 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1175 my $c=$1;
1176 push @opcode,$c=~/^0/?oct($c):$c;
1177 @opcode;
1178 } else {
1179 ();
1180 }
1181};
1182
1183# Intel Control-flow Enforcement Technology extension. All functions and
1184# indirect branch targets will have to start with this instruction...
1185
1186my $endbranch = sub {
1187 (0xf3,0x0f,0x1e,0xfa);
1188};
1189
1190########################################################################
1191
1192if ($nasm) {
1193 print <<___;
1194default rel
1195%define XMMWORD
1196%define YMMWORD
1197%define ZMMWORD
1198___
1199} elsif ($masm) {
1200 print <<___;
1201OPTION DOTNAME
1202___
1203}
1204while(defined(my $line=<>)) {
1205
1206 $line =~ s|\R$||; # Better chomp
1207
1208 $line =~ s|[#!].*$||; # get rid of asm-style comments...
1209 $line =~ s|/\*.*\*/||; # ... and C-style comments...
1210 $line =~ s|^\s+||; # ... and skip whitespaces in beginning
1211 $line =~ s|\s+$||; # ... and at the end
1212
1213 if (my $label=label->re(\$line)) { print $label->out(); }
1214
1215 if (my $directive=directive->re(\$line)) {
1216 printf "%s",$directive->out();
1217 } elsif (my $opcode=opcode->re(\$line)) {
1218 my $asm = eval("\$".$opcode->mnemonic());
1219
1220 if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
1221 print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
1222 next;
1223 }
1224
1225 my @args;
1226 ARGUMENT: while (1) {
1227 my $arg;
1228
1229 ($arg=register->re(\$line, $opcode))||
1230 ($arg=const->re(\$line)) ||
1231 ($arg=ea->re(\$line, $opcode)) ||
1232 ($arg=expr->re(\$line, $opcode)) ||
1233 last ARGUMENT;
1234
1235 push @args,$arg;
1236
1237 last ARGUMENT if ($line !~ /^,/);
1238
1239 $line =~ s/^,\s*//;
1240 } # ARGUMENT:
1241
1242 if ($#args>=0) {
1243 my $insn;
1244 my $sz=$opcode->size();
1245
1246 if ($gas) {
1247 $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
1248 @args = map($_->out($sz),@args);
1249 printf "\t%s\t%s",$insn,join(",",@args);
1250 } else {
1251 $insn = $opcode->out();
1252 foreach (@args) {
1253 my $arg = $_->out();
1254 # $insn.=$sz compensates for movq, pinsrw, ...
1255 if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
1256 if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
1257 if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
1258 if ($arg =~ /^mm[0-9]+$/) { $insn.=$sz; $sz="q" if(!$sz); last; }
1259 }
1260 @args = reverse(@args);
1261 undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
1262 printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
1263 }
1264 } else {
1265 printf "\t%s",$opcode->out();
1266 }
1267 }
1268
1269 print $line,"\n";
1270}
1271
1272print "$cet_property" if ($cet_property);
1273print "\n$current_segment\tENDS\n" if ($current_segment && $masm);
1274print "END\n" if ($masm);
1275
1276close STDOUT or die "error closing STDOUT: $!;"
1277
1278
1279#################################################
1280# Cross-reference x86_64 ABI "card"
1281#
1282# Unix Win64
1283# %rax * *
1284# %rbx - -
1285# %rcx #4 #1
1286# %rdx #3 #2
1287# %rsi #2 -
1288# %rdi #1 -
1289# %rbp - -
1290# %rsp - -
1291# %r8 #5 #3
1292# %r9 #6 #4
1293# %r10 * *
1294# %r11 * *
1295# %r12 - -
1296# %r13 - -
1297# %r14 - -
1298# %r15 - -
1299#
1300# (*) volatile register
1301# (-) preserved by callee
1302# (#) Nth argument, volatile
1303#
1304# In Unix terms top of stack is argument transfer area for arguments
1305# which could not be accommodated in registers. Or in other words 7th
1306# [integer] argument resides at 8(%rsp) upon function entry point.
1307# 128 bytes above %rsp constitute a "red zone" which is not touched
1308# by signal handlers and can be used as temporal storage without
1309# allocating a frame.
1310#
1311# In Win64 terms N*8 bytes on top of stack is argument transfer area,
1312# which belongs to/can be overwritten by callee. N is the number of
1313# arguments passed to callee, *but* not less than 4! This means that
1314# upon function entry point 5th argument resides at 40(%rsp), as well
1315# as that 32 bytes from 8(%rsp) can always be used as temporal
1316# storage [without allocating a frame]. One can actually argue that
1317# one can assume a "red zone" above stack pointer under Win64 as well.
1318# Point is that at apparently no occasion Windows kernel would alter
1319# the area above user stack pointer in true asynchronous manner...
1320#
1321# All the above means that if assembler programmer adheres to Unix
1322# register and stack layout, but disregards the "red zone" existence,
1323# it's possible to use following prologue and epilogue to "gear" from
1324# Unix to Win64 ABI in leaf functions with not more than 6 arguments.
1325#
1326# omnipotent_function:
1327# ifdef WIN64
1328# movq %rdi,8(%rsp)
1329# movq %rsi,16(%rsp)
1330# movq %rcx,%rdi ; if 1st argument is actually present
1331# movq %rdx,%rsi ; if 2nd argument is actually ...
1332# movq %r8,%rdx ; if 3rd argument is ...
1333# movq %r9,%rcx ; if 4th argument ...
1334# movq 40(%rsp),%r8 ; if 5th ...
1335# movq 48(%rsp),%r9 ; if 6th ...
1336# endif
1337# ...
1338# ifdef WIN64
1339# movq 8(%rsp),%rdi
1340# movq 16(%rsp),%rsi
1341# endif
1342# ret
1343#
1344
1345#################################################
1346# Win64 SEH, Structured Exception Handling.
1347#
1348# Unlike on Unix systems(*) lack of Win64 stack unwinding information
1349# has undesired side-effect at run-time: if an exception is raised in
1350# assembler subroutine such as those in question (basically we're
1351# referring to segmentation violations caused by malformed input
1352# parameters), the application is briskly terminated without invoking
1353# any exception handlers, most notably without generating memory dump
1354# or any user notification whatsoever. This poses a problem. It's
1355# possible to address it by registering custom language-specific
1356# handler that would restore processor context to the state at
1357# subroutine entry point and return "exception is not handled, keep
1358# unwinding" code. Writing such handler can be a challenge... But it's
1359# doable, though requires certain coding convention. Consider following
1360# snippet:
1361#
1362# .type function,@function
1363# function:
1364# movq %rsp,%rax # copy rsp to volatile register
1365# pushq %r15 # save non-volatile registers
1366# pushq %rbx
1367# pushq %rbp
1368# movq %rsp,%r11
1369# subq %rdi,%r11 # prepare [variable] stack frame
1370# andq $-64,%r11
1371# movq %rax,0(%r11) # check for exceptions
1372# movq %r11,%rsp # allocate [variable] stack frame
1373# movq %rax,0(%rsp) # save original rsp value
1374# magic_point:
1375# ...
1376# movq 0(%rsp),%rcx # pull original rsp value
1377# movq -24(%rcx),%rbp # restore non-volatile registers
1378# movq -16(%rcx),%rbx
1379# movq -8(%rcx),%r15
1380# movq %rcx,%rsp # restore original rsp
1381# magic_epilogue:
1382# ret
1383# .size function,.-function
1384#
1385# The key is that up to magic_point copy of original rsp value remains
1386# in chosen volatile register and no non-volatile register, except for
1387# rsp, is modified. While past magic_point rsp remains constant till
1388# the very end of the function. In this case custom language-specific
1389# exception handler would look like this:
1390#
1391# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1392# CONTEXT *context,DISPATCHER_CONTEXT *disp)
1393# { ULONG64 *rsp = (ULONG64 *)context->Rax;
1394# ULONG64 rip = context->Rip;
1395#
1396# if (rip >= magic_point)
1397# { rsp = (ULONG64 *)context->Rsp;
1398# if (rip < magic_epilogue)
1399# { rsp = (ULONG64 *)rsp[0];
1400# context->Rbp = rsp[-3];
1401# context->Rbx = rsp[-2];
1402# context->R15 = rsp[-1];
1403# }
1404# }
1405# context->Rsp = (ULONG64)rsp;
1406# context->Rdi = rsp[1];
1407# context->Rsi = rsp[2];
1408#
1409# memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
1410# RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
1411# dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
1412# &disp->HandlerData,&disp->EstablisherFrame,NULL);
1413# return ExceptionContinueSearch;
1414# }
1415#
1416# It's appropriate to implement this handler in assembler, directly in
1417# function's module. In order to do that one has to know members'
1418# offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
1419# values. Here they are:
1420#
1421# CONTEXT.Rax 120
1422# CONTEXT.Rcx 128
1423# CONTEXT.Rdx 136
1424# CONTEXT.Rbx 144
1425# CONTEXT.Rsp 152
1426# CONTEXT.Rbp 160
1427# CONTEXT.Rsi 168
1428# CONTEXT.Rdi 176
1429# CONTEXT.R8 184
1430# CONTEXT.R9 192
1431# CONTEXT.R10 200
1432# CONTEXT.R11 208
1433# CONTEXT.R12 216
1434# CONTEXT.R13 224
1435# CONTEXT.R14 232
1436# CONTEXT.R15 240
1437# CONTEXT.Rip 248
1438# CONTEXT.Xmm6 512
1439# sizeof(CONTEXT) 1232
1440# DISPATCHER_CONTEXT.ControlPc 0
1441# DISPATCHER_CONTEXT.ImageBase 8
1442# DISPATCHER_CONTEXT.FunctionEntry 16
1443# DISPATCHER_CONTEXT.EstablisherFrame 24
1444# DISPATCHER_CONTEXT.TargetIp 32
1445# DISPATCHER_CONTEXT.ContextRecord 40
1446# DISPATCHER_CONTEXT.LanguageHandler 48
1447# DISPATCHER_CONTEXT.HandlerData 56
1448# UNW_FLAG_NHANDLER 0
1449# ExceptionContinueSearch 1
1450#
1451# In order to tie the handler to the function one has to compose
1452# couple of structures: one for .xdata segment and one for .pdata.
1453#
1454# UNWIND_INFO structure for .xdata segment would be
1455#
1456# function_unwind_info:
1457# .byte 9,0,0,0
1458# .rva handler
1459#
1460# This structure designates exception handler for a function with
1461# zero-length prologue, no stack frame or frame register.
1462#
1463# To facilitate composing of .pdata structures, auto-generated "gear"
1464# prologue copies rsp value to rax and denotes next instruction with
1465# .LSEH_begin_{function_name} label. This essentially defines the SEH
1466# styling rule mentioned in the beginning. Position of this label is
1467# chosen in such manner that possible exceptions raised in the "gear"
1468# prologue would be accounted to caller and unwound from latter's frame.
1469# End of function is marked with respective .LSEH_end_{function_name}
1470# label. To summarize, .pdata segment would contain
1471#
1472# .rva .LSEH_begin_function
1473# .rva .LSEH_end_function
1474# .rva function_unwind_info
1475#
1476# Reference to function_unwind_info from .xdata segment is the anchor.
1477# In case you wonder why references are 32-bit .rvas and not 64-bit
1478# .quads. References put into these two segments are required to be
1479# *relative* to the base address of the current binary module, a.k.a.
1480# image base. No Win64 module, be it .exe or .dll, can be larger than
1481# 2GB and thus such relative references can be and are accommodated in
1482# 32 bits.
1483#
1484# Having reviewed the example function code, one can argue that "movq
1485# %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1486# rax would contain an undefined value. If this "offends" you, use
1487# another register and refrain from modifying rax till magic_point is
1488# reached, i.e. as if it was a non-volatile register. If more registers
1489# are required prior [variable] frame setup is completed, note that
1490# nobody says that you can have only one "magic point." You can
1491# "liberate" non-volatile registers by denoting last stack off-load
1492# instruction and reflecting it in finer grade unwind logic in handler.
1493# After all, isn't it why it's called *language-specific* handler...
1494#
1495# SE handlers are also involved in unwinding stack when executable is
1496# profiled or debugged. Profiling implies additional limitations that
1497# are too subtle to discuss here. For now it's sufficient to say that
1498# in order to simplify handlers one should either a) offload original
1499# %rsp to stack (like discussed above); or b) if you have a register to
1500# spare for frame pointer, choose volatile one.
1501#
1502# (*) Note that we're talking about run-time, not debug-time. Lack of
1503# unwind information makes debugging hard on both Windows and
1504# Unix. "Unlike" refers to the fact that on Unix signal handler
1505# will always be invoked, core dumped and appropriate exit code
1506# returned to parent (for user notification).
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette